decomp.py
59.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
# -*- coding: utf-8 -*-
#
# Author: Pearu Peterson, March 2002
#
# additions by Travis Oliphant, March 2002
# additions by Eric Jones, June 2002
# additions by Johannes Loehnert, June 2006
# additions by Bart Vandereycken, June 2006
# additions by Andrew D Straw, May 2007
# additions by Tiziano Zito, November 2008
#
# April 2010: Functions for LU, QR, SVD, Schur, and Cholesky decompositions
# were moved to their own files. Still in this file are functions for
# eigenstuff and for the Hessenberg form.
__all__ = ['eig', 'eigvals', 'eigh', 'eigvalsh',
'eig_banded', 'eigvals_banded',
'eigh_tridiagonal', 'eigvalsh_tridiagonal', 'hessenberg', 'cdf2rdf']
import numpy
from numpy import (array, isfinite, inexact, nonzero, iscomplexobj, cast,
flatnonzero, conj, asarray, argsort, empty,
iscomplex, zeros, einsum, eye, inf)
# Local imports
from scipy._lib._util import _asarray_validated
from .misc import LinAlgError, _datacopied, norm
from .lapack import get_lapack_funcs, _compute_lwork
_I = cast['F'](1j)
def _make_complex_eigvecs(w, vin, dtype):
"""
Produce complex-valued eigenvectors from LAPACK DGGEV real-valued output
"""
# - see LAPACK man page DGGEV at ALPHAI
v = numpy.array(vin, dtype=dtype)
m = (w.imag > 0)
m[:-1] |= (w.imag[1:] < 0) # workaround for LAPACK bug, cf. ticket #709
for i in flatnonzero(m):
v.imag[:, i] = vin[:, i+1]
conj(v[:, i], v[:, i+1])
return v
def _make_eigvals(alpha, beta, homogeneous_eigvals):
if homogeneous_eigvals:
if beta is None:
return numpy.vstack((alpha, numpy.ones_like(alpha)))
else:
return numpy.vstack((alpha, beta))
else:
if beta is None:
return alpha
else:
w = numpy.empty_like(alpha)
alpha_zero = (alpha == 0)
beta_zero = (beta == 0)
beta_nonzero = ~beta_zero
w[beta_nonzero] = alpha[beta_nonzero]/beta[beta_nonzero]
# Use numpy.inf for complex values too since
# 1/numpy.inf = 0, i.e., it correctly behaves as projective
# infinity.
w[~alpha_zero & beta_zero] = numpy.inf
if numpy.all(alpha.imag == 0):
w[alpha_zero & beta_zero] = numpy.nan
else:
w[alpha_zero & beta_zero] = complex(numpy.nan, numpy.nan)
return w
def _geneig(a1, b1, left, right, overwrite_a, overwrite_b,
homogeneous_eigvals):
ggev, = get_lapack_funcs(('ggev',), (a1, b1))
cvl, cvr = left, right
res = ggev(a1, b1, lwork=-1)
lwork = res[-2][0].real.astype(numpy.int_)
if ggev.typecode in 'cz':
alpha, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork,
overwrite_a, overwrite_b)
w = _make_eigvals(alpha, beta, homogeneous_eigvals)
else:
alphar, alphai, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr,
lwork, overwrite_a,
overwrite_b)
alpha = alphar + _I * alphai
w = _make_eigvals(alpha, beta, homogeneous_eigvals)
_check_info(info, 'generalized eig algorithm (ggev)')
only_real = numpy.all(w.imag == 0.0)
if not (ggev.typecode in 'cz' or only_real):
t = w.dtype.char
if left:
vl = _make_complex_eigvecs(w, vl, t)
if right:
vr = _make_complex_eigvecs(w, vr, t)
# the eigenvectors returned by the lapack function are NOT normalized
for i in range(vr.shape[0]):
if right:
vr[:, i] /= norm(vr[:, i])
if left:
vl[:, i] /= norm(vl[:, i])
if not (left or right):
return w
if left:
if right:
return w, vl, vr
return w, vl
return w, vr
def eig(a, b=None, left=False, right=True, overwrite_a=False,
overwrite_b=False, check_finite=True, homogeneous_eigvals=False):
"""
Solve an ordinary or generalized eigenvalue problem of a square matrix.
Find eigenvalues w and right or left eigenvectors of a general matrix::
a vr[:,i] = w[i] b vr[:,i]
a.H vl[:,i] = w[i].conj() b.H vl[:,i]
where ``.H`` is the Hermitian conjugation.
Parameters
----------
a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem.
Default is None, identity matrix is assumed.
left : bool, optional
Whether to calculate and return left eigenvectors. Default is False.
right : bool, optional
Whether to calculate and return right eigenvectors. Default is True.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance. Default is False.
overwrite_b : bool, optional
Whether to overwrite `b`; may improve performance. Default is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
homogeneous_eigvals : bool, optional
If True, return the eigenvalues in homogeneous coordinates.
In this case ``w`` is a (2, M) array so that::
w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
Returns
-------
w : (M,) or (2, M) double or complex ndarray
The eigenvalues, each repeated according to its
multiplicity. The shape is (M,) unless
``homogeneous_eigvals=True``.
vl : (M, M) double or complex ndarray
The normalized left eigenvector corresponding to the eigenvalue
``w[i]`` is the column vl[:,i]. Only returned if ``left=True``.
vr : (M, M) double or complex ndarray
The normalized right eigenvector corresponding to the eigenvalue
``w[i]`` is the column ``vr[:,i]``. Only returned if ``right=True``.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigvals : eigenvalues of general arrays
eigh : Eigenvalues and right eigenvectors for symmetric/Hermitian arrays.
eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
band matrices
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Examples
--------
>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
[1.+0.j, 1.+0.j, 1.+0.j]])
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a) == linalg.eig(a)[0]
array([ True, True])
>>> linalg.eig(a, left=True, right=False)[1] # normalized left eigenvector
array([[-0.70710678+0.j , -0.70710678-0.j ],
[-0. +0.70710678j, -0. -0.70710678j]])
>>> linalg.eig(a, left=False, right=True)[1] # normalized right eigenvector
array([[0.70710678+0.j , 0.70710678-0.j ],
[0. -0.70710678j, 0. +0.70710678j]])
"""
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
if b is not None:
b1 = _asarray_validated(b, check_finite=check_finite)
overwrite_b = overwrite_b or _datacopied(b1, b)
if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
raise ValueError('expected square matrix')
if b1.shape != a1.shape:
raise ValueError('a and b must have the same shape')
return _geneig(a1, b1, left, right, overwrite_a, overwrite_b,
homogeneous_eigvals)
geev, geev_lwork = get_lapack_funcs(('geev', 'geev_lwork'), (a1,))
compute_vl, compute_vr = left, right
lwork = _compute_lwork(geev_lwork, a1.shape[0],
compute_vl=compute_vl,
compute_vr=compute_vr)
if geev.typecode in 'cz':
w, vl, vr, info = geev(a1, lwork=lwork,
compute_vl=compute_vl,
compute_vr=compute_vr,
overwrite_a=overwrite_a)
w = _make_eigvals(w, None, homogeneous_eigvals)
else:
wr, wi, vl, vr, info = geev(a1, lwork=lwork,
compute_vl=compute_vl,
compute_vr=compute_vr,
overwrite_a=overwrite_a)
t = {'f': 'F', 'd': 'D'}[wr.dtype.char]
w = wr + _I * wi
w = _make_eigvals(w, None, homogeneous_eigvals)
_check_info(info, 'eig algorithm (geev)',
positive='did not converge (only eigenvalues '
'with order >= %d have converged)')
only_real = numpy.all(w.imag == 0.0)
if not (geev.typecode in 'cz' or only_real):
t = w.dtype.char
if left:
vl = _make_complex_eigvecs(w, vl, t)
if right:
vr = _make_complex_eigvecs(w, vr, t)
if not (left or right):
return w
if left:
if right:
return w, vl, vr
return w, vl
return w, vr
def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False,
overwrite_b=False, turbo=True, eigvals=None, type=1,
check_finite=True, subset_by_index=None, subset_by_value=None,
driver=None):
"""
Solve a standard or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.
Find eigenvalues array ``w`` and optionally eigenvectors array ``v`` of
array ``a``, where ``b`` is positive definite such that for every
eigenvalue λ (i-th entry of w) and its eigenvector ``vi`` (i-th column of
``v``) satisfies::
a @ vi = λ * b @ vi
vi.conj().T @ a @ vi = λ
vi.conj().T @ b @ vi = 1
In the standard problem, ``b`` is assumed to be the identity matrix.
Parameters
----------
a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and
eigenvectors will be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of ``a`` and, if applicable, ``b``. (Default: lower)
eigvals_only : bool, optional
Whether to calculate only eigenvalues and no eigenvectors.
(Default: both are calculated)
subset_by_index : iterable, optional
If provided, this two-element iterable defines the start and the end
indices of the desired eigenvalues (ascending order and 0-indexed).
To return only the second smallest to fifth smallest eigenvalues,
``[1, 4]`` is used. ``[n-3, n-1]`` returns the largest three. Only
available with "evr", "evx", and "gvx" drivers. The entries are
directly converted to integers via ``int()``.
subset_by_value : iterable, optional
If provided, this two-element iterable defines the half-open interval
``(a, b]`` that, if any, only the eigenvalues between these values
are returned. Only available with "evr", "evx", and "gvx" drivers. Use
``np.inf`` for the unconstrained ends.
driver: str, optional
Defines which LAPACK driver should be used. Valid options are "ev",
"evd", "evr", "evx" for standard problems and "gv", "gvd", "gvx" for
generalized (where b is not None) problems. See the Notes section.
type : int, optional
For the generalized problems, this keyword specifies the problem type
to be solved for ``w`` and ``v`` (only takes 1, 2, 3 as possible
inputs)::
1 => a @ v = w @ b @ v
2 => a @ b @ v = w @ v
3 => b @ a @ v = w @ v
This keyword is ignored for standard problems.
overwrite_a : bool, optional
Whether to overwrite data in ``a`` (may improve performance). Default
is False.
overwrite_b : bool, optional
Whether to overwrite data in ``b`` (may improve performance). Default
is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
turbo : bool, optional
*Deprecated since v1.5.0, use ``driver=gvd`` keyword instead*.
Use divide and conquer algorithm (faster but expensive in memory, only
for generalized eigenvalue problem and if full set of eigenvalues are
requested.). Has no significant effect if eigenvectors are not
requested.
eigvals : tuple (lo, hi), optional
*Deprecated since v1.5.0, use ``subset_by_index`` keyword instead*.
Indexes of the smallest and largest (in ascending order) eigenvalues
and corresponding eigenvectors to be returned: 0 <= lo <= hi <= M-1.
If omitted, all eigenvalues and eigenvectors are returned.
Returns
-------
w : (N,) ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each
repeated according to its multiplicity.
v : (M, N) ndarray
(if ``eigvals_only == False``)
Raises
------
LinAlgError
If eigenvalue computation does not converge, an error occurred, or
b matrix is not definite positive. Note that if input matrices are
not symmetric or Hermitian, no error will be reported but results will
be wrong.
See Also
--------
eigvalsh : eigenvalues of symmetric or Hermitian arrays
eig : eigenvalues and right eigenvectors for non-symmetric arrays
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Notes
-----
This function does not check the input array for being hermitian/symmetric
in order to allow for representing arrays with only their upper/lower
triangular parts. Also, note that even though not taken into account,
finiteness check applies to the whole array and unaffected by "lower"
keyword.
This function uses LAPACK drivers for computations in all possible keyword
combinations, prefixed with ``sy`` if arrays are real and ``he`` if
complex, e.g., a float array with "evr" driver is solved via
"syevr", complex arrays with "gvx" driver problem is solved via "hegvx"
etc.
As a brief summary, the slowest and the most robust driver is the
classical ``<sy/he>ev`` which uses symmetric QR. ``<sy/he>evr`` is seen as
the optimal choice for the most general cases. However, there are certain
occassions that ``<sy/he>evd`` computes faster at the expense of more
memory usage. ``<sy/he>evx``, while still being faster than ``<sy/he>ev``,
often performs worse than the rest except when very few eigenvalues are
requested for large arrays though there is still no performance guarantee.
