_bsplines.py
33.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
import functools
import operator
import numpy as np
from numpy.core.multiarray import normalize_axis_index
from scipy.linalg import (get_lapack_funcs, LinAlgError,
cholesky_banded, cho_solve_banded)
from . import _bspl
from . import _fitpack_impl
from . import _fitpack as _dierckx
from scipy._lib._util import prod
__all__ = ["BSpline", "make_interp_spline", "make_lsq_spline"]
def _get_dtype(dtype):
"""Return np.complex128 for complex dtypes, np.float64 otherwise."""
if np.issubdtype(dtype, np.complexfloating):
return np.complex_
else:
return np.float_
def _as_float_array(x, check_finite=False):
"""Convert the input into a C contiguous float array.
NB: Upcasts half- and single-precision floats to double precision.
"""
x = np.ascontiguousarray(x)
dtyp = _get_dtype(x.dtype)
x = x.astype(dtyp, copy=False)
if check_finite and not np.isfinite(x).all():
raise ValueError("Array must not contain infs or nans.")
return x
class BSpline(object):
r"""Univariate spline in the B-spline basis.
.. math::
S(x) = \sum_{j=0}^{n-1} c_j B_{j, k; t}(x)
where :math:`B_{j, k; t}` are B-spline basis functions of degree `k`
and knots `t`.
Parameters
----------
t : ndarray, shape (n+k+1,)
knots
c : ndarray, shape (>=n, ...)
spline coefficients
k : int
B-spline degree
extrapolate : bool or 'periodic', optional
whether to extrapolate beyond the base interval, ``t[k] .. t[n]``,
or to return nans.
If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.
If 'periodic', periodic extrapolation is used.
Default is True.
axis : int, optional
Interpolation axis. Default is zero.
Attributes
----------
t : ndarray
knot vector
c : ndarray
spline coefficients
k : int
spline degree
extrapolate : bool
If True, extrapolates the first and last polynomial pieces of b-spline
functions active on the base interval.
axis : int
Interpolation axis.
tck : tuple
A read-only equivalent of ``(self.t, self.c, self.k)``
Methods
-------
__call__
basis_element
derivative
antiderivative
integrate
construct_fast
Notes
-----
B-spline basis elements are defined via
.. math::
B_{i, 0}(x) = 1, \textrm{if $t_i \le x < t_{i+1}$, otherwise $0$,}
B_{i, k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i, k-1}(x)
+ \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1, k-1}(x)
**Implementation details**
- At least ``k+1`` coefficients are required for a spline of degree `k`,
so that ``n >= k+1``. Additional coefficients, ``c[j]`` with
``j > n``, are ignored.
- B-spline basis elements of degree `k` form a partition of unity on the
*base interval*, ``t[k] <= x <= t[n]``.
Examples
--------
Translating the recursive definition of B-splines into Python code, we have:
>>> def B(x, k, i, t):
... if k == 0:
... return 1.0 if t[i] <= x < t[i+1] else 0.0
... if t[i+k] == t[i]:
... c1 = 0.0
... else:
... c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
... if t[i+k+1] == t[i+1]:
... c2 = 0.0
... else:
... c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
... return c1 + c2
>>> def bspline(x, t, c, k):
... n = len(t) - k - 1
... assert (n >= k+1) and (len(c) >= n)
... return sum(c[i] * B(x, k, i, t) for i in range(n))
Note that this is an inefficient (if straightforward) way to
evaluate B-splines --- this spline class does it in an equivalent,
but much more efficient way.
