measurements.py 50 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import numpy
import numpy as np
from . import _ni_support
from . import _ni_label
from . import _nd_image
from . import morphology

__all__ = ['label', 'find_objects', 'labeled_comprehension', 'sum', 'mean',
           'variance', 'standard_deviation', 'minimum', 'maximum', 'median',
           'minimum_position', 'maximum_position', 'extrema', 'center_of_mass',
           'histogram', 'watershed_ift']


def label(input, structure=None, output=None):
    """
    Label features in an array.

    Parameters
    ----------
    input : array_like
        An array-like object to be labeled. Any non-zero values in `input` are
        counted as features and zero values are considered the background.
    structure : array_like, optional
        A structuring element that defines feature connections.
        `structure` must be centrosymmetric
        (see Notes).
        If no structuring element is provided,
        one is automatically generated with a squared connectivity equal to
        one.  That is, for a 2-D `input` array, the default structuring element
        is::

            [[0,1,0],
             [1,1,1],
             [0,1,0]]

    output : (None, data-type, array_like), optional
        If `output` is a data type, it specifies the type of the resulting
        labeled feature array.
        If `output` is an array-like object, then `output` will be updated
        with the labeled features from this function.  This function can
        operate in-place, by passing output=input.
        Note that the output must be able to store the largest label, or this
        function will raise an Exception.

    Returns
    -------
    label : ndarray or int
        An integer ndarray where each unique feature in `input` has a unique
        label in the returned array.
    num_features : int
        How many objects were found.

        If `output` is None, this function returns a tuple of
        (`labeled_array`, `num_features`).

        If `output` is a ndarray, then it will be updated with values in
        `labeled_array` and only `num_features` will be returned by this
        function.

    See Also
    --------
    find_objects : generate a list of slices for the labeled features (or
                   objects); useful for finding features' position or
                   dimensions

    Notes
    -----
    A centrosymmetric matrix is a matrix that is symmetric about the center.
    See [1]_ for more information.

    The `structure` matrix must be centrosymmetric to ensure
    two-way connections.
    For instance, if the `structure` matrix is not centrosymmetric
    and is defined as::

        [[0,1,0],
         [1,1,0],
         [0,0,0]]

    and the `input` is::

        [[1,2],
         [0,3]]

    then the structure matrix would indicate the
    entry 2 in the input is connected to 1,
    but 1 is not connected to 2.

    Examples
    --------
    Create an image with some features, then label it using the default
    (cross-shaped) structuring element:

    >>> from scipy.ndimage import label, generate_binary_structure
    >>> a = np.array([[0,0,1,1,0,0],
    ...               [0,0,0,1,0,0],
    ...               [1,1,0,0,1,0],
    ...               [0,0,0,1,0,0]])
    >>> labeled_array, num_features = label(a)

    Each of the 4 features are labeled with a different integer:

    >>> num_features
    4
    >>> labeled_array
    array([[0, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 0, 0],
           [2, 2, 0, 0, 3, 0],
           [0, 0, 0, 4, 0, 0]])

    Generate a structuring element that will consider features connected even
    if they touch diagonally:

    >>> s = generate_binary_structure(2,2)

    or,

    >>> s = [[1,1,1],
    ...      [1,1,1],
    ...      [1,1,1]]

    Label the image using the new structuring element:

    >>> labeled_array, num_features = label(a, structure=s)

    Show the 2 labeled features (note that features 1, 3, and 4 from above are
    now considered a single feature):

    >>> num_features
    2
    >>> labeled_array
    array([[0, 0, 1, 1, 0, 0],
           [0, 0, 0, 1, 0, 0],
           [2, 2, 0, 0, 1, 0],
           [0, 0, 0, 1, 0, 0]])

    References
    ----------

    .. [1] James R. Weaver, "Centrosymmetric (cross-symmetric)
       matrices, their basic properties, eigenvalues, and
       eigenvectors." The American Mathematical Monthly 92.10
       (1985): 711-717.

    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    if structure is None:
        structure = morphology.generate_binary_structure(input.ndim, 1)
    structure = numpy.asarray(structure, dtype=bool)
    if structure.ndim != input.ndim:
        raise RuntimeError('structure and input must have equal rank')
    for ii in structure.shape:
        if ii != 3:
            raise ValueError('structure dimensions must be equal to 3')

    # Use 32 bits if it's large enough for this image.
    # _ni_label.label() needs two entries for background and
    # foreground tracking
    need_64bits = input.size >= (2**31 - 2)

    if isinstance(output, numpy.ndarray):
        if output.shape != input.shape:
            raise ValueError("output shape not correct")
        caller_provided_output = True
    else:
        caller_provided_output = False
        if output is None:
            output = np.empty(input.shape, np.intp if need_64bits else np.int32)
        else:
            output = np.empty(input.shape, output)

    # handle scalars, 0-D arrays
    if input.ndim == 0 or input.size == 0:
        if input.ndim == 0:
            # scalar
            maxlabel = 1 if (input != 0) else 0
            output[...] = maxlabel
        else:
            # 0-D
            maxlabel = 0
        if caller_provided_output:
            return maxlabel
        else:
            return output, maxlabel

    try:
        max_label = _ni_label._label(input, structure, output)
    except _ni_label.NeedMoreBits:
        # Make another attempt with enough bits, then try to cast to the
        # new type.
        tmp_output = np.empty(input.shape, np.intp if need_64bits else np.int32)
        max_label = _ni_label._label(input, structure, tmp_output)
        output[...] = tmp_output[...]
        if not np.all(output == tmp_output):
            # refuse to return bad results
            raise RuntimeError("insufficient bit-depth in requested output type")

    if caller_provided_output:
        # result was written in-place
        return max_label
    else:
        return output, max_label


def find_objects(input, max_label=0):
    """
    Find objects in a labeled array.

