_target.py
9.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Authors: Andreas Mueller <andreas.mueller@columbia.edu>
# Guillaume Lemaitre <guillaume.lemaitre@inria.fr>
# License: BSD 3 clause
import warnings
import numpy as np
from ..base import BaseEstimator, RegressorMixin, clone
from ..utils.validation import check_is_fitted
from ..utils import check_array, _safe_indexing
from ..preprocessing import FunctionTransformer
from ..utils.validation import _deprecate_positional_args
from ..exceptions import NotFittedError
__all__ = ['TransformedTargetRegressor']
class TransformedTargetRegressor(RegressorMixin, BaseEstimator):
"""Meta-estimator to regress on a transformed target.
Useful for applying a non-linear transformation to the target ``y`` in
regression problems. This transformation can be given as a Transformer
such as the QuantileTransformer or as a function and its inverse such as
``log`` and ``exp``.
The computation during ``fit`` is::
regressor.fit(X, func(y))
or::
regressor.fit(X, transformer.transform(y))
The computation during ``predict`` is::
inverse_func(regressor.predict(X))
or::
transformer.inverse_transform(regressor.predict(X))
Read more in the :ref:`User Guide <transformed_target_regressor>`.
.. versionadded:: 0.20
Parameters
----------
regressor : object, default=None
Regressor object such as derived from ``RegressorMixin``. This
regressor will automatically be cloned each time prior to fitting.
If regressor is ``None``, ``LinearRegression()`` is created and used.
transformer : object, default=None
Estimator object such as derived from ``TransformerMixin``. Cannot be
set at the same time as ``func`` and ``inverse_func``. If
``transformer`` is ``None`` as well as ``func`` and ``inverse_func``,
the transformer will be an identity transformer. Note that the
transformer will be cloned during fitting. Also, the transformer is
restricting ``y`` to be a numpy array.
func : function, default=None
Function to apply to ``y`` before passing to ``fit``. Cannot be set at
the same time as ``transformer``. The function needs to return a
2-dimensional array. If ``func`` is ``None``, the function used will be
the identity function.
inverse_func : function, default=None
Function to apply to the prediction of the regressor. Cannot be set at
the same time as ``transformer`` as well. The function needs to return
a 2-dimensional array. The inverse function is used to return
predictions to the same space of the original training labels.
check_inverse : bool, default=True
Whether to check that ``transform`` followed by ``inverse_transform``
or ``func`` followed by ``inverse_func`` leads to the original targets.
Attributes
----------
regressor_ : object
Fitted regressor.
transformer_ : object
Transformer used in ``fit`` and ``predict``.
Examples
--------
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.compose import TransformedTargetRegressor
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
... func=np.log, inverse_func=np.exp)
>>> X = np.arange(4).reshape(-1, 1)
>>> y = np.exp(2 * X).ravel()
>>> tt.fit(X, y)
TransformedTargetRegressor(...)
>>> tt.score(X, y)
1.0
>>> tt.regressor_.coef_
array([2.])
Notes
-----
Internally, the target ``y`` is always converted into a 2-dimensional array
to be used by scikit-learn transformers. At the time of prediction, the
output will be reshaped to a have the same number of dimensions as ``y``.
See :ref:`examples/compose/plot_transformed_target.py
<sphx_glr_auto_examples_compose_plot_transformed_target.py>`.
"""
@_deprecate_positional_args
def __init__(self, regressor=None, *, transformer=None,
func=None, inverse_func=None, check_inverse=True):
self.regressor = regressor
self.transformer = transformer
self.func = func
self.inverse_func = inverse_func
self.check_inverse = check_inverse
def _fit_transformer(self, y):
"""Check transformer and fit transformer.
Create the default transformer, fit it and make additional inverse
check on a subset (optional).
"""
if (self.transformer is not None and
(self.func is not None or self.inverse_func is not None)):
raise ValueError("'transformer' and functions 'func'/"
"'inverse_func' cannot both be set.")
elif self.transformer is not None:
self.transformer_ = clone(self.transformer)
else:
if self.func is not None and self.inverse_func is None:
raise ValueError("When 'func' is provided, 'inverse_func' must"
" also be provided")
self.transformer_ = FunctionTransformer(
func=self.func, inverse_func=self.inverse_func, validate=True,
check_inverse=self.check_inverse)
# XXX: sample_weight is not currently passed to the
# transformer. However, if transformer starts using sample_weight, the
# code should be modified accordingly. At the time to consider the
# sample_prop feature, it is also a good use case to be considered.
self.transformer_.fit(y)
if self.check_inverse:
idx_selected = slice(None, None, max(1, y.shape[0] // 10))
y_sel = _safe_indexing(y, idx_selected)
y_sel_t = self.transformer_.transform(y_sel)
if not np.allclose(y_sel,
self.transformer_.inverse_transform(y_sel_t)):
warnings.warn("The provided functions or transformer are"
" not strictly inverse of each other. If"
" you are sure you want to proceed regardless"
", set 'check_inverse=False'", UserWarning)
def fit(self, X, y, **fit_params):
"""Fit the model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like of shape (n_samples,)
Target values.
**fit_params : dict
Parameters passed to the ``fit`` method of the underlying
regressor.
Returns
-------
self : object
"""
y = check_array(y, accept_sparse=False, force_all_finite=True,
ensure_2d=False, dtype='numeric')
# store the number of dimension of the target to predict an array of
# similar shape at predict
self._training_dim = y.ndim
# transformers are designed to modify X which is 2d dimensional, we
# need to modify y accordingly.
if y.ndim == 1:
y_2d = y.reshape(-1, 1)
else:
y_2d = y
self._fit_transformer(y_2d)
# transform y and convert back to 1d array if needed
y_trans = self.transformer_.transform(y_2d)
# FIXME: a FunctionTransformer can return a 1D array even when validate
# is set to True. Therefore, we need to check the number of dimension
# first.
if y_trans.ndim == 2 and y_trans.shape[1] == 1:
y_trans = y_trans.squeeze(axis=1)
if self.regressor is None:
from ..linear_model import LinearRegression
self.regressor_ = LinearRegression()
else:
self.regressor_ = clone(self.regressor)
self.regressor_.fit(X, y_trans, **fit_params)
return self
def predict(self, X):
"""Predict using the base regressor, applying inverse.
The regressor is used to predict and the ``inverse_func`` or
``inverse_transform`` is applied before returning the prediction.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
Returns
-------
y_hat : ndarray of shape (n_samples,)
Predicted values.
"""
check_is_fitted(self)
pred = self.regressor_.predict(X)
if pred.ndim == 1:
pred_trans = self.transformer_.inverse_transform(
pred.reshape(-1, 1))
else:
pred_trans = self.transformer_.inverse_transform(pred)
if (self._training_dim == 1 and
pred_trans.ndim == 2 and pred_trans.shape[1] == 1):
pred_trans = pred_trans.squeeze(axis=1)
return pred_trans
def _more_tags(self):
return {'poor_score': True, 'no_validation': True}
@property
def n_features_in_(self):
# For consistency with other estimators we raise a AttributeError so
# that hasattr() returns False the estimator isn't fitted.
try:
check_is_fitted(self)
except NotFittedError as nfe:
raise AttributeError(
"{} object has no n_features_in_ attribute."
.format(self.__class__.__name__)
) from nfe
return self.regressor_.n_features_in_