Here we construct a quadratic spline function on the base interval
``2 <= x <= 4`` and compare with the naive way of evaluating the spline:
>>> from scipy.interpolate import BSpline
>>> k = 2
>>> t = [0, 1, 2, 3, 4, 5, 6]
>>> c = [-1, 2, 0, -1]
>>> spl = BSpline(t, c, k)
>>> spl(2.5)
array(1.375)
>>> bspline(2.5, t, c, k)
1.375
Note that outside of the base interval results differ. This is because
`BSpline` extrapolates the first and last polynomial pieces of B-spline
functions active on the base interval.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> xx = np.linspace(1.5, 4.5, 50)
>>> ax.plot(xx, [bspline(x, t, c ,k) for x in xx], 'r-', lw=3, label='naive')
>>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
>>> ax.grid(True)
>>> ax.legend(loc='best')
>>> plt.show()
References
----------
.. [1] Tom Lyche and Knut Morken, Spline methods,
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
.. [2] Carl de Boor, A practical guide to splines, Springer, 2001.
"""
def __init__(self, t, c, k, extrapolate=True, axis=0):
super(BSpline, self).__init__()
self.k = operator.index(k)
self.c = np.asarray(c)
self.t = np.ascontiguousarray(t, dtype=np.float64)
if extrapolate == 'periodic':
self.extrapolate = extrapolate
else:
self.extrapolate = bool(extrapolate)
n = self.t.shape[0] - self.k - 1
axis = normalize_axis_index(axis, self.c.ndim)
# Note that the normalized axis is stored in the object.
self.axis = axis
if axis != 0:
# roll the interpolation axis to be the first one in self.c
# More specifically, the target shape for self.c is (n, ...),
# and axis !=0 means that we have c.shape (..., n, ...)
# ^
# axis
self.c = np.rollaxis(self.c, axis)
if k < 0:
raise ValueError("Spline order cannot be negative.")
if self.t.ndim != 1:
raise ValueError("Knot vector must be one-dimensional.")
if n < self.k + 1:
raise ValueError("Need at least %d knots for degree %d" %
(2*k + 2, k))
if (np.diff(self.t) < 0).any():
raise ValueError("Knots must be in a non-decreasing order.")
if len(np.unique(self.t[k:n+1])) < 2:
raise ValueError("Need at least two internal knots.")
if not np.isfinite(self.t).all():
raise ValueError("Knots should not have nans or infs.")
if self.c.ndim < 1:
raise ValueError("Coefficients must be at least 1-dimensional.")
if self.c.shape[0] < n:
raise ValueError("Knots, coefficients and degree are inconsistent.")
dt = _get_dtype(self.c.dtype)
self.c = np.ascontiguousarray(self.c, dtype=dt)
@classmethod
def construct_fast(cls, t, c, k, extrapolate=True, axis=0):
"""Construct a spline without making checks.
Accepts same parameters as the regular constructor. Input arrays
`t` and `c` must of correct shape and dtype.
"""
self = object.__new__(cls)
self.t, self.c, self.k = t, c, k
self.extrapolate = extrapolate
self.axis = axis
return self
@property
def tck(self):
"""Equivalent to ``(self.t, self.c, self.k)`` (read-only).
"""
return self.t, self.c, self.k
@classmethod
def basis_element(cls, t, extrapolate=True):
"""Return a B-spline basis element ``B(x | t[0], ..., t[k+1])``.
Parameters
----------
t : ndarray, shape (k+1,)
internal knots
extrapolate : bool or 'periodic', optional
whether to extrapolate beyond the base interval, ``t[0] .. t[k+1]``,
or to return nans.
If 'periodic', periodic extrapolation is used.
Default is True.
Returns
-------
basis_element : callable
A callable representing a B-spline basis element for the knot
vector `t`.
Notes
-----
The degree of the B-spline, `k`, is inferred from the length of `t` as
``len(t)-2``. The knot vector is constructed by appending and prepending
``k+1`` elements to internal knots `t`.
Examples
--------
Construct a cubic B-spline:
>>> from scipy.interpolate import BSpline
>>> b = BSpline.basis_element([0, 1, 2, 3, 4])
>>> k = b.k
>>> b.t[k:-k]
array([ 0., 1., 2., 3., 4.])
