_testing.py 29.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
"""Testing utilities."""

# Copyright (c) 2011, 2012
# Authors: Pietro Berkes,
#          Andreas Muller
#          Mathieu Blondel
#          Olivier Grisel
#          Arnaud Joly
#          Denis Engemann
#          Giorgio Patrini
#          Thierry Guillemot
# License: BSD 3 clause
import os
import os.path as op
import inspect
import pkgutil
import warnings
import sys
import functools
import tempfile
from subprocess import check_output, STDOUT, CalledProcessError
from subprocess import TimeoutExpired

import scipy as sp
from functools import wraps
from operator import itemgetter
from inspect import signature

import shutil
import atexit
import unittest
from unittest import TestCase

# WindowsError only exist on Windows
try:
    WindowsError
except NameError:
    WindowsError = None

from numpy.testing import assert_allclose
from numpy.testing import assert_almost_equal
from numpy.testing import assert_approx_equal
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from numpy.testing import assert_array_less
import numpy as np
import joblib

import sklearn
from sklearn.base import (BaseEstimator, ClassifierMixin, ClusterMixin,
                          RegressorMixin, TransformerMixin)
from sklearn.utils import deprecated, IS_PYPY, _IS_32BIT


__all__ = ["assert_equal", "assert_not_equal", "assert_raises",
           "assert_raises_regexp",
           "assert_almost_equal", "assert_array_equal",
           "assert_array_almost_equal", "assert_array_less",
           "assert_less", "assert_less_equal",
           "assert_greater", "assert_greater_equal",
           "assert_approx_equal", "assert_allclose",
           "assert_run_python_script", "SkipTest", "all_estimators"]

_dummy = TestCase('__init__')
deprecation_message = (
    'This helper is deprecated in version 0.22 and will be removed in version '
    '0.24. Please use "assert" instead'
)
assert_equal = deprecated(deprecation_message)(_dummy.assertEqual)
assert_not_equal = deprecated(deprecation_message)(_dummy.assertNotEqual)
assert_raises = _dummy.assertRaises
SkipTest = unittest.case.SkipTest
assert_dict_equal = _dummy.assertDictEqual
assert_in = deprecated(deprecation_message)(_dummy.assertIn)
assert_not_in = deprecated(deprecation_message)(_dummy.assertNotIn)
assert_less = deprecated(deprecation_message)(_dummy.assertLess)
assert_greater = deprecated(deprecation_message)(_dummy.assertGreater)
assert_less_equal = deprecated(deprecation_message)(_dummy.assertLessEqual)
assert_greater_equal = deprecated(deprecation_message)(
    _dummy.assertGreaterEqual)

assert_raises_regex = _dummy.assertRaisesRegex
# assert_raises_regexp is deprecated in Python 3.4 in favor of
# assert_raises_regex but lets keep the backward compat in scikit-learn with
# the old name for now
assert_raises_regexp = assert_raises_regex


def assert_warns(warning_class, func, *args, **kw):
    """Test that a certain warning occurs.

    Parameters
    ----------
    warning_class : the warning class
        The class to test for, e.g. UserWarning.

    func : callable
        Callable object to trigger warnings.

    *args : the positional arguments to `func`.

    **kw : the keyword arguments to `func`

    Returns
    -------

    result : the return value of `func`

    """
    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        # Trigger a warning.
        result = func(*args, **kw)
        if hasattr(np, 'FutureWarning'):
            # Filter out numpy-specific warnings in numpy >= 1.9
            w = [e for e in w
                 if e.category is not np.VisibleDeprecationWarning]

        # Verify some things
        if not len(w) > 0:
            raise AssertionError("No warning raised when calling %s"
                                 % func.__name__)

        found = any(warning.category is warning_class for warning in w)
        if not found:
            raise AssertionError("%s did not give warning: %s( is %s)"
                                 % (func.__name__, warning_class, w))
    return result


def assert_warns_message(warning_class, message, func, *args, **kw):
    # very important to avoid uncontrolled state propagation
    """Test that a certain warning occurs and with a certain message.

    Parameters
    ----------
    warning_class : the warning class
        The class to test for, e.g. UserWarning.

    message : str | callable
        The message or a substring of the message to test for. If callable,
        it takes a string as the argument and will trigger an AssertionError
        if the callable returns `False`.

    func : callable
        Callable object to trigger warnings.

