test_svm.py 46 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
"""
Testing for Support Vector Machine module (sklearn.svm)

TODO: remove hard coded numerical results when possible
"""
import numpy as np
import itertools
import pytest

from numpy.testing import assert_array_equal, assert_array_almost_equal
from numpy.testing import assert_almost_equal
from numpy.testing import assert_allclose
from scipy import sparse
from sklearn import svm, linear_model, datasets, metrics, base
from sklearn.svm import LinearSVC
from sklearn.svm import LinearSVR
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_blobs
from sklearn.metrics import f1_score
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import ignore_warnings
from sklearn.utils._testing import assert_no_warnings
from sklearn.utils.validation import _num_samples
from sklearn.utils import shuffle
from sklearn.exceptions import ConvergenceWarning
from sklearn.exceptions import NotFittedError, UndefinedMetricWarning
from sklearn.multiclass import OneVsRestClassifier
# mypy error: Module 'sklearn.svm' has no attribute '_libsvm'
from sklearn.svm import _libsvm  # type: ignore

# toy sample
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]
Y = [1, 1, 1, 2, 2, 2]
T = [[-1, -1], [2, 2], [3, 2]]
true_result = [1, 2, 2]

# also load the iris dataset
iris = datasets.load_iris()
rng = check_random_state(42)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]


def test_libsvm_parameters():
    # Test parameters on classes that make use of libsvm.
    clf = svm.SVC(kernel='linear').fit(X, Y)
    assert_array_equal(clf.dual_coef_, [[-0.25, .25]])
    assert_array_equal(clf.support_, [1, 3])
    assert_array_equal(clf.support_vectors_, (X[1], X[3]))
    assert_array_equal(clf.intercept_, [0.])
    assert_array_equal(clf.predict(X), Y)


def test_libsvm_iris():
    # Check consistency on dataset iris.

    # shuffle the dataset so that labels are not ordered
    for k in ('linear', 'rbf'):
        clf = svm.SVC(kernel=k).fit(iris.data, iris.target)
        assert np.mean(clf.predict(iris.data) == iris.target) > 0.9
        assert hasattr(clf, "coef_") == (k == 'linear')

    assert_array_equal(clf.classes_, np.sort(clf.classes_))

    # check also the low-level API
    model = _libsvm.fit(iris.data, iris.target.astype(np.float64))
    pred = _libsvm.predict(iris.data, *model)
    assert np.mean(pred == iris.target) > .95

    model = _libsvm.fit(iris.data, iris.target.astype(np.float64),
                        kernel='linear')
    pred = _libsvm.predict(iris.data, *model, kernel='linear')
    assert np.mean(pred == iris.target) > .95

    pred = _libsvm.cross_validation(iris.data,
                                    iris.target.astype(np.float64), 5,
                                    kernel='linear',
                                    random_seed=0)
    assert np.mean(pred == iris.target) > .95

    # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence
    # we should get deterministic results (assuming that there is no other
    # thread calling this wrapper calling `srand` concurrently).
    pred2 = _libsvm.cross_validation(iris.data,
                                     iris.target.astype(np.float64), 5,
                                     kernel='linear',
                                     random_seed=0)
    assert_array_equal(pred, pred2)


def test_precomputed():
    # SVC with a precomputed kernel.
    # We test it with a toy dataset and with iris.
    clf = svm.SVC(kernel='precomputed')
    # Gram matrix for train data (square matrix)
    # (we use just a linear kernel)
    K = np.dot(X, np.array(X).T)
    clf.fit(K, Y)
    # Gram matrix for test data (rectangular matrix)
    KT = np.dot(T, np.array(X).T)
    pred = clf.predict(KT)
    with pytest.raises(ValueError):
        clf.predict(KT.T)

    assert_array_equal(clf.dual_coef_, [[-0.25, .25]])
    assert_array_equal(clf.support_, [1, 3])
    assert_array_equal(clf.intercept_, [0])
    assert_array_almost_equal(clf.support_, [1, 3])
    assert_array_equal(pred, true_result)

    # Gram matrix for test data but compute KT[i,j]
    # for support vectors j only.
    KT = np.zeros_like(KT)
    for i in range(len(T)):
        for j in clf.support_:
            KT[i, j] = np.dot(T[i], X[j])

    pred = clf.predict(KT)
    assert_array_equal(pred, true_result)

    # same as before, but using a callable function instead of the kernel
    # matrix. kernel is just a linear kernel

    kfunc = lambda x, y: np.dot(x, y.T)
    clf = svm.SVC(kernel=kfunc)
    clf.fit(np.array(X), Y)
    pred = clf.predict(T)

    assert_array_equal(clf.dual_coef_, [[-0.25, .25]])
    assert_array_equal(clf.intercept_, [0])
    assert_array_almost_equal(clf.support_, [1, 3])
    assert_array_equal(pred, true_result)