>>> k
3
Construct a quadratic B-spline on ``[0, 1, 1, 2]``, and compare
to its explicit form:
>>> t = [-1, 0, 1, 1, 2]
>>> b = BSpline.basis_element(t[1:])
>>> def f(x):
... return np.where(x < 1, x*x, (2. - x)**2)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> x = np.linspace(0, 2, 51)
>>> ax.plot(x, b(x), 'g', lw=3)
>>> ax.plot(x, f(x), 'r', lw=8, alpha=0.4)
>>> ax.grid(True)
>>> plt.show()
"""
k = len(t) - 2
t = _as_float_array(t)
t = np.r_[(t[0]-1,) * k, t, (t[-1]+1,) * k]
c = np.zeros_like(t)
c[k] = 1.
return cls.construct_fast(t, c, k, extrapolate)
def __call__(self, x, nu=0, extrapolate=None):
"""
Evaluate a spline function.
Parameters
----------
x : array_like
points to evaluate the spline at.
nu: int, optional
derivative to evaluate (default is 0).
extrapolate : bool or 'periodic', optional
whether to extrapolate based on the first and last intervals
or return nans. If 'periodic', periodic extrapolation is used.
Default is `self.extrapolate`.
Returns
-------
y : array_like
Shape is determined by replacing the interpolation axis
in the coefficient array with the shape of `x`.
"""
if extrapolate is None:
extrapolate = self.extrapolate
x = np.asarray(x)
x_shape, x_ndim = x.shape, x.ndim
x = np.ascontiguousarray(x.ravel(), dtype=np.float_)
# With periodic extrapolation we map x to the segment
# [self.t[k], self.t[n]].
if extrapolate == 'periodic':
n = self.t.size - self.k - 1
x = self.t[self.k] + (x - self.t[self.k]) % (self.t[n] -
self.t[self.k])
extrapolate = False
out = np.empty((len(x), prod(self.c.shape[1:])), dtype=self.c.dtype)
self._ensure_c_contiguous()
self._evaluate(x, nu, extrapolate, out)
out = out.reshape(x_shape + self.c.shape[1:])
if self.axis != 0:
# transpose to move the calculated values to the interpolation axis
l = list(range(out.ndim))
l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:]
out = out.transpose(l)
return out
def _evaluate(self, xp, nu, extrapolate, out):
_bspl.evaluate_spline(self.t, self.c.reshape(self.c.shape[0], -1),
self.k, xp, nu, extrapolate, out)
def _ensure_c_contiguous(self):
"""
c and t may be modified by the user. The Cython code expects
that they are C contiguous.
"""
if not self.t.flags.c_contiguous:
self.t = self.t.copy()
if not self.c.flags.c_contiguous:
self.c = self.c.copy()
def derivative(self, nu=1):
"""Return a B-spline representing the derivative.
Parameters
----------
nu : int, optional
Derivative order.
Default is 1.
Returns
-------
b : BSpline object
A new instance representing the derivative.
See Also
--------
splder, splantider
"""
c = self.c
# pad the c array if needed
ct = len(self.t) - len(c)
if ct > 0:
c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
tck = _fitpack_impl.splder((self.t, c, self.k), nu)
return self.construct_fast(*tck, extrapolate=self.extrapolate,
axis=self.axis)
def antiderivative(self, nu=1):
"""Return a B-spline representing the antiderivative.
Parameters
----------
nu : int, optional
Antiderivative order. Default is 1.
Returns
-------
b : BSpline object
A new instance representing the antiderivative.
Notes
-----
If antiderivative is computed and ``self.extrapolate='periodic'``,
it will be set to False for the returned instance. This is done because
the antiderivative is no longer periodic and its correct evaluation
outside of the initially given x interval is difficult.
