basic.py
9.61 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
Discrete Fourier Transforms - basic.py
"""
import numpy as np
import functools
from . import pypocketfft as pfft
from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied,
_fix_shape, _fix_shape_1d, _normalization,
_workers)
def c2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None):
""" Return discrete Fourier transform of real or complex sequence. """
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
overwrite_x = overwrite_x or _datacopied(tmp, x)
norm = _normalization(norm, forward)
workers = _workers(workers)
if n is not None:
tmp, copied = _fix_shape_1d(tmp, n, axis)
overwrite_x = overwrite_x or copied
elif tmp.shape[axis] < 1:
raise ValueError("invalid number of data points ({0}) specified"
.format(tmp.shape[axis]))
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
return pfft.c2c(tmp, (axis,), forward, norm, out, workers)
fft = functools.partial(c2c, True)
fft.__name__ = 'fft'
ifft = functools.partial(c2c, False)
ifft.__name__ = 'ifft'
def r2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""
Discrete Fourier transform of a real sequence.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
norm = _normalization(norm, forward)
workers = _workers(workers)
if not np.isrealobj(tmp):
raise TypeError("x must be a real sequence")
if n is not None:
tmp, _ = _fix_shape_1d(tmp, n, axis)
elif tmp.shape[axis] < 1:
raise ValueError("invalid number of data points ({0}) specified"
.format(tmp.shape[axis]))
# Note: overwrite_x is not utilised
return pfft.r2c(tmp, (axis,), forward, norm, None, workers)
rfft = functools.partial(r2c, True)
rfft.__name__ = 'rfft'
ihfft = functools.partial(r2c, False)
ihfft.__name__ = 'ihfft'
def c2r(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""
Return inverse discrete Fourier transform of real sequence x.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
norm = _normalization(norm, forward)
workers = _workers(workers)
# TODO: Optimize for hermitian and real?
if np.isrealobj(tmp):
tmp = tmp + 0.j
# Last axis utilizes hermitian symmetry
if n is None:
n = (tmp.shape[axis] - 1) * 2
if n < 1:
raise ValueError("Invalid number of data points ({0}) specified"
.format(n))
else:
tmp, _ = _fix_shape_1d(tmp, (n//2) + 1, axis)
# Note: overwrite_x is not utilized
return pfft.c2r(tmp, (axis,), n, forward, norm, None, workers)
hfft = functools.partial(c2r, True)
hfft.__name__ = 'hfft'
irfft = functools.partial(c2r, False)
irfft.__name__ = 'irfft'
def fft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete Fourier transform.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return fftn(x, s, axes, norm, overwrite_x, workers)
def ifft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete inverse Fourier transform of real or complex sequence.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return ifftn(x, s, axes, norm, overwrite_x, workers)
def rfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete Fourier transform of a real sequence
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return rfftn(x, s, axes, norm, overwrite_x, workers)
def irfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete inverse Fourier transform of a real sequence
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return irfftn(x, s, axes, norm, overwrite_x, workers)
def hfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete Fourier transform of a Hermitian sequence
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return hfftn(x, s, axes, norm, overwrite_x, workers)
def ihfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
*, plan=None):
"""
2-D discrete inverse Fourier transform of a Hermitian sequence
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
return ihfftn(x, s, axes, norm, overwrite_x, workers)
def c2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""
Return multidimensional discrete Fourier transform.
"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
overwrite_x = overwrite_x or _datacopied(tmp, x)
workers = _workers(workers)
if len(axes) == 0:
return x
tmp, copied = _fix_shape(tmp, shape, axes)
overwrite_x = overwrite_x or copied
norm = _normalization(norm, forward)
out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
return pfft.c2c(tmp, axes, forward, norm, out, workers)
fftn = functools.partial(c2cn, True)
fftn.__name__ = 'fftn'
ifftn = functools.partial(c2cn, False)
ifftn.__name__ = 'ifftn'
def r2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""Return multidimensional discrete Fourier transform of real input"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
if not np.isrealobj(tmp):
raise TypeError("x must be a real sequence")
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
tmp, _ = _fix_shape(tmp, shape, axes)
norm = _normalization(norm, forward)
workers = _workers(workers)
if len(axes) == 0:
raise ValueError("at least 1 axis must be transformed")
# Note: overwrite_x is not utilized
return pfft.r2c(tmp, axes, forward, norm, None, workers)
rfftn = functools.partial(r2cn, True)
rfftn.__name__ = 'rfftn'
ihfftn = functools.partial(r2cn, False)
ihfftn.__name__ = 'ihfftn'
def c2rn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
workers=None, *, plan=None):
"""Multidimensional inverse discrete fourier transform with real output"""
if plan is not None:
raise NotImplementedError('Passing a precomputed plan is not yet '
'supported by scipy.fft functions')
tmp = _asfarray(x)
# TODO: Optimize for hermitian and real?
if np.isrealobj(tmp):
tmp = tmp + 0.j
noshape = s is None
shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
if len(axes) == 0:
raise ValueError("at least 1 axis must be transformed")
if noshape:
shape[-1] = (x.shape[axes[-1]] - 1) * 2
norm = _normalization(norm, forward)
workers = _workers(workers)
# Last axis utilizes hermitian symmetry
lastsize = shape[-1]
shape[-1] = (shape[-1] // 2) + 1
tmp, _ = _fix_shape(tmp, shape, axes)
# Note: overwrite_x is not utilized
return pfft.c2r(tmp, axes, lastsize, forward, norm, None, workers)
hfftn = functools.partial(c2rn, True)
hfftn.__name__ = 'hfftn'
irfftn = functools.partial(c2rn, False)
irfftn.__name__ = 'irfftn'
def r2r_fftpack(forward, x, n=None, axis=-1, norm=None, overwrite_x=False):
"""FFT of a real sequence, returning fftpack half complex format"""
tmp = _asfarray(x)
overwrite_x = overwrite_x or _datacopied(tmp, x)
norm = _normalization(norm, forward)
workers = _workers(None)
if tmp.dtype.kind == 'c':
raise TypeError('x must be a real sequence')
if n is not None:
tmp, copied = _fix_shape_1d(tmp, n, axis)
overwrite_x = overwrite_x or copied
elif tmp.shape[axis] < 1:
raise ValueError("invalid number of data points ({0}) specified"
.format(tmp.shape[axis]))
out = (tmp if overwrite_x else None)
return pfft.r2r_fftpack(tmp, (axis,), forward, forward, norm, out, workers)
rfft_fftpack = functools.partial(r2r_fftpack, True)
rfft_fftpack.__name__ = 'rfft_fftpack'
irfft_fftpack = functools.partial(r2r_fftpack, False)
irfft_fftpack.__name__ = 'irfft_fftpack'