    Parameters
    ----------
    input : ndarray of ints
        Array containing objects defined by different labels. Labels with
        value 0 are ignored.
    max_label : int, optional
        Maximum label to be searched for in `input`. If max_label is not
        given, the positions of all objects are returned.

    Returns
    -------
    object_slices : list of tuples
        A list of tuples, with each tuple containing N slices (with N the
        dimension of the input array). Slices correspond to the minimal
        parallelepiped that contains the object. If a number is missing,
        None is returned instead of a slice.

    See Also
    --------
    label, center_of_mass

    Notes
    -----
    This function is very useful for isolating a volume of interest inside
    a 3-D array, that cannot be "seen through".

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((6,6), dtype=int)
    >>> a[2:4, 2:4] = 1
    >>> a[4, 4] = 1
    >>> a[:2, :3] = 2
    >>> a[0, 5] = 3
    >>> a
    array([[2, 2, 2, 0, 0, 3],
           [2, 2, 2, 0, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 1, 1, 0, 0],
           [0, 0, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> ndimage.find_objects(a)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None)), (slice(0, 1, None), slice(5, 6, None))]
    >>> ndimage.find_objects(a, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), (slice(0, 2, None), slice(0, 3, None))]
    >>> ndimage.find_objects(a == 1, max_label=2)
    [(slice(2, 5, None), slice(2, 5, None)), None]

    >>> loc = ndimage.find_objects(a)[0]
    >>> a[loc]
    array([[1, 1, 0],
           [1, 1, 0],
           [0, 0, 1]])

    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')

    if max_label < 1:
        max_label = input.max()

    return _nd_image.find_objects(input, max_label)


def labeled_comprehension(input, labels, index, func, out_dtype, default, pass_positions=False):
    """
    Roughly equivalent to [func(input[labels == i]) for i in index].

    Sequentially applies an arbitrary function (that works on array_like input)
    to subsets of an N-D image array specified by `labels` and `index`.
    The option exists to provide the function with positional parameters as the
    second argument.

    Parameters
    ----------
    input : array_like
        Data from which to select `labels` to process.
    labels : array_like or None
        Labels to objects in `input`.
        If not None, array must be same shape as `input`.
        If None, `func` is applied to raveled `input`.
    index : int, sequence of ints or None
        Subset of `labels` to which to apply `func`.
        If a scalar, a single value is returned.
        If None, `func` is applied to all non-zero values of `labels`.
    func : callable
        Python function to apply to `labels` from `input`.
    out_dtype : dtype
        Dtype to use for `result`.
    default : int, float or None
        Default return value when a element of `index` does not exist
        in `labels`.
    pass_positions : bool, optional
        If True, pass linear indices to `func` as a second argument.
        Default is False.

    Returns
    -------
    result : ndarray
        Result of applying `func` to each of `labels` to `input` in `index`.

    Examples
    --------
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> lbl, nlbl = ndimage.label(a)
    >>> lbls = np.arange(1, nlbl+1)
    >>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, 0)
    array([ 2.75,  5.5 ,  6.  ])

    Falling back to `default`:

    >>> lbls = np.arange(1, nlbl+2)
    >>> ndimage.labeled_comprehension(a, lbl, lbls, np.mean, float, -1)
    array([ 2.75,  5.5 ,  6.  , -1.  ])

    Passing positions:

    >>> def fn(val, pos):
    ...     print("fn says: %s : %s" % (val, pos))
    ...     return (val.sum()) if (pos.sum() % 2 == 0) else (-val.sum())
    ...
    >>> ndimage.labeled_comprehension(a, lbl, lbls, fn, float, 0, True)
    fn says: [1 2 5 3] : [0 1 4 5]
    fn says: [4 7] : [ 7 11]
    fn says: [9 3] : [12 13]
    array([ 11.,  11., -12.,   0.])

    """

    as_scalar = numpy.isscalar(index)
    input = numpy.asarray(input)

    if pass_positions:
        positions = numpy.arange(input.size).reshape(input.shape)

    if labels is None:
        if index is not None:
            raise ValueError("index without defined labels")
        if not pass_positions:
            return func(input.ravel())
        else:
            return func(input.ravel(), positions.ravel())

    try:
        input, labels = numpy.broadcast_arrays(input, labels)
    except ValueError:
        raise ValueError("input and labels must have the same shape "
                            "(excepting dimensions with width 1)")

    if index is None:
        if not pass_positions:
            return func(input[labels > 0])
        else:
            return func(input[labels > 0], positions[labels > 0])

    index = numpy.atleast_1d(index)
    if np.any(index.astype(labels.dtype).astype(index.dtype) != index):
        raise ValueError("Cannot convert index values from <%s> to <%s> "
                            "(labels' type) without loss of precision" %
                            (index.dtype, labels.dtype))

    index = index.astype(labels.dtype)

    # optimization: find min/max in index, and select those parts of labels, input, and positions
    lo = index.min()
    hi = index.max()
    mask = (labels >= lo) & (labels <= hi)