See Also
--------
splder, splantider
"""
c = self.c
# pad the c array if needed
ct = len(self.t) - len(c)
if ct > 0:
c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
tck = _fitpack_impl.splantider((self.t, c, self.k), nu)
if self.extrapolate == 'periodic':
extrapolate = False
else:
extrapolate = self.extrapolate
return self.construct_fast(*tck, extrapolate=extrapolate,
axis=self.axis)
def integrate(self, a, b, extrapolate=None):
"""Compute a definite integral of the spline.
Parameters
----------
a : float
Lower limit of integration.
b : float
Upper limit of integration.
extrapolate : bool or 'periodic', optional
whether to extrapolate beyond the base interval,
``t[k] .. t[-k-1]``, or take the spline to be zero outside of the
base interval. If 'periodic', periodic extrapolation is used.
If None (default), use `self.extrapolate`.
Returns
-------
I : array_like
Definite integral of the spline over the interval ``[a, b]``.
Examples
--------
Construct the linear spline ``x if x < 1 else 2 - x`` on the base
interval :math:`[0, 2]`, and integrate it
>>> from scipy.interpolate import BSpline
>>> b = BSpline.basis_element([0, 1, 2])
>>> b.integrate(0, 1)
array(0.5)
If the integration limits are outside of the base interval, the result
is controlled by the `extrapolate` parameter
>>> b.integrate(-1, 1)
array(0.0)
>>> b.integrate(-1, 1, extrapolate=False)
array(0.5)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.grid(True)
>>> ax.axvline(0, c='r', lw=5, alpha=0.5) # base interval
>>> ax.axvline(2, c='r', lw=5, alpha=0.5)
>>> xx = [-1, 1, 2]
>>> ax.plot(xx, b(xx))
>>> plt.show()
"""
if extrapolate is None:
extrapolate = self.extrapolate
# Prepare self.t and self.c.
self._ensure_c_contiguous()
# Swap integration bounds if needed.
sign = 1
if b < a:
a, b = b, a
sign = -1
n = self.t.size - self.k - 1
if extrapolate != "periodic" and not extrapolate:
# Shrink the integration interval, if needed.
a = max(a, self.t[self.k])
b = min(b, self.t[n])
if self.c.ndim == 1:
# Fast path: use FITPACK's routine
# (cf _fitpack_impl.splint).
t, c, k = self.tck
integral, wrk = _dierckx._splint(t, c, k, a, b)
return integral * sign
out = np.empty((2, prod(self.c.shape[1:])), dtype=self.c.dtype)
# Compute the antiderivative.
c = self.c
ct = len(self.t) - len(c)
if ct > 0:
c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
ta, ca, ka = _fitpack_impl.splantider((self.t, c, self.k), 1)
if extrapolate == 'periodic':
# Split the integral into the part over period (can be several
# of them) and the remaining part.
ts, te = self.t[self.k], self.t[n]
period = te - ts
interval = b - a
n_periods, left = divmod(interval, period)
if n_periods > 0:
# Evaluate the difference of antiderivatives.
x = np.asarray([ts, te], dtype=np.float_)
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
ka, x, 0, False, out)
integral = out[1] - out[0]
integral *= n_periods
else:
integral = np.zeros((1, prod(self.c.shape[1:])),
dtype=self.c.dtype)
# Map a to [ts, te], b is always a + left.
a = ts + (a - ts) % period
b = a + left
# If b <= te then we need to integrate over [a, b], otherwise
# over [a, te] and from xs to what is remained.
if b <= te:
x = np.asarray([a, b], dtype=np.float_)
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
ka, x, 0, False, out)
integral += out[1] - out[0]
else:
x = np.asarray([a, te], dtype=np.float_)
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
ka, x, 0, False, out)
integral += out[1] - out[0]
x = np.asarray([ts, ts + b - te], dtype=np.float_)
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
ka, x, 0, False, out)
integral += out[1] - out[0]
else:
# Evaluate the difference of antiderivatives.
x = np.asarray([a, b], dtype=np.float_)
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
ka, x, 0, extrapolate, out)
integral = out[1] - out[0]
integral *= sign
return integral.reshape(ca.shape[1:])
#################################
# Interpolating spline helpers #
#################################
def _not_a_knot(x, k):
"""Given data x, construct the knot vector w/ not-a-knot BC.