For the generalized problem, normalization with respoect to the given
type argument::
type 1 and 3 : v.conj().T @ a @ v = w
type 2 : inv(v).conj().T @ a @ inv(v) = w
type 1 or 2 : v.conj().T @ b @ v = I
type 3 : v.conj().T @ inv(b) @ v = I
Examples
--------
>>> from scipy.linalg import eigh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w, v = eigh(A)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
Request only the eigenvalues
>>> w = eigh(A, eigvals_only=True)
Request eigenvalues that are less than 10.
>>> A = np.array([[34, -4, -10, -7, 2],
... [-4, 7, 2, 12, 0],
... [-10, 2, 44, 2, -19],
... [-7, 12, 2, 79, -34],
... [2, 0, -19, -34, 29]])
>>> eigh(A, eigvals_only=True, subset_by_value=[-np.inf, 10])
array([6.69199443e-07, 9.11938152e+00])
Request the largest second eigenvalue and its eigenvector
>>> w, v = eigh(A, subset_by_index=[1, 1])
>>> w
array([9.11938152])
>>> v.shape # only a single column is returned
(5, 1)
"""
# set lower
uplo = 'L' if lower else 'U'
# Set job for Fortran routines
_job = 'N' if eigvals_only else 'V'
drv_str = [None, "ev", "evd", "evr", "evx", "gv", "gvd", "gvx"]
if driver not in drv_str:
raise ValueError('"{}" is unknown. Possible values are "None", "{}".'
''.format(driver, '", "'.join(drv_str[1:])))
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError('expected square "a" matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
cplx = True if iscomplexobj(a1) else False
n = a1.shape[0]
drv_args = {'overwrite_a': overwrite_a}
if b is not None:
b1 = _asarray_validated(b, check_finite=check_finite)
overwrite_b = overwrite_b or _datacopied(b1, b)
if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]:
raise ValueError('expected square "b" matrix')
if b1.shape != a1.shape:
raise ValueError("wrong b dimensions {}, should "
"be {}".format(b1.shape, a1.shape))
if type not in [1, 2, 3]:
raise ValueError('"type" keyword only accepts 1, 2, and 3.')
cplx = True if iscomplexobj(b1) else (cplx or False)
drv_args.update({'overwrite_b': overwrite_b, 'itype': type})
# backwards-compatibility handling
subset_by_index = subset_by_index if (eigvals is None) else eigvals
subset = (subset_by_index is not None) or (subset_by_value is not None)
# Both subsets can't be given
if subset_by_index and subset_by_value:
raise ValueError('Either index or value subset can be requested.')
# Take turbo into account if all conditions are met otherwise ignore
if turbo and b is not None:
driver = 'gvx' if subset else 'gvd'
# Check indices if given
if subset_by_index:
lo, hi = [int(x) for x in subset_by_index]
if not (0 <= lo <= hi < n):
raise ValueError('Requested eigenvalue indices are not valid. '
'Valid range is [0, {}] and start <= end, but '
'start={}, end={} is given'.format(n-1, lo, hi))
# fortran is 1-indexed
drv_args.update({'range': 'I', 'il': lo + 1, 'iu': hi + 1})
if subset_by_value:
lo, hi = subset_by_value
if not (-inf <= lo < hi <= inf):
raise ValueError('Requested eigenvalue bounds are not valid. '
'Valid range is (-inf, inf) and low < high, but '
'low={}, high={} is given'.format(lo, hi))
drv_args.update({'range': 'V', 'vl': lo, 'vu': hi})
# fix prefix for lapack routines
pfx = 'he' if cplx else 'sy'
# decide on the driver if not given
# first early exit on incompatible choice
if driver:
if b is None and (driver in ["gv", "gvd", "gvx"]):
raise ValueError('{} requires input b array to be supplied '
'for generalized eigenvalue problems.'
''.format(driver))
if (b is not None) and (driver in ['ev', 'evd', 'evr', 'evx']):
raise ValueError('"{}" does not accept input b array '
'for standard eigenvalue problems.'
''.format(driver))
if subset and (driver in ["ev", "evd", "gv", "gvd"]):
raise ValueError('"{}" cannot compute subsets of eigenvalues'
''.format(driver))
# Default driver is evr and gvd
else:
driver = "evr" if b is None else ("gvx" if subset else "gvd")
lwork_spec = {
'syevd': ['lwork', 'liwork'],
'syevr': ['lwork', 'liwork'],
'heevd': ['lwork', 'liwork', 'lrwork'],
'heevr': ['lwork', 'lrwork', 'liwork'],
}
if b is None: # Standard problem
drv, drvlw = get_lapack_funcs((pfx + driver, pfx+driver+'_lwork'),
[a1])
clw_args = {'n': n, 'lower': lower}
if driver == 'evd':
clw_args.update({'compute_v': 0 if _job == "N" else 1})
lw = _compute_lwork(drvlw, **clw_args)
# Multiple lwork vars
if isinstance(lw, tuple):
lwork_args = dict(zip(lwork_spec[pfx+driver], lw))
else:
lwork_args = {'lwork': lw}
drv_args.update({'lower': lower, 'compute_v': 0 if _job == "N" else 1})
w, v, *other_args, info = drv(a=a1, **drv_args, **lwork_args)
else: # Generalized problem
# 'gvd' doesn't have lwork query
if driver == "gvd":
drv = get_lapack_funcs(pfx + "gvd", [a1, b1])
lwork_args = {}
else:
drv, drvlw = get_lapack_funcs((pfx + driver, pfx+driver+'_lwork'),
[a1, b1])
# generalized drivers use uplo instead of lower
lw = _compute_lwork(drvlw, n, uplo=uplo)
lwork_args = {'lwork': lw}
drv_args.update({'uplo': uplo, 'jobz': _job})
w, v, *other_args, info = drv(a=a1, b=b1, **drv_args, **lwork_args)
# m is always the first extra argument
w = w[:other_args[0]] if subset else w
v = v[:, :other_args[0]] if (subset and not eigvals_only) else v
# Check if we had a successful exit
if info == 0:
if eigvals_only:
return w
else:
return w, v
else:
if info < -1:
raise LinAlgError('Illegal value in argument {} of internal {}'
''.format(-info, drv.typecode + pfx + driver))
elif info > n:
raise LinAlgError('The leading minor of order {} of B is not '
'positive definite. The factorization of B '
'could not be completed and no eigenvalues '
'or eigenvectors were computed.'.format(info-n))
else:
drv_err = {'ev': 'The algorithm failed to converge; {} '
'off-diagonal elements of an intermediate '
'tridiagonal form did not converge to zero.',
'evx': '{} eigenvectors failed to converge.',
'evd': 'The algorithm failed to compute an eigenvalue '
'while working on the submatrix lying in rows '
'and columns {0}/{1} through mod({0},{1}).',
'evr': 'Internal Error.'