    *args : the positional arguments to `func`.

    **kw : the keyword arguments to `func`.

    Returns
    -------
    result : the return value of `func`

    """
    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        if hasattr(np, 'FutureWarning'):
            # Let's not catch the numpy internal DeprecationWarnings
            warnings.simplefilter('ignore', np.VisibleDeprecationWarning)
        # Trigger a warning.
        result = func(*args, **kw)
        # Verify some things
        if not len(w) > 0:
            raise AssertionError("No warning raised when calling %s"
                                 % func.__name__)

        found = [issubclass(warning.category, warning_class) for warning in w]
        if not any(found):
            raise AssertionError("No warning raised for %s with class "
                                 "%s"
                                 % (func.__name__, warning_class))

        message_found = False
        # Checks the message of all warnings belong to warning_class
        for index in [i for i, x in enumerate(found) if x]:
            # substring will match, the entire message with typo won't
            msg = w[index].message  # For Python 3 compatibility
            msg = str(msg.args[0] if hasattr(msg, 'args') else msg)
            if callable(message):  # add support for certain tests
                check_in_message = message
            else:
                def check_in_message(msg): return message in msg

            if check_in_message(msg):
                message_found = True
                break

        if not message_found:
            raise AssertionError("Did not receive the message you expected "
                                 "('%s') for <%s>, got: '%s'"
                                 % (message, func.__name__, msg))

    return result


def assert_warns_div0(func, *args, **kw):
    """Assume that numpy's warning for divide by zero is raised

    Handles the case of platforms that do not support warning on divide by zero

    Parameters
    ----------
    func
    *args
    **kw
    """

    with np.errstate(divide='warn', invalid='warn'):
        try:
            assert_warns(RuntimeWarning, np.divide, 1, np.zeros(1))
        except AssertionError:
            # This platform does not report numpy divide by zeros
            return func(*args, **kw)
        return assert_warns_message(RuntimeWarning,
                                    'invalid value encountered',
                                    func, *args, **kw)


# To remove when we support numpy 1.7
def assert_no_warnings(func, *args, **kw):
    """
    Parameters
    ----------
    func
    *args
    **kw
    """
    # very important to avoid uncontrolled state propagation
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter('always')

        result = func(*args, **kw)
        if hasattr(np, 'FutureWarning'):
            # Filter out numpy-specific warnings in numpy >= 1.9
            w = [e for e in w
                 if e.category is not np.VisibleDeprecationWarning]

        if len(w) > 0:
            raise AssertionError("Got warnings when calling %s: [%s]"
                                 % (func.__name__,
                                    ', '.join(str(warning) for warning in w)))
    return result


def ignore_warnings(obj=None, category=Warning):
    """Context manager and decorator to ignore warnings.

    Note: Using this (in both variants) will clear all warnings
    from all python modules loaded. In case you need to test
    cross-module-warning-logging, this is not your tool of choice.

    Parameters
    ----------
    obj : callable or None
        callable where you want to ignore the warnings.
    category : warning class, defaults to Warning.
        The category to filter. If Warning, all categories will be muted.

    Examples
    --------
    >>> with ignore_warnings():
    ...     warnings.warn('buhuhuhu')

    >>> def nasty_warn():
    ...     warnings.warn('buhuhuhu')
    ...     print(42)

    >>> ignore_warnings(nasty_warn)()
    42
    """
    if isinstance(obj, type) and issubclass(obj, Warning):
        # Avoid common pitfall of passing category as the first positional
        # argument which result in the test not being run
        warning_name = obj.__name__
        raise ValueError(
            "'obj' should be a callable where you want to ignore warnings. "
            "You passed a warning class instead: 'obj={warning_name}'. "
            "If you want to pass a warning class to ignore_warnings, "
            "you should use 'category={warning_name}'".format(
                warning_name=warning_name))
    elif callable(obj):
        return _IgnoreWarnings(category=category)(obj)
    else:
        return _IgnoreWarnings(category=category)


class _IgnoreWarnings:
    """Improved and simplified Python warnings context manager and decorator.

    This class allows the user to ignore the warnings raised by a function.
    Copied from Python 2.7.5 and modified as required.

    Parameters
    ----------
    category : tuple of warning class, default to Warning
        The category to filter. By default, all the categories will be muted.