cf de Boor, XIII(12)."""
x = np.asarray(x)
if k % 2 != 1:
raise ValueError("Odd degree for now only. Got %s." % k)
m = (k - 1) // 2
t = x[m+1:-m-1]
t = np.r_[(x[0],)*(k+1), t, (x[-1],)*(k+1)]
return t
def _augknt(x, k):
"""Construct a knot vector appropriate for the order-k interpolation."""
return np.r_[(x[0],)*k, x, (x[-1],)*k]
def _convert_string_aliases(deriv, target_shape):
if isinstance(deriv, str):
if deriv == "clamped":
deriv = [(1, np.zeros(target_shape))]
elif deriv == "natural":
deriv = [(2, np.zeros(target_shape))]
else:
raise ValueError("Unknown boundary condition : %s" % deriv)
return deriv
def _process_deriv_spec(deriv):
if deriv is not None:
try:
ords, vals = zip(*deriv)
except TypeError:
msg = ("Derivatives, `bc_type`, should be specified as a pair of "
"iterables of pairs of (order, value).")
raise ValueError(msg)
else:
ords, vals = [], []
return np.atleast_1d(ords, vals)
def make_interp_spline(x, y, k=3, t=None, bc_type=None, axis=0,
check_finite=True):
"""Compute the (coefficients of) interpolating B-spline.
Parameters
----------
x : array_like, shape (n,)
Abscissas.
y : array_like, shape (n, ...)
Ordinates.
k : int, optional
B-spline degree. Default is cubic, k=3.
t : array_like, shape (nt + k + 1,), optional.
Knots.
The number of knots needs to agree with the number of datapoints and
the number of derivatives at the edges. Specifically, ``nt - n`` must
equal ``len(deriv_l) + len(deriv_r)``.
bc_type : 2-tuple or None
Boundary conditions.
Default is None, which means choosing the boundary conditions
automatically. Otherwise, it must be a length-two tuple where the first
element sets the boundary conditions at ``x[0]`` and the second
element sets the boundary conditions at ``x[-1]``. Each of these must
be an iterable of pairs ``(order, value)`` which gives the values of
derivatives of specified orders at the given edge of the interpolation
interval.
Alternatively, the following string aliases are recognized:
* ``"clamped"``: The first derivatives at the ends are zero. This is
equivalent to ``bc_type=([(1, 0.0)], [(1, 0.0)])``.
* ``"natural"``: The second derivatives at ends are zero. This is
equivalent to ``bc_type=([(2, 0.0)], [(2, 0.0)])``.
* ``"not-a-knot"`` (default): The first and second segments are the same
polynomial. This is equivalent to having ``bc_type=None``.
axis : int, optional
Interpolation axis. Default is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default is True.
Returns
-------
b : a BSpline object of the degree ``k`` and with knots ``t``.