    # test a precomputed kernel with the iris dataset
    # and check parameters against a linear SVC
    clf = svm.SVC(kernel='precomputed')
    clf2 = svm.SVC(kernel='linear')
    K = np.dot(iris.data, iris.data.T)
    clf.fit(K, iris.target)
    clf2.fit(iris.data, iris.target)
    pred = clf.predict(K)
    assert_array_almost_equal(clf.support_, clf2.support_)
    assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_)
    assert_array_almost_equal(clf.intercept_, clf2.intercept_)
    assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2)

    # Gram matrix for test data but compute KT[i,j]
    # for support vectors j only.
    K = np.zeros_like(K)
    for i in range(len(iris.data)):
        for j in clf.support_:
            K[i, j] = np.dot(iris.data[i], iris.data[j])

    pred = clf.predict(K)
    assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2)

    clf = svm.SVC(kernel=kfunc)
    clf.fit(iris.data, iris.target)
    assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2)


def test_svr():
    # Test Support Vector Regression

    diabetes = datasets.load_diabetes()
    for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0),
                svm.NuSVR(kernel='linear', nu=.4, C=10.),
                svm.SVR(kernel='linear', C=10.),
                svm.LinearSVR(C=10.),
                svm.LinearSVR(C=10.)):
        clf.fit(diabetes.data, diabetes.target)
        assert clf.score(diabetes.data, diabetes.target) > 0.02

    # non-regression test; previously, BaseLibSVM would check that
    # len(np.unique(y)) < 2, which must only be done for SVC
    svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data)))
    svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data)))


def test_linearsvr():
    # check that SVR(kernel='linear') and LinearSVC() give
    # comparable results
    diabetes = datasets.load_diabetes()
    lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target)
    score1 = lsvr.score(diabetes.data, diabetes.target)

    svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target)
    score2 = svr.score(diabetes.data, diabetes.target)

    assert_allclose(np.linalg.norm(lsvr.coef_),
                    np.linalg.norm(svr.coef_), 1, 0.0001)
    assert_almost_equal(score1, score2, 2)


def test_linearsvr_fit_sampleweight():
    # check correct result when sample_weight is 1
    # check that SVR(kernel='linear') and LinearSVC() give
    # comparable results
    diabetes = datasets.load_diabetes()
    n_samples = len(diabetes.target)
    unit_weight = np.ones(n_samples)
    lsvr = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit(
        diabetes.data, diabetes.target, sample_weight=unit_weight)
    score1 = lsvr.score(diabetes.data, diabetes.target)

    lsvr_no_weight = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit(
        diabetes.data, diabetes.target)
    score2 = lsvr_no_weight.score(diabetes.data, diabetes.target)

    assert_allclose(np.linalg.norm(lsvr.coef_),
                    np.linalg.norm(lsvr_no_weight.coef_), 1, 0.0001)
    assert_almost_equal(score1, score2, 2)

    # check that fit(X)  = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where
    # X = X1 repeated n1 times, X2 repeated n2 times and so forth
    random_state = check_random_state(0)
    random_weight = random_state.randint(0, 10, n_samples)
    lsvr_unflat = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit(
        diabetes.data, diabetes.target, sample_weight=random_weight)
    score3 = lsvr_unflat.score(diabetes.data, diabetes.target,
                               sample_weight=random_weight)

    X_flat = np.repeat(diabetes.data, random_weight, axis=0)
    y_flat = np.repeat(diabetes.target, random_weight, axis=0)
    lsvr_flat = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit(
        X_flat, y_flat)
    score4 = lsvr_flat.score(X_flat, y_flat)

    assert_almost_equal(score3, score4, 2)


def test_svr_errors():
    X = [[0.0], [1.0]]
    y = [0.0, 0.5]

    # Bad kernel
    clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]]))
    clf.fit(X, y)
    with pytest.raises(ValueError):
        clf.predict(X)


def test_oneclass():
    # Test OneClassSVM
    clf = svm.OneClassSVM()
    clf.fit(X)
    pred = clf.predict(T)

    assert_array_equal(pred, [1, -1, -1])
    assert pred.dtype == np.dtype('intp')
    assert_array_almost_equal(clf.intercept_, [-1.218], decimal=3)
    assert_array_almost_equal(clf.dual_coef_,
                              [[0.750, 0.750, 0.750, 0.750]],
                              decimal=3)
    with pytest.raises(AttributeError):
        (lambda: clf.coef_)()


def test_oneclass_decision_function():
    # Test OneClassSVM decision function
    clf = svm.OneClassSVM()
    rnd = check_random_state(2)

    # Generate train data
    X = 0.3 * rnd.randn(100, 2)
    X_train = np.r_[X + 2, X - 2]

    # Generate some regular novel observations
    X = 0.3 * rnd.randn(20, 2)
    X_test = np.r_[X + 2, X - 2]
    # Generate some abnormal novel observations
    X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2))