    # this also ravels the arrays
    labels = labels[mask]
    input = input[mask]
    if pass_positions:
        positions = positions[mask]

    # sort everything by labels
    label_order = labels.argsort()
    labels = labels[label_order]
    input = input[label_order]
    if pass_positions:
        positions = positions[label_order]

    index_order = index.argsort()
    sorted_index = index[index_order]

    def do_map(inputs, output):
        """labels must be sorted"""
        nidx = sorted_index.size

        # Find boundaries for each stretch of constant labels
        # This could be faster, but we already paid N log N to sort labels.
        lo = numpy.searchsorted(labels, sorted_index, side='left')
        hi = numpy.searchsorted(labels, sorted_index, side='right')

        for i, l, h in zip(range(nidx), lo, hi):
            if l == h:
                continue
            output[i] = func(*[inp[l:h] for inp in inputs])

    temp = numpy.empty(index.shape, out_dtype)
    temp[:] = default
    if not pass_positions:
        do_map([input], temp)
    else:
        do_map([input, positions], temp)

    output = numpy.zeros(index.shape, out_dtype)
    output[index_order] = temp
    if as_scalar:
        output = output[0]

    return output


def _safely_castable_to_int(dt):
    """Test whether the NumPy data type `dt` can be safely cast to an int."""
    int_size = np.dtype(int).itemsize
    safe = ((np.issubdtype(dt, np.signedinteger) and dt.itemsize <= int_size) or
            (np.issubdtype(dt, np.unsignedinteger) and dt.itemsize < int_size))
    return safe


def _stats(input, labels=None, index=None, centered=False):
    """Count, sum, and optionally compute (sum - centre)^2 of input by label

    Parameters
    ----------
    input : array_like, N-D
        The input data to be analyzed.
    labels : array_like (N-D), optional
        The labels of the data in `input`. This array must be broadcast
        compatible with `input`; typically, it is the same shape as `input`.
        If `labels` is None, all nonzero values in `input` are treated as
        the single labeled group.
    index : label or sequence of labels, optional
        These are the labels of the groups for which the stats are computed.
        If `index` is None, the stats are computed for the single group where
        `labels` is greater than 0.
    centered : bool, optional
        If True, the centered sum of squares for each labeled group is
        also returned. Default is False.

    Returns
    -------
    counts : int or ndarray of ints
        The number of elements in each labeled group.
    sums : scalar or ndarray of scalars
        The sums of the values in each labeled group.
    sums_c : scalar or ndarray of scalars, optional
        The sums of mean-centered squares of the values in each labeled group.
        This is only returned if `centered` is True.

    """
    def single_group(vals):
        if centered:
            vals_c = vals - vals.mean()
            return vals.size, vals.sum(), (vals_c * vals_c.conjugate()).sum()
        else:
            return vals.size, vals.sum()

    if labels is None:
        return single_group(input)

    # ensure input and labels match sizes
    input, labels = numpy.broadcast_arrays(input, labels)

    if index is None:
        return single_group(input[labels > 0])

    if numpy.isscalar(index):
        return single_group(input[labels == index])

    def _sum_centered(labels):
        # `labels` is expected to be an ndarray with the same shape as `input`.
        # It must contain the label indices (which are not necessarily the labels
        # themselves).
        means = sums / counts
        centered_input = input - means[labels]
        # bincount expects 1-D inputs, so we ravel the arguments.
        bc = numpy.bincount(labels.ravel(),
                              weights=(centered_input *
                                       centered_input.conjugate()).ravel())
        return bc

    # Remap labels to unique integers if necessary, or if the largest
    # label is larger than the number of values.

    if (not _safely_castable_to_int(labels.dtype) or
            labels.min() < 0 or labels.max() > labels.size):
        # Use numpy.unique to generate the label indices.  `new_labels` will
        # be 1-D, but it should be interpreted as the flattened N-D array of
        # label indices.
        unique_labels, new_labels = numpy.unique(labels, return_inverse=True)
        counts = numpy.bincount(new_labels)
        sums = numpy.bincount(new_labels, weights=input.ravel())
        if centered:
            # Compute the sum of the mean-centered squares.
            # We must reshape new_labels to the N-D shape of `input` before
            # passing it _sum_centered.
            sums_c = _sum_centered(new_labels.reshape(labels.shape))
        idxs = numpy.searchsorted(unique_labels, index)
        # make all of idxs valid
        idxs[idxs >= unique_labels.size] = 0
        found = (unique_labels[idxs] == index)
    else:
        # labels are an integer type allowed by bincount, and there aren't too
        # many, so call bincount directly.
        counts = numpy.bincount(labels.ravel())
        sums = numpy.bincount(labels.ravel(), weights=input.ravel())
        if centered:
            sums_c = _sum_centered(labels)
        # make sure all index values are valid
        idxs = numpy.asanyarray(index, numpy.int_).copy()
        found = (idxs >= 0) & (idxs < counts.size)
        idxs[~found] = 0

    counts = counts[idxs]
    counts[~found] = 0
    sums = sums[idxs]
    sums[~found] = 0

    if not centered:
        return (counts, sums)
    else:
        sums_c = sums_c[idxs]
        sums_c[~found] = 0
        return (counts, sums, sums_c)


def sum(input, labels=None, index=None):
    """
    Calculate the sum of the values of the array.