Examples
--------
Use cubic interpolation on Chebyshev nodes:
>>> def cheb_nodes(N):
... jj = 2.*np.arange(N) + 1
... x = np.cos(np.pi * jj / 2 / N)[::-1]
... return x
>>> x = cheb_nodes(20)
>>> y = np.sqrt(1 - x**2)
>>> from scipy.interpolate import BSpline, make_interp_spline
>>> b = make_interp_spline(x, y)
>>> np.allclose(b(x), y)
True
Note that the default is a cubic spline with a not-a-knot boundary condition
>>> b.k
3
Here we use a 'natural' spline, with zero 2nd derivatives at edges:
>>> l, r = [(2, 0.0)], [(2, 0.0)]
>>> b_n = make_interp_spline(x, y, bc_type=(l, r)) # or, bc_type="natural"
>>> np.allclose(b_n(x), y)
True
>>> x0, x1 = x[0], x[-1]
>>> np.allclose([b_n(x0, 2), b_n(x1, 2)], [0, 0])
True
Interpolation of parametric curves is also supported. As an example, we
compute a discretization of a snail curve in polar coordinates
>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.3 + np.cos(phi)
>>> x, y = r*np.cos(phi), r*np.sin(phi) # convert to Cartesian coordinates
Build an interpolating curve, parameterizing it by the angle
>>> from scipy.interpolate import make_interp_spline
>>> spl = make_interp_spline(phi, np.c_[x, y])
Evaluate the interpolant on a finer grid (note that we transpose the result
to unpack it into a pair of x- and y-arrays)
>>> phi_new = np.linspace(0, 2.*np.pi, 100)
>>> x_new, y_new = spl(phi_new).T
Plot the result
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'o')
>>> plt.plot(x_new, y_new, '-')
>>> plt.show()
See Also
--------
BSpline : base class representing the B-spline objects
CubicSpline : a cubic spline in the polynomial basis
make_lsq_spline : a similar factory function for spline fitting
UnivariateSpline : a wrapper over FITPACK spline fitting routines
splrep : a wrapper over FITPACK spline fitting routines
"""
# convert string aliases for the boundary conditions
if bc_type is None or bc_type == 'not-a-knot':
deriv_l, deriv_r = None, None
elif isinstance(bc_type, str):
deriv_l, deriv_r = bc_type, bc_type
else:
try:
deriv_l, deriv_r = bc_type
except TypeError:
raise ValueError("Unknown boundary condition: %s" % bc_type)
y = np.asarray(y)
axis = normalize_axis_index(axis, y.ndim)
# special-case k=0 right away
if k == 0:
if any(_ is not None for _ in (t, deriv_l, deriv_r)):
raise ValueError("Too much info for k=0: t and bc_type can only "
"be None.")
x = _as_float_array(x, check_finite)
t = np.r_[x, x[-1]]
c = np.asarray(y)
c = np.rollaxis(c, axis)
c = np.ascontiguousarray(c, dtype=_get_dtype(c.dtype))
return BSpline.construct_fast(t, c, k, axis=axis)
# special-case k=1 (e.g., Lyche and Morken, Eq.(2.16))
if k == 1 and t is None:
if not (deriv_l is None and deriv_r is None):
raise ValueError("Too much info for k=1: bc_type can only be None.")
x = _as_float_array(x, check_finite)
t = np.r_[x[0], x, x[-1]]
c = np.asarray(y)
c = np.rollaxis(c, axis)
c = np.ascontiguousarray(c, dtype=_get_dtype(c.dtype))
return BSpline.construct_fast(t, c, k, axis=axis)
x = _as_float_array(x, check_finite)
y = _as_float_array(y, check_finite)
k = operator.index(k)
# come up with a sensible knot vector, if needed
if t is None:
if deriv_l is None and deriv_r is None:
if k == 2:
# OK, it's a bit ad hoc: Greville sites + omit
# 2nd and 2nd-to-last points, a la not-a-knot
t = (x[1:] + x[:-1]) / 2.
t = np.r_[(x[0],)*(k+1),
t[1:-1],
(x[-1],)*(k+1)]
else:
t = _not_a_knot(x, k)
else:
t = _augknt(x, k)
t = _as_float_array(t, check_finite)
y = np.rollaxis(y, axis) # now internally interp axis is zero
if x.ndim != 1 or np.any(x[1:] < x[:-1]):
raise ValueError("Expect x to be a 1-D sorted array_like.")
if np.any(x[1:] == x[:-1]):
raise ValueError("Expect x to not have duplicates")
if k < 0:
raise ValueError("Expect non-negative k.")
if t.ndim != 1 or np.any(t[1:] < t[:-1]):
raise ValueError("Expect t to be a 1-D sorted array_like.")