    """

    def __init__(self, category):
        self._record = True
        self._module = sys.modules['warnings']
        self._entered = False
        self.log = []
        self.category = category

    def __call__(self, fn):
        """Decorator to catch and hide warnings without visual nesting."""
        @wraps(fn)
        def wrapper(*args, **kwargs):
            with warnings.catch_warnings():
                warnings.simplefilter("ignore", self.category)
                return fn(*args, **kwargs)

        return wrapper

    def __repr__(self):
        args = []
        if self._record:
            args.append("record=True")
        if self._module is not sys.modules['warnings']:
            args.append("module=%r" % self._module)
        name = type(self).__name__
        return "%s(%s)" % (name, ", ".join(args))

    def __enter__(self):
        if self._entered:
            raise RuntimeError("Cannot enter %r twice" % self)
        self._entered = True
        self._filters = self._module.filters
        self._module.filters = self._filters[:]
        self._showwarning = self._module.showwarning
        warnings.simplefilter("ignore", self.category)

    def __exit__(self, *exc_info):
        if not self._entered:
            raise RuntimeError("Cannot exit %r without entering first" % self)
        self._module.filters = self._filters
        self._module.showwarning = self._showwarning
        self.log[:] = []


def assert_raise_message(exceptions, message, function, *args, **kwargs):
    """Helper function to test the message raised in an exception.

    Given an exception, a callable to raise the exception, and
    a message string, tests that the correct exception is raised and
    that the message is a substring of the error thrown. Used to test
    that the specific message thrown during an exception is correct.

    Parameters
    ----------
    exceptions : exception or tuple of exception
        An Exception object.

    message : str
        The error message or a substring of the error message.

    function : callable
        Callable object to raise error.

    *args : the positional arguments to `function`.

    **kwargs : the keyword arguments to `function`.
    """
    try:
        function(*args, **kwargs)
    except exceptions as e:
        error_message = str(e)
        if message not in error_message:
            raise AssertionError("Error message does not include the expected"
                                 " string: %r. Observed error message: %r" %
                                 (message, error_message))
    else:
        # concatenate exception names
        if isinstance(exceptions, tuple):
            names = " or ".join(e.__name__ for e in exceptions)
        else:
            names = exceptions.__name__

        raise AssertionError("%s not raised by %s" %
                             (names, function.__name__))


def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=''):
    """Assert allclose for sparse and dense data.

    Both x and y need to be either sparse or dense, they
    can't be mixed.

    Parameters
    ----------
    x : array-like or sparse matrix
        First array to compare.

    y : array-like or sparse matrix
        Second array to compare.

    rtol : float, optional
        relative tolerance; see numpy.allclose

    atol : float, optional
        absolute tolerance; see numpy.allclose. Note that the default here is
        more tolerant than the default for numpy.testing.assert_allclose, where
        atol=0.

    err_msg : string, default=''
        Error message to raise.
    """
    if sp.sparse.issparse(x) and sp.sparse.issparse(y):
        x = x.tocsr()
        y = y.tocsr()
        x.sum_duplicates()
        y.sum_duplicates()
        assert_array_equal(x.indices, y.indices, err_msg=err_msg)
        assert_array_equal(x.indptr, y.indptr, err_msg=err_msg)
        assert_allclose(x.data, y.data, rtol=rtol, atol=atol, err_msg=err_msg)
    elif not sp.sparse.issparse(x) and not sp.sparse.issparse(y):
        # both dense
        assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg)
    else:
        raise ValueError("Can only compare two sparse matrices,"
                         " not a sparse matrix and an array.")


# TODO: Remove in 0.24. This class is now in utils.__init__.
def all_estimators(type_filter=None):
    """Get a list of all estimators from sklearn.

    This function crawls the module and gets all classes that inherit
    from BaseEstimator. Classes that are defined in test-modules are not
    included.
    By default meta_estimators such as GridSearchCV are also not included.

    Parameters
    ----------

    type_filter : string, list of string,  or None, default=None
        Which kind of estimators should be returned. If None, no filter is
        applied and all estimators are returned.  Possible values are
        'classifier', 'regressor', 'cluster' and 'transformer' to get
        estimators only of these specific types, or a list of these to
        get the estimators that fit at least one of the types.