}
if driver in ['ev', 'gv']:
msg = drv_err['ev'].format(info)
elif driver in ['evx', 'gvx']:
msg = drv_err['evx'].format(info)
elif driver in ['evd', 'gvd']:
if eigvals_only:
msg = drv_err['ev'].format(info)
else:
msg = drv_err['evd'].format(info, n+1)
else:
msg = drv_err['evr']
raise LinAlgError(msg)
_conv_dict = {0: 0, 1: 1, 2: 2,
'all': 0, 'value': 1, 'index': 2,
'a': 0, 'v': 1, 'i': 2}
def _check_select(select, select_range, max_ev, max_len):
"""Check that select is valid, convert to Fortran style."""
if isinstance(select, str):
select = select.lower()
try:
select = _conv_dict[select]
except KeyError:
raise ValueError('invalid argument for select')
vl, vu = 0., 1.
il = iu = 1
if select != 0: # (non-all)
sr = asarray(select_range)
if sr.ndim != 1 or sr.size != 2 or sr[1] < sr[0]:
raise ValueError('select_range must be a 2-element array-like '
'in nondecreasing order')
if select == 1: # (value)
vl, vu = sr
if max_ev == 0:
max_ev = max_len
else: # 2 (index)
if sr.dtype.char.lower() not in 'hilqp':
raise ValueError('when using select="i", select_range must '
'contain integers, got dtype %s (%s)'
% (sr.dtype, sr.dtype.char))
# translate Python (0 ... N-1) into Fortran (1 ... N) with + 1
il, iu = sr + 1
if min(il, iu) < 1 or max(il, iu) > max_len:
raise ValueError('select_range out of bounds')
max_ev = iu - il + 1
return select, vl, vu, il, iu, max_ev
def eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False,
select='a', select_range=None, max_ev=0, check_finite=True):
"""
Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
Find eigenvalues w and optionally right eigenvectors v of a::
a v[:,i] = w[i] v[:,i]
v.H v = identity
The matrix a is stored in a_band either in lower diagonal or upper
diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2)::
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
Cells marked with * are not used.
Parameters
----------
a_band : (u+1, M) array_like
The bands of the M by M matrix a.
lower : bool, optional
Is the matrix in the lower form. (Default is upper form)
eigvals_only : bool, optional
Compute only the eigenvalues and no eigenvectors.
(Default: calculate also eigenvectors)
overwrite_a_band : bool, optional
Discard data in a_band (may enhance performance)
select : {'a', 'v', 'i'}, optional
Which eigenvalues to calculate
====== ========================================
select calculated
====== ========================================
'a' All eigenvalues
'v' Eigenvalues in the interval (min, max]
'i' Eigenvalues with indices min <= i <= max
====== ========================================
select_range : (min, max), optional
Range of selected eigenvalues
max_ev : int, optional
For select=='v', maximum number of eigenvalues expected.
For other values of select, has no meaning.
In doubt, leave this parameter untouched.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its
multiplicity.
v : (M, M) float or complex ndarray
The normalized eigenvector corresponding to the eigenvalue w[i] is
the column v[:,i].
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigvals_banded : eigenvalues for symmetric/Hermitian band matrices
eig : eigenvalues and right eigenvectors of general arrays.
eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Examples
--------
>>> from scipy.linalg import eig_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w, v = eig_banded(Ab, lower=True)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
>>> w = eig_banded(Ab, lower=True, eigvals_only=True)
>>> w
array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
Request only the eigenvalues between ``[-3, 4]``
>>> w, v = eig_banded(Ab, lower=True, select='v', select_range=[-3, 4])
>>> w
array([-2.22987175, 3.95222349])
"""
if eigvals_only or overwrite_a_band:
a1 = _asarray_validated(a_band, check_finite=check_finite)
overwrite_a_band = overwrite_a_band or (_datacopied(a1, a_band))
else:
a1 = array(a_band)
if issubclass(a1.dtype.type, inexact) and not isfinite(a1).all():
raise ValueError("array must not contain infs or NaNs")
overwrite_a_band = 1
if len(a1.shape) != 2:
raise ValueError('expected a 2-D array')
select, vl, vu, il, iu, max_ev = _check_select(
select, select_range, max_ev, a1.shape[1])
del select_range
if select == 0:
if a1.dtype.char in 'GFD':
# FIXME: implement this somewhen, for now go with builtin values
# FIXME: calc optimal lwork by calling ?hbevd(lwork=-1)
# or by using calc_lwork.f ???
# lwork = calc_lwork.hbevd(bevd.typecode, a1.shape[0], lower)
internal_name = 'hbevd'
else: # a1.dtype.char in 'fd':
# FIXME: implement this somewhen, for now go with builtin values
# see above
# lwork = calc_lwork.sbevd(bevd.typecode, a1.shape[0], lower)
internal_name = 'sbevd'
bevd, = get_lapack_funcs((internal_name,), (a1,))
w, v, info = bevd(a1, compute_v=not eigvals_only,
lower=lower, overwrite_ab=overwrite_a_band)
else: # select in [1, 2]
if eigvals_only:
max_ev = 1
# calculate optimal abstol for dsbevx (see manpage)
if a1.dtype.char in 'fF': # single precision
lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='f'),))
else:
lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='d'),))
abstol = 2 * lamch('s')
if a1.dtype.char in 'GFD':
internal_name = 'hbevx'
else: # a1.dtype.char in 'gfd'
internal_name = 'sbevx'
bevx, = get_lapack_funcs((internal_name,), (a1,))
w, v, m, ifail, info = bevx(
a1, vl, vu, il, iu, compute_v=not eigvals_only, mmax=max_ev,
range=select, lower=lower, overwrite_ab=overwrite_a_band,
abstol=abstol)
# crop off w and v
w = w[:m]
if not eigvals_only:
v = v[:, :m]
_check_info(info, internal_name)
if eigvals_only:
return w
return w, v
def eigvals(a, b=None, overwrite_a=False, check_finite=True,
homogeneous_eigvals=False):
"""
Compute eigenvalues from an ordinary or generalized eigenvalue problem.