if x.size != y.shape[0]:
raise ValueError('x and y are incompatible.')
if t.size < x.size + k + 1:
raise ValueError('Got %d knots, need at least %d.' %
(t.size, x.size + k + 1))
if (x[0] < t[k]) or (x[-1] > t[-k]):
raise ValueError('Out of bounds w/ x = %s.' % x)
# Here : deriv_l, r = [(nu, value), ...]
deriv_l = _convert_string_aliases(deriv_l, y.shape[1:])
deriv_l_ords, deriv_l_vals = _process_deriv_spec(deriv_l)
nleft = deriv_l_ords.shape[0]
deriv_r = _convert_string_aliases(deriv_r, y.shape[1:])
deriv_r_ords, deriv_r_vals = _process_deriv_spec(deriv_r)
nright = deriv_r_ords.shape[0]
# have `n` conditions for `nt` coefficients; need nt-n derivatives
n = x.size
nt = t.size - k - 1
if nt - n != nleft + nright:
raise ValueError("The number of derivatives at boundaries does not "
"match: expected %s, got %s+%s" % (nt-n, nleft, nright))
# set up the LHS: the collocation matrix + derivatives at boundaries
kl = ku = k
ab = np.zeros((2*kl + ku + 1, nt), dtype=np.float_, order='F')
_bspl._colloc(x, t, k, ab, offset=nleft)
if nleft > 0:
_bspl._handle_lhs_derivatives(t, k, x[0], ab, kl, ku, deriv_l_ords)
if nright > 0:
_bspl._handle_lhs_derivatives(t, k, x[-1], ab, kl, ku, deriv_r_ords,
offset=nt-nright)
# set up the RHS: values to interpolate (+ derivative values, if any)
extradim = prod(y.shape[1:])
rhs = np.empty((nt, extradim), dtype=y.dtype)
if nleft > 0:
rhs[:nleft] = deriv_l_vals.reshape(-1, extradim)
rhs[nleft:nt - nright] = y.reshape(-1, extradim)
if nright > 0:
rhs[nt - nright:] = deriv_r_vals.reshape(-1, extradim)
# solve Ab @ x = rhs; this is the relevant part of linalg.solve_banded
if check_finite:
ab, rhs = map(np.asarray_chkfinite, (ab, rhs))
gbsv, = get_lapack_funcs(('gbsv',), (ab, rhs))
lu, piv, c, info = gbsv(kl, ku, ab, rhs,
overwrite_ab=True, overwrite_b=True)
if info > 0:
raise LinAlgError("Collocation matix is singular.")
elif info < 0:
raise ValueError('illegal value in %d-th argument of internal gbsv' % -info)
c = np.ascontiguousarray(c.reshape((nt,) + y.shape[1:]))
return BSpline.construct_fast(t, c, k, axis=axis)
def make_lsq_spline(x, y, t, k=3, w=None, axis=0, check_finite=True):
r"""Compute the (coefficients of) an LSQ B-spline.
The result is a linear combination
.. math::
S(x) = \sum_j c_j B_j(x; t)
of the B-spline basis elements, :math:`B_j(x; t)`, which minimizes
.. math::
\sum_{j} \left( w_j \times (S(x_j) - y_j) \right)^2
Parameters
----------
x : array_like, shape (m,)
Abscissas.
y : array_like, shape (m, ...)
Ordinates.
t : array_like, shape (n + k + 1,).
Knots.
Knots and data points must satisfy Schoenberg-Whitney conditions.
k : int, optional
B-spline degree. Default is cubic, k=3.
w : array_like, shape (n,), optional
Weights for spline fitting. Must be positive. If ``None``,
then weights are all equal.
Default is ``None``.
axis : int, optional
Interpolation axis. Default is zero.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Default is True.
Returns
-------
b : a BSpline object of the degree `k` with knots `t`.