    Returns
    -------
    estimators : list of tuples
        List of (name, class), where ``name`` is the class name as string
        and ``class`` is the actual type of the class.
    """
    def is_abstract(c):
        if not(hasattr(c, '__abstractmethods__')):
            return False
        if not len(c.__abstractmethods__):
            return False
        return True

    all_classes = []
    # get parent folder
    path = sklearn.__path__
    for importer, modname, ispkg in pkgutil.walk_packages(
            path=path, prefix='sklearn.', onerror=lambda x: None):
        if ".tests." in modname or "externals" in modname:
            continue
        if IS_PYPY and ('_svmlight_format_io' in modname or
                        'feature_extraction._hashing_fast' in modname):
            continue
        # Ignore deprecation warnings triggered at import time.
        with ignore_warnings(category=FutureWarning):
            module = __import__(modname, fromlist="dummy")
        classes = inspect.getmembers(module, inspect.isclass)
        all_classes.extend(classes)

    all_classes = set(all_classes)

    estimators = [c for c in all_classes
                  if (issubclass(c[1], BaseEstimator) and
                      c[0] != 'BaseEstimator')]
    # get rid of abstract base classes
    estimators = [c for c in estimators if not is_abstract(c[1])]

    if type_filter is not None:
        if not isinstance(type_filter, list):
            type_filter = [type_filter]
        else:
            type_filter = list(type_filter)  # copy
        filtered_estimators = []
        filters = {'classifier': ClassifierMixin,
                   'regressor': RegressorMixin,
                   'transformer': TransformerMixin,
                   'cluster': ClusterMixin}
        for name, mixin in filters.items():
            if name in type_filter:
                type_filter.remove(name)
                filtered_estimators.extend([est for est in estimators
                                            if issubclass(est[1], mixin)])
        estimators = filtered_estimators
        if type_filter:
            raise ValueError("Parameter type_filter must be 'classifier', "
                             "'regressor', 'transformer', 'cluster' or "
                             "None, got"
                             " %s." % repr(type_filter))

    # drop duplicates, sort for reproducibility
    # itemgetter is used to ensure the sort does not extend to the 2nd item of
    # the tuple
    return sorted(set(estimators), key=itemgetter(0))


def set_random_state(estimator, random_state=0):
    """Set random state of an estimator if it has the `random_state` param.

    Parameters
    ----------
    estimator : object
        The estimator
    random_state : int, RandomState instance or None, optional, default=0
        Pseudo random number generator state.
        Pass an int for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.
    """
    if "random_state" in estimator.get_params():
        estimator.set_params(random_state=random_state)


try:
    import pytest

    skip_if_32bit = pytest.mark.skipif(_IS_32BIT,
                                       reason='skipped on 32bit platforms')
    skip_travis = pytest.mark.skipif(os.environ.get('TRAVIS') == 'true',
                                     reason='skip on travis')
    fails_if_pypy = pytest.mark.xfail(IS_PYPY,
                                      reason='not compatible with PyPy')
    skip_if_no_parallel = pytest.mark.skipif(not joblib.parallel.mp,
                                             reason="joblib is in serial mode")

    #  Decorator for tests involving both BLAS calls and multiprocessing.
    #
    #  Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction
    #  with some implementation of BLAS (or other libraries that manage an
    #  internal posix thread pool) can cause a crash or a freeze of the Python
    #  process.
    #
    #  In practice all known packaged distributions (from Linux distros or
    #  Anaconda) of BLAS under Linux seems to be safe. So we this problem seems
    #  to only impact OSX users.
    #
    #  This wrapper makes it possible to skip tests that can possibly cause
    #  this crash under OS X with.
    #
    #  Under Python 3.4+ it is possible to use the `forkserver` start method
    #  for multiprocessing to avoid this issue. However it can cause pickling
    #  errors on interactively defined functions. It therefore not enabled by
    #  default.

    if_safe_multiprocessing_with_blas = pytest.mark.skipif(
            sys.platform == 'darwin',
            reason="Possible multi-process bug with some BLAS")
except ImportError:
    pass


def check_skip_network():
    if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)):
        raise SkipTest("Text tutorial requires large dataset download")


def _delete_folder(folder_path, warn=False):
    """Utility function to cleanup a temporary folder if still existing.