    Parameters
    ----------
    input : array_like
        Values of `input` inside the regions defined by `labels`
        are summed together.
    labels : array_like of ints, optional
        Assign labels to the values of the array. Has to have the same shape as
        `input`.
    index : array_like, optional
        A single label number or a sequence of label numbers of
        the objects to be measured.

    Returns
    -------
    sum : ndarray or scalar
        An array of the sums of values of `input` inside the regions defined
        by `labels` with the same shape as `index`. If 'index' is None or scalar,
        a scalar is returned.

    See also
    --------
    mean, median

    Examples
    --------
    >>> from scipy import ndimage
    >>> input =  [0,1,2,3]
    >>> labels = [1,1,2,2]
    >>> ndimage.sum(input, labels, index=[1,2])
    [1.0, 5.0]
    >>> ndimage.sum(input, labels, index=1)
    1
    >>> ndimage.sum(input, labels)
    6


    """
    count, sum = _stats(input, labels, index)
    return sum


def mean(input, labels=None, index=None):
    """
    Calculate the mean of the values of an array at labels.

    Parameters
    ----------
    input : array_like
        Array on which to compute the mean of elements over distinct
        regions.
    labels : array_like, optional
        Array of labels of same shape, or broadcastable to the same shape as
        `input`. All elements sharing the same label form one region over
        which the mean of the elements is computed.
    index : int or sequence of ints, optional
        Labels of the objects over which the mean is to be computed.
        Default is None, in which case the mean for all values where label is
        greater than 0 is calculated.

    Returns
    -------
    out : list
        Sequence of same length as `index`, with the mean of the different
        regions labeled by the labels in `index`.

    See also
    --------
    variance, standard_deviation, minimum, maximum, sum, label

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.arange(25).reshape((5,5))
    >>> labels = np.zeros_like(a)
    >>> labels[3:5,3:5] = 1
    >>> index = np.unique(labels)
    >>> labels
    array([[0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 1, 1],
           [0, 0, 0, 1, 1]])
    >>> index
    array([0, 1])
    >>> ndimage.mean(a, labels=labels, index=index)
    [10.285714285714286, 21.0]

    """

    count, sum = _stats(input, labels, index)
    return sum / numpy.asanyarray(count).astype(numpy.float64)


def variance(input, labels=None, index=None):
    """
    Calculate the variance of the values of an N-D image array, optionally at
    specified sub-regions.

    Parameters
    ----------
    input : array_like
        Nd-image data to process.
    labels : array_like, optional
        Labels defining sub-regions in `input`.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        `labels` to include in output.  If None (default), all values where
        `labels` is non-zero are used.

    Returns
    -------
    variance : float or ndarray
        Values of variance, for each sub-region if `labels` and `index` are
        specified.

    See Also
    --------
    label, standard_deviation, maximum, minimum, extrema

    Examples
    --------
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> ndimage.variance(a)
    7.609375

    Features to process can be specified using `labels` and `index`:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.variance(a, lbl, index=np.arange(1, nlbl+1))
    array([ 2.1875,  2.25  ,  9.    ])

    If no index is given, all non-zero `labels` are processed:

    >>> ndimage.variance(a, lbl)
    6.1875

    """
    count, sum, sum_c_sq = _stats(input, labels, index, centered=True)
    return sum_c_sq / np.asanyarray(count).astype(float)


def standard_deviation(input, labels=None, index=None):
    """
    Calculate the standard deviation of the values of an N-D image array,
    optionally at specified sub-regions.

    Parameters
    ----------
    input : array_like
        N-D image data to process.
    labels : array_like, optional
        Labels to identify sub-regions in `input`.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        `labels` to include in output. If None (default), all values where
        `labels` is non-zero are used.

    Returns
    -------
    standard_deviation : float or ndarray
        Values of standard deviation, for each sub-region if `labels` and
        `index` are specified.

    See Also
    --------
    label, variance, maximum, minimum, extrema

    Examples
    --------
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> ndimage.standard_deviation(a)
    2.7585095613392387

    Features to process can be specified using `labels` and `index`:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.standard_deviation(a, lbl, index=np.arange(1, nlbl+1))
    array([ 1.479,  1.5  ,  3.   ])

    If no index is given, non-zero `labels` are processed:

    >>> ndimage.standard_deviation(a, lbl)
    2.4874685927665499

    """
    return numpy.sqrt(variance(input, labels, index))


def _select(input, labels=None, index=None, find_min=False, find_max=False,
            find_min_positions=False, find_max_positions=False,
            find_median=False):
    """Returns min, max, or both, plus their positions (if requested), and
    median."""

    input = numpy.asanyarray(input)

    find_positions = find_min_positions or find_max_positions
    positions = None
    if find_positions:
        positions = numpy.arange(input.size).reshape(input.shape)

    def single_group(vals, positions):
        result = []
        if find_min:
            result += [vals.min()]
        if find_min_positions:
            result += [positions[vals == vals.min()][0]]
        if find_max:
            result += [vals.max()]
        if find_max_positions:
            result += [positions[vals == vals.max()][0]]
        if find_median:
            result += [numpy.median(vals)]
        return result

    if labels is None:
        return single_group(input, positions)

    # ensure input and labels match sizes
    input, labels = numpy.broadcast_arrays(input, labels)

    if index is None:
        mask = (labels > 0)
        masked_positions = None
        if find_positions:
            masked_positions = positions[mask]
        return single_group(input[mask], masked_positions)

    if numpy.isscalar(index):
        mask = (labels == index)
        masked_positions = None
        if find_positions:
            masked_positions = positions[mask]
        return single_group(input[mask], masked_positions)