Notes
-----
The number of data points must be larger than the spline degree `k`.
Knots `t` must satisfy the Schoenberg-Whitney conditions,
i.e., there must be a subset of data points ``x[j]`` such that
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
Examples
--------
Generate some noisy data:
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
Now fit a smoothing cubic spline with a pre-defined internal knots.
Here we make the knot vector (k+1)-regular by adding boundary knots:
>>> from scipy.interpolate import make_lsq_spline, BSpline
>>> t = [-1, 0, 1]
>>> k = 3
>>> t = np.r_[(x[0],)*(k+1),
... t,
... (x[-1],)*(k+1)]
>>> spl = make_lsq_spline(x, y, t, k)
For comparison, we also construct an interpolating spline for the same
set of data:
>>> from scipy.interpolate import make_interp_spline
>>> spl_i = make_interp_spline(x, y)
Plot both:
>>> import matplotlib.pyplot as plt
>>> xs = np.linspace(-3, 3, 100)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3, label='LSQ spline')
>>> plt.plot(xs, spl_i(xs), 'b-', lw=3, alpha=0.7, label='interp spline')
>>> plt.legend(loc='best')
>>> plt.show()
**NaN handling**: If the input arrays contain ``nan`` values, the result is
not useful since the underlying spline fitting routines cannot deal with
``nan``. A workaround is to use zero weights for not-a-number data points:
>>> y[8] = np.nan
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> tck = make_lsq_spline(x, y, t, w=~w)
Notice the need to replace a ``nan`` by a numerical value (precise value
does not matter as long as the corresponding weight is zero.)
See Also
--------
BSpline : base class representing the B-spline objects
make_interp_spline : a similar factory function for interpolating splines
LSQUnivariateSpline : a FITPACK-based spline fitting routine
splrep : a FITPACK-based fitting routine
"""
x = _as_float_array(x, check_finite)
y = _as_float_array(y, check_finite)
t = _as_float_array(t, check_finite)
if w is not None:
w = _as_float_array(w, check_finite)
else:
w = np.ones_like(x)
k = operator.index(k)
axis = normalize_axis_index(axis, y.ndim)
y = np.rollaxis(y, axis) # now internally interp axis is zero
if x.ndim != 1 or np.any(x[1:] - x[:-1] <= 0):
raise ValueError("Expect x to be a 1-D sorted array_like.")
if x.shape[0] < k+1:
raise ValueError("Need more x points.")
if k < 0:
raise ValueError("Expect non-negative k.")
if t.ndim != 1 or np.any(t[1:] - t[:-1] < 0):
raise ValueError("Expect t to be a 1-D sorted array_like.")
if x.size != y.shape[0]:
raise ValueError('x & y are incompatible.')
if k > 0 and np.any((x < t[k]) | (x > t[-k])):
raise ValueError('Out of bounds w/ x = %s.' % x)
if x.size != w.size:
raise ValueError('Incompatible weights.')
# number of coefficients
n = t.size - k - 1
# construct A.T @ A and rhs with A the collocation matrix, and
# rhs = A.T @ y for solving the LSQ problem ``A.T @ A @ c = A.T @ y``
lower = True
extradim = prod(y.shape[1:])
ab = np.zeros((k+1, n), dtype=np.float_, order='F')
rhs = np.zeros((n, extradim), dtype=y.dtype, order='F')
_bspl._norm_eq_lsq(x, t, k,
y.reshape(-1, extradim),
w,
ab, rhs)
rhs = rhs.reshape((n,) + y.shape[1:])
# have observation matrix & rhs, can solve the LSQ problem
cho_decomp = cholesky_banded(ab, overwrite_ab=True, lower=lower,
check_finite=check_finite)
c = cho_solve_banded((cho_decomp, lower), rhs, overwrite_b=True,
check_finite=check_finite)
c = np.ascontiguousarray(c)
return BSpline.construct_fast(t, c, k, axis=axis)