    Copy from joblib.pool (for independence).
    """
    try:
        if os.path.exists(folder_path):
            # This can fail under windows,
            #  but will succeed when called by atexit
            shutil.rmtree(folder_path)
    except WindowsError:
        if warn:
            warnings.warn("Could not delete temporary folder %s" % folder_path)


class TempMemmap:
    """
    Parameters
    ----------
    data
    mmap_mode
    """
    def __init__(self, data, mmap_mode='r'):
        self.mmap_mode = mmap_mode
        self.data = data

    def __enter__(self):
        data_read_only, self.temp_folder = create_memmap_backed_data(
            self.data, mmap_mode=self.mmap_mode, return_folder=True)
        return data_read_only

    def __exit__(self, exc_type, exc_val, exc_tb):
        _delete_folder(self.temp_folder)


def create_memmap_backed_data(data, mmap_mode='r', return_folder=False):
    """
    Parameters
    ----------
    data
    mmap_mode
    return_folder
    """
    temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_')
    atexit.register(functools.partial(_delete_folder, temp_folder, warn=True))
    filename = op.join(temp_folder, 'data.pkl')
    joblib.dump(data, filename)
    memmap_backed_data = joblib.load(filename, mmap_mode=mmap_mode)
    result = (memmap_backed_data if not return_folder
              else (memmap_backed_data, temp_folder))
    return result


# Utils to test docstrings


def _get_args(function, varargs=False):
    """Helper to get function arguments"""

    try:
        params = signature(function).parameters
    except ValueError:
        # Error on builtin C function
        return []
    args = [key for key, param in params.items()
            if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)]
    if varargs:
        varargs = [param.name for param in params.values()
                   if param.kind == param.VAR_POSITIONAL]
        if len(varargs) == 0:
            varargs = None
        return args, varargs
    else:
        return args


def _get_func_name(func):
    """Get function full name

    Parameters
    ----------
    func : callable
        The function object.

    Returns
    -------
    name : str
        The function name.
    """
    parts = []
    module = inspect.getmodule(func)
    if module:
        parts.append(module.__name__)

    qualname = func.__qualname__
    if qualname != func.__name__:
        parts.append(qualname[:qualname.find('.')])

    parts.append(func.__name__)
    return '.'.join(parts)


def check_docstring_parameters(func, doc=None, ignore=None):
    """Helper to check docstring

    Parameters
    ----------
    func : callable
        The function object to test.
    doc : str, optional (default: None)
        Docstring if it is passed manually to the test.
    ignore : None | list
        Parameters to ignore.

    Returns
    -------
    incorrect : list
        A list of string describing the incorrect results.
    """
    from numpydoc import docscrape
    incorrect = []
    ignore = [] if ignore is None else ignore

    func_name = _get_func_name(func)
    if (not func_name.startswith('sklearn.') or
            func_name.startswith('sklearn.externals')):
        return incorrect
    # Don't check docstring for property-functions
    if inspect.isdatadescriptor(func):
        return incorrect
    # Don't check docstring for setup / teardown pytest functions
    if func_name.split('.')[-1] in ('setup_module', 'teardown_module'):
        return incorrect
    # Dont check estimator_checks module
    if func_name.split('.')[2] == 'estimator_checks':
        return incorrect
    # Get the arguments from the function signature
    param_signature = list(filter(lambda x: x not in ignore, _get_args(func)))
    # drop self
    if len(param_signature) > 0 and param_signature[0] == 'self':
        param_signature.remove('self')

    # Analyze function's docstring
    if doc is None:
        with warnings.catch_warnings(record=True) as w:
            try:
                doc = docscrape.FunctionDoc(func)
            except Exception as exp:
                incorrect += [func_name + ' parsing error: ' + str(exp)]
                return incorrect
        if len(w):
            raise RuntimeError('Error for %s:\n%s' % (func_name, w[0]))

    param_docs = []
    for name, type_definition, param_doc in doc['Parameters']:
        # Type hints are empty only if parameter name ended with :
        if not type_definition.strip():
            if ':' in name and name[:name.index(':')][-1:].strip():
                incorrect += [func_name +
                              ' There was no space between the param name and '
                              'colon (%r)' % name]
            elif name.rstrip().endswith(':'):
                incorrect += [func_name +
                              ' Parameter %r has an empty type spec. '
                              'Remove the colon' % (name.lstrip())]