Find eigenvalues of a general matrix::
a vr[:,i] = w[i] b vr[:,i]
Parameters
----------
a : (M, M) array_like
A complex or real matrix whose eigenvalues and eigenvectors
will be computed.
b : (M, M) array_like, optional
Right-hand side matrix in a generalized eigenvalue problem.
If omitted, identity matrix is assumed.
overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities
or NaNs.
homogeneous_eigvals : bool, optional
If True, return the eigenvalues in homogeneous coordinates.
In this case ``w`` is a (2, M) array so that::
w[1,i] a vr[:,i] = w[0,i] b vr[:,i]
Default is False.
Returns
-------
w : (M,) or (2, M) double or complex ndarray
The eigenvalues, each repeated according to its multiplicity
but not in any specific order. The shape is (M,) unless
``homogeneous_eigvals=True``.
Raises
------
LinAlgError
If eigenvalue computation does not converge
See Also
--------
eig : eigenvalues and right eigenvectors of general arrays.
eigvalsh : eigenvalues of symmetric or Hermitian arrays
eigvals_banded : eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
matrices
Examples
--------
>>> from scipy import linalg
>>> a = np.array([[0., -1.], [1., 0.]])
>>> linalg.eigvals(a)
array([0.+1.j, 0.-1.j])
>>> b = np.array([[0., 1.], [1., 1.]])
>>> linalg.eigvals(a, b)
array([ 1.+0.j, -1.+0.j])
>>> a = np.array([[3., 0., 0.], [0., 8., 0.], [0., 0., 7.]])
>>> linalg.eigvals(a, homogeneous_eigvals=True)
array([[3.+0.j, 8.+0.j, 7.+0.j],
[1.+0.j, 1.+0.j, 1.+0.j]])
"""
return eig(a, b=b, left=0, right=0, overwrite_a=overwrite_a,
check_finite=check_finite,
homogeneous_eigvals=homogeneous_eigvals)
def eigvalsh(a, b=None, lower=True, overwrite_a=False,
overwrite_b=False, turbo=True, eigvals=None, type=1,
check_finite=True, subset_by_index=None, subset_by_value=None,
driver=None):
"""
Solves a standard or generalized eigenvalue problem for a complex
Hermitian or real symmetric matrix.
Find eigenvalues array ``w`` of array ``a``, where ``b`` is positive
definite such that for every eigenvalue λ (i-th entry of w) and its
eigenvector vi (i-th column of v) satisfies::
a @ vi = λ * b @ vi
vi.conj().T @ a @ vi = λ
vi.conj().T @ b @ vi = 1
In the standard problem, b is assumed to be the identity matrix.
Parameters
----------
a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues will
be computed.
b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in.
If omitted, identity matrix is assumed.
lower : bool, optional
Whether the pertinent array data is taken from the lower or upper
triangle of ``a`` and, if applicable, ``b``. (Default: lower)
eigvals_only : bool, optional
Whether to calculate only eigenvalues and no eigenvectors.
(Default: both are calculated)
subset_by_index : iterable, optional
If provided, this two-element iterable defines the start and the end
indices of the desired eigenvalues (ascending order and 0-indexed).
To return only the second smallest to fifth smallest eigenvalues,
``[1, 4]`` is used. ``[n-3, n-1]`` returns the largest three. Only
available with "evr", "evx", and "gvx" drivers. The entries are
directly converted to integers via ``int()``.
subset_by_value : iterable, optional
If provided, this two-element iterable defines the half-open interval
``(a, b]`` that, if any, only the eigenvalues between these values
are returned. Only available with "evr", "evx", and "gvx" drivers. Use
``np.inf`` for the unconstrained ends.
driver: str, optional
Defines which LAPACK driver should be used. Valid options are "ev",
"evd", "evr", "evx" for standard problems and "gv", "gvd", "gvx" for
generalized (where b is not None) problems. See the Notes section of
`scipy.linalg.eigh`.
type : int, optional
For the generalized problems, this keyword specifies the problem type
to be solved for ``w`` and ``v`` (only takes 1, 2, 3 as possible
inputs)::
1 => a @ v = w @ b @ v
2 => a @ b @ v = w @ v
3 => b @ a @ v = w @ v
This keyword is ignored for standard problems.
overwrite_a : bool, optional
Whether to overwrite data in ``a`` (may improve performance). Default
is False.
overwrite_b : bool, optional
Whether to overwrite data in ``b`` (may improve performance). Default
is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
turbo : bool, optional
*Deprecated by ``driver=gvd`` option*. Has no significant effect for
eigenvalue computations since no eigenvectors are requested.
..Deprecated in v1.5.0
eigvals : tuple (lo, hi), optional
*Deprecated by ``subset_by_index`` keyword*. Indexes of the smallest
and largest (in ascending order) eigenvalues and corresponding
eigenvectors to be returned: 0 <= lo <= hi <= M-1. If omitted, all
eigenvalues and eigenvectors are returned.
.. Deprecated in v1.5.0
Returns
-------
w : (N,) ndarray
The ``N`` (``1<=N<=M``) selected eigenvalues, in ascending order, each
repeated according to its multiplicity.
Raises
------
LinAlgError
If eigenvalue computation does not converge, an error occurred, or
b matrix is not definite positive. Note that if input matrices are
not symmetric or Hermitian, no error will be reported but results will
be wrong.
See Also
--------
eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigvals : eigenvalues of general arrays
eigvals_banded : eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
matrices
Notes
-----
This function does not check the input array for being Hermitian/symmetric
in order to allow for representing arrays with only their upper/lower
triangular parts.
This function serves as a one-liner shorthand for `scipy.linalg.eigh` with
the option ``eigvals_only=True`` to get the eigenvalues and not the
eigenvectors. Here it is kept as a legacy convenience. It might be
beneficial to use the main function to have full control and to be a bit
more pythonic.
Examples
--------
For more examples see `scipy.linalg.eigh`.