    # remap labels to unique integers if necessary, or if the largest
    # label is larger than the number of values.
    if (not _safely_castable_to_int(labels.dtype) or
            labels.min() < 0 or labels.max() > labels.size):
        # remap labels, and indexes
        unique_labels, labels = numpy.unique(labels, return_inverse=True)
        idxs = numpy.searchsorted(unique_labels, index)

        # make all of idxs valid
        idxs[idxs >= unique_labels.size] = 0
        found = (unique_labels[idxs] == index)
    else:
        # labels are an integer type, and there aren't too many
        idxs = numpy.asanyarray(index, numpy.int_).copy()
        found = (idxs >= 0) & (idxs <= labels.max())

    idxs[~ found] = labels.max() + 1

    if find_median:
        order = numpy.lexsort((input.ravel(), labels.ravel()))
    else:
        order = input.ravel().argsort()
    input = input.ravel()[order]
    labels = labels.ravel()[order]
    if find_positions:
        positions = positions.ravel()[order]

    result = []
    if find_min:
        mins = numpy.zeros(labels.max() + 2, input.dtype)
        mins[labels[::-1]] = input[::-1]
        result += [mins[idxs]]
    if find_min_positions:
        minpos = numpy.zeros(labels.max() + 2, int)
        minpos[labels[::-1]] = positions[::-1]
        result += [minpos[idxs]]
    if find_max:
        maxs = numpy.zeros(labels.max() + 2, input.dtype)
        maxs[labels] = input
        result += [maxs[idxs]]
    if find_max_positions:
        maxpos = numpy.zeros(labels.max() + 2, int)
        maxpos[labels] = positions
        result += [maxpos[idxs]]
    if find_median:
        locs = numpy.arange(len(labels))
        lo = numpy.zeros(labels.max() + 2, numpy.int_)
        lo[labels[::-1]] = locs[::-1]
        hi = numpy.zeros(labels.max() + 2, numpy.int_)
        hi[labels] = locs
        lo = lo[idxs]
        hi = hi[idxs]
        # lo is an index to the lowest value in input for each label,
        # hi is an index to the largest value.
        # move them to be either the same ((hi - lo) % 2 == 0) or next
        # to each other ((hi - lo) % 2 == 1), then average.
        step = (hi - lo) // 2
        lo += step
        hi -= step
        if (np.issubdtype(input.dtype, np.integer)
                or np.issubdtype(input.dtype, np.bool_)):
            # avoid integer overflow or boolean addition (gh-12836)
            result += [(input[lo].astype('d') + input[hi].astype('d')) / 2.0]
        else:
            result += [(input[lo] + input[hi]) / 2.0]

    return result


def minimum(input, labels=None, index=None):
    """
    Calculate the minimum of the values of an array over labeled regions.

    Parameters
    ----------
    input : array_like
        Array_like of values. For each region specified by `labels`, the
        minimal values of `input` over the region is computed.
    labels : array_like, optional
        An array_like of integers marking different regions over which the
        minimum value of `input` is to be computed. `labels` must have the
        same shape as `input`. If `labels` is not specified, the minimum
        over the whole array is returned.
    index : array_like, optional
        A list of region labels that are taken into account for computing the
        minima. If index is None, the minimum over all elements where `labels`
        is non-zero is returned.

    Returns
    -------
    minimum : float or list of floats
        List of minima of `input` over the regions determined by `labels` and
        whose index is in `index`. If `index` or `labels` are not specified, a
        float is returned: the minimal value of `input` if `labels` is None,
        and the minimal value of elements where `labels` is greater than zero
        if `index` is None.

    See also
    --------
    label, maximum, median, minimum_position, extrema, sum, mean, variance,
    standard_deviation

    Notes
    -----
    The function returns a Python list and not a NumPy array, use
    `np.array` to convert the list to an array.

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> labels, labels_nb = ndimage.label(a)
    >>> labels
    array([[1, 1, 0, 0],
           [1, 1, 0, 2],
           [0, 0, 0, 2],
           [3, 3, 0, 0]])
    >>> ndimage.minimum(a, labels=labels, index=np.arange(1, labels_nb + 1))
    [1.0, 4.0, 3.0]
    >>> ndimage.minimum(a)
    0.0
    >>> ndimage.minimum(a, labels=labels)
    1.0

    """
    return _select(input, labels, index, find_min=True)[0]


def maximum(input, labels=None, index=None):
    """
    Calculate the maximum of the values of an array over labeled regions.

    Parameters
    ----------
    input : array_like
        Array_like of values. For each region specified by `labels`, the
        maximal values of `input` over the region is computed.
    labels : array_like, optional
        An array of integers marking different regions over which the
        maximum value of `input` is to be computed. `labels` must have the
        same shape as `input`. If `labels` is not specified, the maximum
        over the whole array is returned.
    index : array_like, optional
        A list of region labels that are taken into account for computing the
        maxima. If index is None, the maximum over all elements where `labels`
        is non-zero is returned.

    Returns
    -------
    output : float or list of floats
        List of maxima of `input` over the regions determined by `labels` and
        whose index is in `index`. If `index` or `labels` are not specified, a
        float is returned: the maximal value of `input` if `labels` is None,
        and the maximal value of elements where `labels` is greater than zero
        if `index` is None.