        # Create a list of parameters to compare with the parameters gotten
        # from the func signature
        if '*' not in name:
            param_docs.append(name.split(':')[0].strip('` '))

    # If one of the docstring's parameters had an error then return that
    # incorrect message
    if len(incorrect) > 0:
        return incorrect

    # Remove the parameters that should be ignored from list
    param_docs = list(filter(lambda x: x not in ignore, param_docs))

    # The following is derived from pytest, Copyright (c) 2004-2017 Holger
    # Krekel and others, Licensed under MIT License. See
    # https://github.com/pytest-dev/pytest

    message = []
    for i in range(min(len(param_docs), len(param_signature))):
        if param_signature[i] != param_docs[i]:
            message += ["There's a parameter name mismatch in function"
                        " docstring w.r.t. function signature, at index %s"
                        " diff: %r != %r" %
                        (i, param_signature[i], param_docs[i])]
            break
    if len(param_signature) > len(param_docs):
        message += ["Parameters in function docstring have less items w.r.t."
                    " function signature, first missing item: %s" %
                    param_signature[len(param_docs)]]

    elif len(param_signature) < len(param_docs):
        message += ["Parameters in function docstring have more items w.r.t."
                    " function signature, first extra item: %s" %
                    param_docs[len(param_signature)]]

    # If there wasn't any difference in the parameters themselves between
    # docstring and signature including having the same length then return
    # empty list
    if len(message) == 0:
        return []

    import difflib
    import pprint

    param_docs_formatted = pprint.pformat(param_docs).splitlines()
    param_signature_formatted = pprint.pformat(param_signature).splitlines()

    message += ["Full diff:"]

    message.extend(
        line.strip() for line in difflib.ndiff(param_signature_formatted,
                                               param_docs_formatted)
    )

    incorrect.extend(message)

    # Prepend function name
    incorrect = ['In function: ' + func_name] + incorrect

    return incorrect


def assert_run_python_script(source_code, timeout=60):
    """Utility to check assertions in an independent Python subprocess.

    The script provided in the source code should return 0 and not print
    anything on stderr or stdout.

    This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle

    Parameters
    ----------
    source_code : str
        The Python source code to execute.
    timeout : int
        Time in seconds before timeout.
    """
    fd, source_file = tempfile.mkstemp(suffix='_src_test_sklearn.py')
    os.close(fd)
    try:
        with open(source_file, 'wb') as f:
            f.write(source_code.encode('utf-8'))
        cmd = [sys.executable, source_file]
        cwd = op.normpath(op.join(op.dirname(sklearn.__file__), '..'))
        env = os.environ.copy()
        try:
            env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]])
        except KeyError:
            env["PYTHONPATH"] = cwd
        kwargs = {
            'cwd': cwd,
            'stderr': STDOUT,
            'env': env
        }
        # If coverage is running, pass the config file to the subprocess
        coverage_rc = os.environ.get("COVERAGE_PROCESS_START")
        if coverage_rc:
            kwargs['env']['COVERAGE_PROCESS_START'] = coverage_rc

        kwargs['timeout'] = timeout
        try:
            try:
                out = check_output(cmd, **kwargs)
            except CalledProcessError as e:
                raise RuntimeError(u"script errored with output:\n%s"
                                   % e.output.decode('utf-8'))
            if out != b"":
                raise AssertionError(out.decode('utf-8'))
        except TimeoutExpired as e:
            raise RuntimeError(u"script timeout, output so far:\n%s"
                               % e.output.decode('utf-8'))
    finally:
        os.unlink(source_file)


def _convert_container(container, constructor_name, columns_name=None):
    if constructor_name == 'list':
        return list(container)
    elif constructor_name == 'tuple':
        return tuple(container)
    elif constructor_name == 'array':
        return np.asarray(container)
    elif constructor_name == 'sparse':
        return sp.sparse.csr_matrix(container)
    elif constructor_name == 'dataframe':
        pd = pytest.importorskip('pandas')
        return pd.DataFrame(container, columns=columns_name)
    elif constructor_name == 'series':
        pd = pytest.importorskip('pandas')
        return pd.Series(container)
    elif constructor_name == 'index':
        pd = pytest.importorskip('pandas')
        return pd.Index(container)
    elif constructor_name == 'slice':
        return slice(container[0], container[1])