_logsumexp.py
7.76 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
from scipy._lib._util import _asarray_validated
__all__ = ["logsumexp", "softmax", "log_softmax"]
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
"""Compute the log of the sum of exponentials of input elements.
Parameters
----------
a : array_like
Input array.
axis : None or int or tuple of ints, optional
Axis or axes over which the sum is taken. By default `axis` is None,
and all elements are summed.
.. versionadded:: 0.11.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array.
.. versionadded:: 0.15.0
b : array-like, optional
Scaling factor for exp(`a`) must be of the same shape as `a` or
broadcastable to `a`. These values may be negative in order to
implement subtraction.
.. versionadded:: 0.12.0
return_sign : bool, optional
If this is set to True, the result will be a pair containing sign
information; if False, results that are negative will be returned
as NaN. Default is False (no sign information).
.. versionadded:: 0.16.0
Returns
-------
res : ndarray
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
is returned.
sgn : ndarray
If return_sign is True, this will be an array of floating-point
numbers matching res and +1, 0, or -1 depending on the sign
of the result. If False, only one result is returned.
See Also
--------
numpy.logaddexp, numpy.logaddexp2
Notes
-----
NumPy has a logaddexp function which is very similar to `logsumexp`, but
only handles two arguments. `logaddexp.reduce` is similar to this
function, but may be less stable.
Examples
--------
>>> from scipy.special import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
With weights
>>> a = np.arange(10)
>>> b = np.arange(10, 0, -1)
>>> logsumexp(a, b=b)
9.9170178533034665
>>> np.log(np.sum(b*np.exp(a)))
9.9170178533034647
Returning a sign flag
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
(1.5413248546129181, -1.0)
Notice that `logsumexp` does not directly support masked arrays. To use it
on a masked array, convert the mask into zero weights:
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
... mask=[False, True, False])
>>> b = (~a.mask).astype(int)
>>> logsumexp(a.data, b=b), np.log(5)
1.6094379124341005, 1.6094379124341005
"""
a = _asarray_validated(a, check_finite=False)
if b is not None:
a, b = np.broadcast_arrays(a, b)
if np.any(b == 0):
a = a + 0. # promote to at least float
a[b == 0] = -np.inf
a_max = np.amax(a, axis=axis, keepdims=True)
if a_max.ndim > 0:
a_max[~np.isfinite(a_max)] = 0
elif not np.isfinite(a_max):
a_max = 0
if b is not None:
b = np.asarray(b)
tmp = b * np.exp(a - a_max)
else:
tmp = np.exp(a - a_max)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(tmp, axis=axis, keepdims=keepdims)
if return_sign:
sgn = np.sign(s)
s *= sgn # /= makes more sense but we need zero -> zero
out = np.log(s)
if not keepdims:
a_max = np.squeeze(a_max, axis=axis)
out += a_max
if return_sign:
return out, sgn
else:
return out
def softmax(x, axis=None):
r"""
Softmax function
The softmax function transforms each element of a collection by
computing the exponential of each element divided by the sum of the
exponentials of all the elements. That is, if `x` is a one-dimensional
numpy array::
softmax(x) = np.exp(x)/sum(np.exp(x))
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray
An array the same shape as `x`. The result will sum to 1 along the
specified axis.
Notes
-----
The formula for the softmax function :math:`\sigma(x)` for a vector
:math:`x = \{x_0, x_1, ..., x_{n-1}\}` is
.. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}
The `softmax` function is the gradient of `logsumexp`.
.. versionadded:: 1.2.0
Examples
--------
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)
>>> x = np.array([[1, 0.5, 0.2, 3],
... [1, -1, 7, 3],
... [2, 12, 13, 3]])
...
Compute the softmax transformation over the entire array.
>>> m = softmax(x)
>>> m
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],
[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])
>>> m.sum()
1.0000000000000002
Compute the softmax transformation along the first axis (i.e., the
columns).
>>> m = softmax(x, axis=0)
>>> m
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],
[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])
>>> m.sum(axis=0)
array([ 1., 1., 1., 1.])
Compute the softmax transformation along the second axis (i.e., the rows).
>>> m = softmax(x, axis=1)
>>> m
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],
[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])
>>> m.sum(axis=1)
array([ 1., 1., 1.])
"""
# compute in log space for numerical stability
return np.exp(x - logsumexp(x, axis=axis, keepdims=True))
def log_softmax(x, axis=None):
r"""
Logarithm of softmax function::
log_softmax(x) = log(softmax(x))
Parameters
----------
x : array_like
Input array.
axis : int or tuple of ints, optional
Axis to compute values along. Default is None and softmax will be
computed over the entire array `x`.
Returns
-------
s : ndarray or scalar
An array with the same shape as `x`. Exponential of the result will
sum to 1 along the specified axis. If `x` is a scalar, a scalar is
returned.
Notes
-----
`log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that
make `softmax` saturate (see examples below).
.. versionadded:: 1.5.0
Examples
--------
>>> from scipy.special import log_softmax
>>> from scipy.special import softmax
>>> np.set_printoptions(precision=5)
>>> x = np.array([1000.0, 1.0])
>>> y = log_softmax(x)
>>> y
array([ 0., -999.])
>>> with np.errstate(divide='ignore'):
... y = np.log(softmax(x))
...
>>> y
array([ 0., -inf])
"""
x = _asarray_validated(x, check_finite=False)
x_max = np.amax(x, axis=axis, keepdims=True)
if x_max.ndim > 0:
x_max[~np.isfinite(x_max)] = 0
elif not np.isfinite(x_max):
x_max = 0
tmp = x - x_max
exp_tmp = np.exp(tmp)
# suppress warnings about log of zero
with np.errstate(divide='ignore'):
s = np.sum(exp_tmp, axis=axis, keepdims=True)
out = np.log(s)
out = tmp - out
return out