>>> from scipy.linalg import eigvalsh
>>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]])
>>> w = eigvalsh(A)
>>> w
array([-3.74637491, -0.76263923, 6.08502336, 12.42399079])
"""
return eigh(a, b=b, lower=lower, eigvals_only=True,
overwrite_a=overwrite_a, overwrite_b=overwrite_b,
turbo=turbo, eigvals=eigvals, type=type,
check_finite=check_finite, subset_by_index=subset_by_index,
subset_by_value=subset_by_value, driver=driver)
def eigvals_banded(a_band, lower=False, overwrite_a_band=False,
select='a', select_range=None, check_finite=True):
"""
Solve real symmetric or complex Hermitian band matrix eigenvalue problem.
Find eigenvalues w of a::
a v[:,i] = w[i] v[:,i]
v.H v = identity
The matrix a is stored in a_band either in lower diagonal or upper
diagonal ordered form:
a_band[u + i - j, j] == a[i,j] (if upper form; i <= j)
a_band[ i - j, j] == a[i,j] (if lower form; i >= j)
where u is the number of bands above the diagonal.
Example of a_band (shape of a is (6,6), u=2)::
upper form:
* * a02 a13 a24 a35
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
lower form:
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
Cells marked with * are not used.
Parameters
----------
a_band : (u+1, M) array_like
The bands of the M by M matrix a.
lower : bool, optional
Is the matrix in the lower form. (Default is upper form)
overwrite_a_band : bool, optional
Discard data in a_band (may enhance performance)
select : {'a', 'v', 'i'}, optional
Which eigenvalues to calculate
====== ========================================
select calculated
====== ========================================
'a' All eigenvalues
'v' Eigenvalues in the interval (min, max]
'i' Eigenvalues with indices min <= i <= max
====== ========================================
select_range : (min, max), optional
Range of selected eigenvalues
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its
multiplicity.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
band matrices
eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
matrices
eigvals : eigenvalues of general arrays
eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig : eigenvalues and right eigenvectors for non-symmetric arrays
Examples
--------
>>> from scipy.linalg import eigvals_banded
>>> A = np.array([[1, 5, 2, 0], [5, 2, 5, 2], [2, 5, 3, 5], [0, 2, 5, 4]])
>>> Ab = np.array([[1, 2, 3, 4], [5, 5, 5, 0], [2, 2, 0, 0]])
>>> w = eigvals_banded(Ab, lower=True)
>>> w
array([-4.26200532, -2.22987175, 3.95222349, 12.53965359])
"""
return eig_banded(a_band, lower=lower, eigvals_only=1,
overwrite_a_band=overwrite_a_band, select=select,
select_range=select_range, check_finite=check_finite)
def eigvalsh_tridiagonal(d, e, select='a', select_range=None,
check_finite=True, tol=0., lapack_driver='auto'):
"""
Solve eigenvalue problem for a real symmetric tridiagonal matrix.
Find eigenvalues `w` of ``a``::
a v[:,i] = w[i] v[:,i]
v.H v = identity
For a real symmetric matrix ``a`` with diagonal elements `d` and
off-diagonal elements `e`.
Parameters
----------
d : ndarray, shape (ndim,)
The diagonal elements of the array.
e : ndarray, shape (ndim-1,)
The off-diagonal elements of the array.
select : {'a', 'v', 'i'}, optional
Which eigenvalues to calculate
====== ========================================
select calculated
====== ========================================
'a' All eigenvalues
'v' Eigenvalues in the interval (min, max]
'i' Eigenvalues with indices min <= i <= max
====== ========================================
select_range : (min, max), optional
Range of selected eigenvalues
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
tol : float
The absolute tolerance to which each eigenvalue is required
(only used when ``lapack_driver='stebz'``).
An eigenvalue (or cluster) is considered to have converged if it
lies in an interval of this width. If <= 0. (default),
the value ``eps*|a|`` is used where eps is the machine precision,
and ``|a|`` is the 1-norm of the matrix ``a``.
lapack_driver : str
LAPACK function to use, can be 'auto', 'stemr', 'stebz', 'sterf',
or 'stev'. When 'auto' (default), it will use 'stemr' if ``select='a'``
and 'stebz' otherwise. 'sterf' and 'stev' can only be used when
``select='a'``.
Returns
-------
w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its
multiplicity.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigh_tridiagonal : eigenvalues and right eiegenvectors for
symmetric/Hermitian tridiagonal matrices
Examples
--------
>>> from scipy.linalg import eigvalsh_tridiagonal, eigvalsh
>>> d = 3*np.ones(4)
>>> e = -1*np.ones(3)
>>> w = eigvalsh_tridiagonal(d, e)
>>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
>>> w2 = eigvalsh(A) # Verify with other eigenvalue routines
>>> np.allclose(w - w2, np.zeros(4))
True
"""
return eigh_tridiagonal(
d, e, eigvals_only=True, select=select, select_range=select_range,
check_finite=check_finite, tol=tol, lapack_driver=lapack_driver)
def eigh_tridiagonal(d, e, eigvals_only=False, select='a', select_range=None,
check_finite=True, tol=0., lapack_driver='auto'):
"""
Solve eigenvalue problem for a real symmetric tridiagonal matrix.
Find eigenvalues `w` and optionally right eigenvectors `v` of ``a``::
a v[:,i] = w[i] v[:,i]
v.H v = identity
For a real symmetric matrix ``a`` with diagonal elements `d` and
off-diagonal elements `e`.
Parameters
----------
d : ndarray, shape (ndim,)
The diagonal elements of the array.
e : ndarray, shape (ndim-1,)
The off-diagonal elements of the array.
select : {'a', 'v', 'i'}, optional
Which eigenvalues to calculate
====== ========================================
select calculated
====== ========================================
'a' All eigenvalues
'v' Eigenvalues in the interval (min, max]
'i' Eigenvalues with indices min <= i <= max
====== ========================================
select_range : (min, max), optional
Range of selected eigenvalues
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
tol : float
The absolute tolerance to which each eigenvalue is required
(only used when 'stebz' is the `lapack_driver`).
An eigenvalue (or cluster) is considered to have converged if it
lies in an interval of this width. If <= 0. (default),
the value ``eps*|a|`` is used where eps is the machine precision,
and ``|a|`` is the 1-norm of the matrix ``a``.
lapack_driver : str
LAPACK function to use, can be 'auto', 'stemr', 'stebz', 'sterf',
or 'stev'. When 'auto' (default), it will use 'stemr' if ``select='a'``
and 'stebz' otherwise. When 'stebz' is used to find the eigenvalues and
``eigvals_only=False``, then a second LAPACK call (to ``?STEIN``) is
used to find the corresponding eigenvectors. 'sterf' can only be
used when ``eigvals_only=True`` and ``select='a'``. 'stev' can only
be used when ``select='a'``.