    See also
    --------
    label, minimum, median, maximum_position, extrema, sum, mean, variance,
    standard_deviation

    Notes
    -----
    The function returns a Python list and not a NumPy array, use
    `np.array` to convert the list to an array.

    Examples
    --------
    >>> a = np.arange(16).reshape((4,4))
    >>> a
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15]])
    >>> labels = np.zeros_like(a)
    >>> labels[:2,:2] = 1
    >>> labels[2:, 1:3] = 2
    >>> labels
    array([[1, 1, 0, 0],
           [1, 1, 0, 0],
           [0, 2, 2, 0],
           [0, 2, 2, 0]])
    >>> from scipy import ndimage
    >>> ndimage.maximum(a)
    15.0
    >>> ndimage.maximum(a, labels=labels, index=[1,2])
    [5.0, 14.0]
    >>> ndimage.maximum(a, labels=labels)
    14.0

    >>> b = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> labels, labels_nb = ndimage.label(b)
    >>> labels
    array([[1, 1, 0, 0],
           [1, 1, 0, 2],
           [0, 0, 0, 2],
           [3, 3, 0, 0]])
    >>> ndimage.maximum(b, labels=labels, index=np.arange(1, labels_nb + 1))
    [5.0, 7.0, 9.0]

    """
    return _select(input, labels, index, find_max=True)[0]


def median(input, labels=None, index=None):
    """
    Calculate the median of the values of an array over labeled regions.

    Parameters
    ----------
    input : array_like
        Array_like of values. For each region specified by `labels`, the
        median value of `input` over the region is computed.
    labels : array_like, optional
        An array_like of integers marking different regions over which the
        median value of `input` is to be computed. `labels` must have the
        same shape as `input`. If `labels` is not specified, the median
        over the whole array is returned.
    index : array_like, optional
        A list of region labels that are taken into account for computing the
        medians. If index is None, the median over all elements where `labels`
        is non-zero is returned.

    Returns
    -------
    median : float or list of floats
        List of medians of `input` over the regions determined by `labels` and
        whose index is in `index`. If `index` or `labels` are not specified, a
        float is returned: the median value of `input` if `labels` is None,
        and the median value of elements where `labels` is greater than zero
        if `index` is None.

    See also
    --------
    label, minimum, maximum, extrema, sum, mean, variance, standard_deviation

    Notes
    -----
    The function returns a Python list and not a NumPy array, use
    `np.array` to convert the list to an array.

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.array([[1, 2, 0, 1],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> labels, labels_nb = ndimage.label(a)
    >>> labels
    array([[1, 1, 0, 2],
           [1, 1, 0, 2],
           [0, 0, 0, 2],
           [3, 3, 0, 0]])
    >>> ndimage.median(a, labels=labels, index=np.arange(1, labels_nb + 1))
    [2.5, 4.0, 6.0]
    >>> ndimage.median(a)
    1.0
    >>> ndimage.median(a, labels=labels)
    3.0

    """
    return _select(input, labels, index, find_median=True)[0]


def minimum_position(input, labels=None, index=None):
    """
    Find the positions of the minimums of the values of an array at labels.

    Parameters
    ----------
    input : array_like
        Array_like of values.
    labels : array_like, optional
        An array of integers marking different regions over which the
        position of the minimum value of `input` is to be computed.
        `labels` must have the same shape as `input`. If `labels` is not
        specified, the location of the first minimum over the whole
        array is returned.

        The `labels` argument only works when `index` is specified.
    index : array_like, optional
        A list of region labels that are taken into account for finding the
        location of the minima. If `index` is None, the ``first`` minimum
        over all elements where `labels` is non-zero is returned.

        The `index` argument only works when `labels` is specified.

    Returns
    -------
    output : list of tuples of ints
        Tuple of ints or list of tuples of ints that specify the location
        of minima of `input` over the regions determined by `labels` and
        whose index is in `index`.

        If `index` or `labels` are not specified, a tuple of ints is
        returned specifying the location of the first minimal value of `input`.

    See also
    --------
    label, minimum, median, maximum_position, extrema, sum, mean, variance,
    standard_deviation

    Examples
    --------
    >>> a = np.array([[10, 20, 30],
    ...               [40, 80, 100],
    ...               [1, 100, 200]])
    >>> b = np.array([[1, 2, 0, 1],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])

    >>> from scipy import ndimage

    >>> ndimage.minimum_position(a)
    (2, 0)
    >>> ndimage.minimum_position(b)
    (0, 2)

    Features to process can be specified using `labels` and `index`:

    >>> label, pos = ndimage.label(a)
    >>> ndimage.minimum_position(a, label, index=np.arange(1, pos+1))
    [(2, 0)]

    >>> label, pos = ndimage.label(b)
    >>> ndimage.minimum_position(b, label, index=np.arange(1, pos+1))
    [(0, 0), (0, 3), (3, 1)]

    """
    dims = numpy.array(numpy.asarray(input).shape)
    # see numpy.unravel_index to understand this line.
    dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]

    result = _select(input, labels, index, find_min_positions=True)[0]

    if numpy.isscalar(result):
        return tuple((result // dim_prod) % dims)

    return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]


def maximum_position(input, labels=None, index=None):
    """
    Find the positions of the maximums of the values of an array at labels.

    For each region specified by `labels`, the position of the maximum
    value of `input` within the region is returned.