Returns
-------
w : (M,) ndarray
The eigenvalues, in ascending order, each repeated according to its
multiplicity.
v : (M, M) ndarray
The normalized eigenvector corresponding to the eigenvalue ``w[i]`` is
the column ``v[:,i]``.
Raises
------
LinAlgError
If eigenvalue computation does not converge.
See Also
--------
eigvalsh_tridiagonal : eigenvalues of symmetric/Hermitian tridiagonal
matrices
eig : eigenvalues and right eigenvectors for non-symmetric arrays
eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian
band matrices
Notes
-----
This function makes use of LAPACK ``S/DSTEMR`` routines.
Examples
--------
>>> from scipy.linalg import eigh_tridiagonal
>>> d = 3*np.ones(4)
>>> e = -1*np.ones(3)
>>> w, v = eigh_tridiagonal(d, e)
>>> A = np.diag(d) + np.diag(e, k=1) + np.diag(e, k=-1)
>>> np.allclose(A @ v - v @ np.diag(w), np.zeros((4, 4)))
True
"""
d = _asarray_validated(d, check_finite=check_finite)
e = _asarray_validated(e, check_finite=check_finite)
for check in (d, e):
if check.ndim != 1:
raise ValueError('expected a 1-D array')
if check.dtype.char in 'GFD': # complex
raise TypeError('Only real arrays currently supported')
if d.size != e.size + 1:
raise ValueError('d (%s) must have one more element than e (%s)'
% (d.size, e.size))
select, vl, vu, il, iu, _ = _check_select(
select, select_range, 0, d.size)
if not isinstance(lapack_driver, str):
raise TypeError('lapack_driver must be str')
drivers = ('auto', 'stemr', 'sterf', 'stebz', 'stev')
if lapack_driver not in drivers:
raise ValueError('lapack_driver must be one of %s, got %s'
% (drivers, lapack_driver))
if lapack_driver == 'auto':
lapack_driver = 'stemr' if select == 0 else 'stebz'
func, = get_lapack_funcs((lapack_driver,), (d, e))
compute_v = not eigvals_only
if lapack_driver == 'sterf':
if select != 0:
raise ValueError('sterf can only be used when select == "a"')
if not eigvals_only:
raise ValueError('sterf can only be used when eigvals_only is '
'True')
w, info = func(d, e)
m = len(w)
elif lapack_driver == 'stev':
if select != 0:
raise ValueError('stev can only be used when select == "a"')
w, v, info = func(d, e, compute_v=compute_v)
m = len(w)
elif lapack_driver == 'stebz':
tol = float(tol)
internal_name = 'stebz'
stebz, = get_lapack_funcs((internal_name,), (d, e))
# If getting eigenvectors, needs to be block-ordered (B) instead of
# matrix-ordered (E), and we will reorder later
order = 'E' if eigvals_only else 'B'
m, w, iblock, isplit, info = stebz(d, e, select, vl, vu, il, iu, tol,
order)
else: # 'stemr'
# ?STEMR annoyingly requires size N instead of N-1
e_ = empty(e.size+1, e.dtype)
e_[:-1] = e
stemr_lwork, = get_lapack_funcs(('stemr_lwork',), (d, e))
lwork, liwork, info = stemr_lwork(d, e_, select, vl, vu, il, iu,
compute_v=compute_v)
_check_info(info, 'stemr_lwork')
m, w, v, info = func(d, e_, select, vl, vu, il, iu,
compute_v=compute_v, lwork=lwork, liwork=liwork)
_check_info(info, lapack_driver + ' (eigh_tridiagonal)')
w = w[:m]
if eigvals_only:
return w
else:
# Do we still need to compute the eigenvalues?
if lapack_driver == 'stebz':
func, = get_lapack_funcs(('stein',), (d, e))
v, info = func(d, e, w, iblock, isplit)
_check_info(info, 'stein (eigh_tridiagonal)',
positive='%d eigenvectors failed to converge')
# Convert block-order to matrix-order
order = argsort(w)
w, v = w[order], v[:, order]
else:
v = v[:, :m]
return w, v
def _check_info(info, driver, positive='did not converge (LAPACK info=%d)'):
"""Check info return value."""
if info < 0:
raise ValueError('illegal value in argument %d of internal %s'
% (-info, driver))
if info > 0 and positive:
raise LinAlgError(("%s " + positive) % (driver, info,))
def hessenberg(a, calc_q=False, overwrite_a=False, check_finite=True):
"""
Compute Hessenberg form of a matrix.
The Hessenberg decomposition is::
A = Q H Q^H
where `Q` is unitary/orthogonal and `H` has only zero elements below
the first sub-diagonal.
Parameters
----------
a : (M, M) array_like
Matrix to bring into Hessenberg form.
calc_q : bool, optional
Whether to compute the transformation matrix. Default is False.
overwrite_a : bool, optional
Whether to overwrite `a`; may improve performance.
Default is False.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
H : (M, M) ndarray
Hessenberg form of `a`.
Q : (M, M) ndarray
Unitary/orthogonal similarity transformation matrix ``A = Q H Q^H``.
Only returned if ``calc_q=True``.