    Parameters
    ----------
    input : array_like
        Array_like of values.
    labels : array_like, optional
        An array of integers marking different regions over which the
        position of the maximum value of `input` is to be computed.
        `labels` must have the same shape as `input`. If `labels` is not
        specified, the location of the first maximum over the whole
        array is returned.

        The `labels` argument only works when `index` is specified.
    index : array_like, optional
        A list of region labels that are taken into account for finding the
        location of the maxima. If `index` is None, the first maximum
        over all elements where `labels` is non-zero is returned.

        The `index` argument only works when `labels` is specified.

    Returns
    -------
    output : list of tuples of ints
        List of tuples of ints that specify the location of maxima of
        `input` over the regions determined by `labels` and whose index
        is in `index`.

        If `index` or `labels` are not specified, a tuple of ints is
        returned specifying the location of the ``first`` maximal value
        of `input`.

    See also
    --------
    label, minimum, median, maximum_position, extrema, sum, mean, variance,
    standard_deviation
    
    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> ndimage.maximum_position(a)
    (3, 0)

    Features to process can be specified using `labels` and `index`:

    >>> lbl = np.array([[0, 1, 2, 3],
    ...                 [0, 1, 2, 3],
    ...                 [0, 1, 2, 3],
    ...                 [0, 1, 2, 3]])
    >>> ndimage.maximum_position(a, lbl, 1)
    (1, 1)
    
    If no index is given, non-zero `labels` are processed:

    >>> ndimage.maximum_position(a, lbl)
    (2, 3)
    
    If there are no maxima, the position of the first element is returned:
    
    >>> ndimage.maximum_position(a, lbl, 2)
    (0, 2)

    """
    dims = numpy.array(numpy.asarray(input).shape)
    # see numpy.unravel_index to understand this line.
    dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]

    result = _select(input, labels, index, find_max_positions=True)[0]

    if numpy.isscalar(result):
        return tuple((result // dim_prod) % dims)

    return [tuple(v) for v in (result.reshape(-1, 1) // dim_prod) % dims]


def extrema(input, labels=None, index=None):
    """
    Calculate the minimums and maximums of the values of an array
    at labels, along with their positions.

    Parameters
    ----------
    input : ndarray
        N-D image data to process.
    labels : ndarray, optional
        Labels of features in input.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        Labels to include in output.  If None (default), all values where
        non-zero `labels` are used.

    Returns
    -------
    minimums, maximums : int or ndarray
        Values of minimums and maximums in each feature.
    min_positions, max_positions : tuple or list of tuples
        Each tuple gives the N-D coordinates of the corresponding minimum
        or maximum.

    See Also
    --------
    maximum, minimum, maximum_position, minimum_position, center_of_mass

    Examples
    --------
    >>> a = np.array([[1, 2, 0, 0],
    ...               [5, 3, 0, 4],
    ...               [0, 0, 0, 7],
    ...               [9, 3, 0, 0]])
    >>> from scipy import ndimage
    >>> ndimage.extrema(a)
    (0, 9, (0, 2), (3, 0))

    Features to process can be specified using `labels` and `index`:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.extrema(a, lbl, index=np.arange(1, nlbl+1))
    (array([1, 4, 3]),
     array([5, 7, 9]),
     [(0, 0), (1, 3), (3, 1)],
     [(1, 0), (2, 3), (3, 0)])

    If no index is given, non-zero `labels` are processed:

    >>> ndimage.extrema(a, lbl)
    (1, 9, (0, 0), (3, 0))

    """
    dims = numpy.array(numpy.asarray(input).shape)
    # see numpy.unravel_index to understand this line.
    dim_prod = numpy.cumprod([1] + list(dims[:0:-1]))[::-1]

    minimums, min_positions, maximums, max_positions = _select(input, labels,
                                                               index,
                                                               find_min=True,
                                                               find_max=True,
                                                               find_min_positions=True,
                                                               find_max_positions=True)

    if numpy.isscalar(minimums):
        return (minimums, maximums, tuple((min_positions // dim_prod) % dims),
                tuple((max_positions // dim_prod) % dims))

    min_positions = [tuple(v) for v in (min_positions.reshape(-1, 1) // dim_prod) % dims]
    max_positions = [tuple(v) for v in (max_positions.reshape(-1, 1) // dim_prod) % dims]

    return minimums, maximums, min_positions, max_positions


def center_of_mass(input, labels=None, index=None):
    """
    Calculate the center of mass of the values of an array at labels.

    Parameters
    ----------
    input : ndarray
        Data from which to calculate center-of-mass. The masses can either
        be positive or negative.
    labels : ndarray, optional
        Labels for objects in `input`, as generated by `ndimage.label`.
        Only used with `index`. Dimensions must be the same as `input`.
    index : int or sequence of ints, optional
        Labels for which to calculate centers-of-mass. If not specified,
        all labels greater than zero are used. Only used with `labels`.

    Returns
    -------
    center_of_mass : tuple, or list of tuples
        Coordinates of centers-of-mass.

    Examples
    --------
    >>> a = np.array(([0,0,0,0],
    ...               [0,1,1,0],
    ...               [0,1,1,0],
    ...               [0,1,1,0]))
    >>> from scipy import ndimage
    >>> ndimage.measurements.center_of_mass(a)
    (2.0, 1.5)

    Calculation of multiple objects in an image

    >>> b = np.array(([0,1,1,0],
    ...               [0,1,0,0],
    ...               [0,0,0,0],
    ...               [0,0,1,1],
    ...               [0,0,1,1]))
    >>> lbl = ndimage.label(b)[0]
    >>> ndimage.measurements.center_of_mass(b, lbl, [1,2])
    [(0.33333333333333331, 1.3333333333333333), (3.5, 2.5)]

    Negative masses are also accepted, which can occur for example when
    bias is removed from measured data due to random noise.