Examples
--------
>>> from scipy.linalg import hessenberg
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]])
>>> H, Q = hessenberg(A, calc_q=True)
>>> H
array([[ 2. , -11.65843866, 1.42005301, 0.25349066],
[ -9.94987437, 14.53535354, -5.31022304, 2.43081618],
[ 0. , -1.83299243, 0.38969961, -0.51527034],
[ 0. , 0. , -3.83189513, 1.07494686]])
>>> np.allclose(Q @ H @ Q.conj().T - A, np.zeros((4, 4)))
True
"""
a1 = _asarray_validated(a, check_finite=check_finite)
if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
raise ValueError('expected square matrix')
overwrite_a = overwrite_a or (_datacopied(a1, a))
# if 2x2 or smaller: already in Hessenberg
if a1.shape[0] <= 2:
if calc_q:
return a1, eye(a1.shape[0])
return a1
gehrd, gebal, gehrd_lwork = get_lapack_funcs(('gehrd', 'gebal',
'gehrd_lwork'), (a1,))
ba, lo, hi, pivscale, info = gebal(a1, permute=0, overwrite_a=overwrite_a)
_check_info(info, 'gebal (hessenberg)', positive=False)
n = len(a1)
lwork = _compute_lwork(gehrd_lwork, ba.shape[0], lo=lo, hi=hi)
hq, tau, info = gehrd(ba, lo=lo, hi=hi, lwork=lwork, overwrite_a=1)
_check_info(info, 'gehrd (hessenberg)', positive=False)
h = numpy.triu(hq, -1)
if not calc_q:
return h
# use orghr/unghr to compute q
orghr, orghr_lwork = get_lapack_funcs(('orghr', 'orghr_lwork'), (a1,))
lwork = _compute_lwork(orghr_lwork, n, lo=lo, hi=hi)
q, info = orghr(a=hq, tau=tau, lo=lo, hi=hi, lwork=lwork, overwrite_a=1)
_check_info(info, 'orghr (hessenberg)', positive=False)
return h, q
def cdf2rdf(w, v):
"""
Converts complex eigenvalues ``w`` and eigenvectors ``v`` to real
eigenvalues in a block diagonal form ``wr`` and the associated real
eigenvectors ``vr``, such that::
vr @ wr = X @ vr
continues to hold, where ``X`` is the original array for which ``w`` and
``v`` are the eigenvalues and eigenvectors.
.. versionadded:: 1.1.0
Parameters
----------
w : (..., M) array_like
Complex or real eigenvalues, an array or stack of arrays
Conjugate pairs must not be interleaved, else the wrong result
will be produced. So ``[1+1j, 1, 1-1j]`` will give a correct result,
but ``[1+1j, 2+1j, 1-1j, 2-1j]`` will not.
v : (..., M, M) array_like
Complex or real eigenvectors, a square array or stack of square arrays.
Returns
-------
wr : (..., M, M) ndarray
Real diagonal block form of eigenvalues
vr : (..., M, M) ndarray
Real eigenvectors associated with ``wr``
See Also
--------
eig : Eigenvalues and right eigenvectors for non-symmetric arrays
rsf2csf : Convert real Schur form to complex Schur form
Notes
-----
``w``, ``v`` must be the eigenstructure for some *real* matrix ``X``.
For example, obtained by ``w, v = scipy.linalg.eig(X)`` or
``w, v = numpy.linalg.eig(X)`` in which case ``X`` can also represent
stacked arrays.
.. versionadded:: 1.1.0
Examples
--------
>>> X = np.array([[1, 2, 3], [0, 4, 5], [0, -5, 4]])
>>> X
array([[ 1, 2, 3],
[ 0, 4, 5],
[ 0, -5, 4]])
>>> from scipy import linalg
>>> w, v = linalg.eig(X)
>>> w
array([ 1.+0.j, 4.+5.j, 4.-5.j])
>>> v
array([[ 1.00000+0.j , -0.01906-0.40016j, -0.01906+0.40016j],
[ 0.00000+0.j , 0.00000-0.64788j, 0.00000+0.64788j],
[ 0.00000+0.j , 0.64788+0.j , 0.64788-0.j ]])
>>> wr, vr = linalg.cdf2rdf(w, v)
>>> wr
array([[ 1., 0., 0.],
[ 0., 4., 5.],
[ 0., -5., 4.]])
>>> vr
array([[ 1. , 0.40016, -0.01906],
[ 0. , 0.64788, 0. ],
[ 0. , 0. , 0.64788]])
>>> vr @ wr
array([[ 1. , 1.69593, 1.9246 ],
[ 0. , 2.59153, 3.23942],
[ 0. , -3.23942, 2.59153]])
>>> X @ vr
array([[ 1. , 1.69593, 1.9246 ],
[ 0. , 2.59153, 3.23942],
[ 0. , -3.23942, 2.59153]])
"""
w, v = _asarray_validated(w), _asarray_validated(v)
# check dimensions
if w.ndim < 1:
raise ValueError('expected w to be at least 1D')
if v.ndim < 2:
raise ValueError('expected v to be at least 2D')
if v.ndim != w.ndim + 1:
raise ValueError('expected eigenvectors array to have exactly one '
'dimension more than eigenvalues array')
# check shapes
n = w.shape[-1]
M = w.shape[:-1]
if v.shape[-2] != v.shape[-1]:
raise ValueError('expected v to be a square matrix or stacked square '
'matrices: v.shape[-2] = v.shape[-1]')
if v.shape[-1] != n:
raise ValueError('expected the same number of eigenvalues as '
'eigenvectors')
# get indices for each first pair of complex eigenvalues
complex_mask = iscomplex(w)
n_complex = complex_mask.sum(axis=-1)
# check if all complex eigenvalues have conjugate pairs
if not (n_complex % 2 == 0).all():
raise ValueError('expected complex-conjugate pairs of eigenvalues')
# find complex indices
idx = nonzero(complex_mask)
idx_stack = idx[:-1]
idx_elem = idx[-1]
# filter them to conjugate indices, assuming pairs are not interleaved
j = idx_elem[0::2]
k = idx_elem[1::2]
stack_ind = ()
for i in idx_stack:
# should never happen, assuming nonzero orders by the last axis
assert (i[0::2] == i[1::2]).all(),\
"Conjugate pair spanned different arrays!"
stack_ind += (i[0::2],)
# all eigenvalues to diagonal form
wr = zeros(M + (n, n), dtype=w.real.dtype)
di = range(n)
wr[..., di, di] = w.real
# complex eigenvalues to real block diagonal form
wr[stack_ind + (j, k)] = w[stack_ind + (j,)].imag
wr[stack_ind + (k, j)] = w[stack_ind + (k,)].imag
# compute real eigenvectors associated with real block diagonal eigenvalues
u = zeros(M + (n, n), dtype=numpy.cdouble)
u[..., di, di] = 1.0
u[stack_ind + (j, j)] = 0.5j
u[stack_ind + (j, k)] = 0.5
u[stack_ind + (k, j)] = -0.5j
u[stack_ind + (k, k)] = 0.5
# multipy matrices v and u (equivalent to v @ u)
vr = einsum('...ij,...jk->...ik', v, u).real
return wr, vr