    >>> c = np.array(([-1,0,0,0],
    ...               [0,-1,-1,0],
    ...               [0,1,-1,0],
    ...               [0,1,1,0]))
    >>> ndimage.measurements.center_of_mass(c)
    (-4.0, 1.0)

    If there are division by zero issues, the function does not raise an
    error but rather issues a RuntimeWarning before returning inf and/or NaN.

    >>> d = np.array([-1, 1])
    >>> ndimage.measurements.center_of_mass(d)
    (inf,)
    """
    normalizer = sum(input, labels, index)
    grids = numpy.ogrid[[slice(0, i) for i in input.shape]]

    results = [sum(input * grids[dir].astype(float), labels, index) / normalizer
               for dir in range(input.ndim)]

    if numpy.isscalar(results[0]):
        return tuple(results)

    return [tuple(v) for v in numpy.array(results).T]


def histogram(input, min, max, bins, labels=None, index=None):
    """
    Calculate the histogram of the values of an array, optionally at labels.

    Histogram calculates the frequency of values in an array within bins
    determined by `min`, `max`, and `bins`. The `labels` and `index`
    keywords can limit the scope of the histogram to specified sub-regions
    within the array.

    Parameters
    ----------
    input : array_like
        Data for which to calculate histogram.
    min, max : int
        Minimum and maximum values of range of histogram bins.
    bins : int
        Number of bins.
    labels : array_like, optional
        Labels for objects in `input`.
        If not None, must be same shape as `input`.
    index : int or sequence of ints, optional
        Label or labels for which to calculate histogram. If None, all values
        where label is greater than zero are used

    Returns
    -------
    hist : ndarray
        Histogram counts.

    Examples
    --------
    >>> a = np.array([[ 0.    ,  0.2146,  0.5962,  0.    ],
    ...               [ 0.    ,  0.7778,  0.    ,  0.    ],
    ...               [ 0.    ,  0.    ,  0.    ,  0.    ],
    ...               [ 0.    ,  0.    ,  0.7181,  0.2787],
    ...               [ 0.    ,  0.    ,  0.6573,  0.3094]])
    >>> from scipy import ndimage
    >>> ndimage.measurements.histogram(a, 0, 1, 10)
    array([13,  0,  2,  1,  0,  1,  1,  2,  0,  0])

    With labels and no indices, non-zero elements are counted:

    >>> lbl, nlbl = ndimage.label(a)
    >>> ndimage.measurements.histogram(a, 0, 1, 10, lbl)
    array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])

    Indices can be used to count only certain objects:

    >>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2)
    array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])

    """
    _bins = numpy.linspace(min, max, bins + 1)

    def _hist(vals):
        return numpy.histogram(vals, _bins)[0]

    return labeled_comprehension(input, labels, index, _hist, object, None,
                                 pass_positions=False)


def watershed_ift(input, markers, structure=None, output=None):
    """
    Apply watershed from markers using image foresting transform algorithm.

    Parameters
    ----------
    input : array_like
        Input.
    markers : array_like
        Markers are points within each watershed that form the beginning
        of the process. Negative markers are considered background markers
        which are processed after the other markers.
    structure : structure element, optional
        A structuring element defining the connectivity of the object can be
        provided. If None, an element is generated with a squared
        connectivity equal to one.
    output : ndarray, optional
        An output array can optionally be provided. The same shape as input.

    Returns
    -------
    watershed_ift : ndarray
        Output.  Same shape as `input`.

    References
    ----------
    .. [1] A.X. Falcao, J. Stolfi and R. de Alencar Lotufo, "The image
           foresting transform: theory, algorithms, and applications",
           Pattern Analysis and Machine Intelligence, vol. 26, pp. 19-29, 2004.

    """
    input = numpy.asarray(input)
    if input.dtype.type not in [numpy.uint8, numpy.uint16]:
        raise TypeError('only 8 and 16 unsigned inputs are supported')

    if structure is None:
        structure = morphology.generate_binary_structure(input.ndim, 1)
    structure = numpy.asarray(structure, dtype=bool)
    if structure.ndim != input.ndim:
        raise RuntimeError('structure and input must have equal rank')
    for ii in structure.shape:
        if ii != 3:
            raise RuntimeError('structure dimensions must be equal to 3')

    if not structure.flags.contiguous:
        structure = structure.copy()
    markers = numpy.asarray(markers)
    if input.shape != markers.shape:
        raise RuntimeError('input and markers must have equal shape')

    integral_types = [numpy.int0,
                      numpy.int8,
                      numpy.int16,
                      numpy.int32,
                      numpy.int_,
                      numpy.int64,
                      numpy.intc,
                      numpy.intp]

    if markers.dtype.type not in integral_types:
        raise RuntimeError('marker should be of integer type')

    if isinstance(output, numpy.ndarray):
        if output.dtype.type not in integral_types:
            raise RuntimeError('output should be of integer type')
    else:
        output = markers.dtype

    output = _ni_support._get_output(output, input)
    _nd_image.watershed_ift(input, markers, structure, output)
    return output