    # fit the model
    clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
    clf.fit(X_train)

    # predict things
    y_pred_test = clf.predict(X_test)
    assert np.mean(y_pred_test == 1) > .9
    y_pred_outliers = clf.predict(X_outliers)
    assert np.mean(y_pred_outliers == -1) > .9
    dec_func_test = clf.decision_function(X_test)
    assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1)
    dec_func_outliers = clf.decision_function(X_outliers)
    assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1)


def test_oneclass_score_samples():
    X_train = [[1, 1], [1, 2], [2, 1]]
    clf = svm.OneClassSVM(gamma=1).fit(X_train)
    assert_array_equal(clf.score_samples([[2., 2.]]),
                       clf.decision_function([[2., 2.]]) + clf.offset_)


def test_tweak_params():
    # Make sure some tweaking of parameters works.
    # We change clf.dual_coef_ at run time and expect .predict() to change
    # accordingly. Notice that this is not trivial since it involves a lot
    # of C/Python copying in the libsvm bindings.
    # The success of this test ensures that the mapping between libsvm and
    # the python classifier is complete.
    clf = svm.SVC(kernel='linear', C=1.0)
    clf.fit(X, Y)
    assert_array_equal(clf.dual_coef_, [[-.25, .25]])
    assert_array_equal(clf.predict([[-.1, -.1]]), [1])
    clf._dual_coef_ = np.array([[.0, 1.]])
    assert_array_equal(clf.predict([[-.1, -.1]]), [2])


def test_probability():
    # Predict probabilities using SVC
    # This uses cross validation, so we use a slightly bigger testing set.

    for clf in (svm.SVC(probability=True, random_state=0, C=1.0),
                svm.NuSVC(probability=True, random_state=0)):
        clf.fit(iris.data, iris.target)

        prob_predict = clf.predict_proba(iris.data)
        assert_array_almost_equal(
            np.sum(prob_predict, 1), np.ones(iris.data.shape[0]))
        assert np.mean(np.argmax(prob_predict, 1)
                       == clf.predict(iris.data)) > 0.9

        assert_almost_equal(clf.predict_proba(iris.data),
                            np.exp(clf.predict_log_proba(iris.data)), 8)


def test_decision_function():
    # Test decision_function
    # Sanity check, test that decision_function implemented in python
    # returns the same as the one in libsvm
    # multi class:
    clf = svm.SVC(kernel='linear', C=0.1,
                  decision_function_shape='ovo').fit(iris.data, iris.target)

    dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_

    assert_array_almost_equal(dec, clf.decision_function(iris.data))

    # binary:
    clf.fit(X, Y)
    dec = np.dot(X, clf.coef_.T) + clf.intercept_
    prediction = clf.predict(X)
    assert_array_almost_equal(dec.ravel(), clf.decision_function(X))
    assert_array_almost_equal(
        prediction,
        clf.classes_[(clf.decision_function(X) > 0).astype(np.int)])
    expected = np.array([-1., -0.66, -1., 0.66, 1., 1.])
    assert_array_almost_equal(clf.decision_function(X), expected, 2)

    # kernel binary:
    clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo')
    clf.fit(X, Y)

    rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma)
    dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_
    assert_array_almost_equal(dec.ravel(), clf.decision_function(X))


@pytest.mark.parametrize('SVM', (svm.SVC, svm.NuSVC))
def test_decision_function_shape(SVM):
    # check that decision_function_shape='ovr' or 'ovo' gives
    # correct shape and is consistent with predict

    clf = SVM(kernel='linear',
              decision_function_shape='ovr').fit(iris.data, iris.target)
    dec = clf.decision_function(iris.data)
    assert dec.shape == (len(iris.data), 3)
    assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1))

    # with five classes:
    X, y = make_blobs(n_samples=80, centers=5, random_state=0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    clf = SVM(kernel='linear',
              decision_function_shape='ovr').fit(X_train, y_train)
    dec = clf.decision_function(X_test)
    assert dec.shape == (len(X_test), 5)
    assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1))

    # check shape of ovo_decition_function=True
    clf = SVM(kernel='linear',
              decision_function_shape='ovo').fit(X_train, y_train)
    dec = clf.decision_function(X_train)
    assert dec.shape == (len(X_train), 10)

    with pytest.raises(ValueError, match="must be either 'ovr' or 'ovo'"):
        SVM(decision_function_shape='bad').fit(X_train, y_train)


def test_svr_predict():
    # Test SVR's decision_function
    # Sanity check, test that predict implemented in python
    # returns the same as the one in libsvm

    X = iris.data
    y = iris.target

    # linear kernel
    reg = svm.SVR(kernel='linear', C=0.1).fit(X, y)

    dec = np.dot(X, reg.coef_.T) + reg.intercept_
    assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel())

    # rbf kernel
    reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y)

    rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma)
    dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_
    assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel())


def test_weight():
    # Test class weights
    clf = svm.SVC(class_weight={1: 0.1})
    # we give a small weights to class 1
    clf.fit(X, Y)
    # so all predicted values belong to class 2
    assert_array_almost_equal(clf.predict(X), [2] * 6)

    X_, y_ = make_classification(n_samples=200, n_features=10,
                                 weights=[0.833, 0.167], random_state=2)

    for clf in (linear_model.LogisticRegression(),
                svm.LinearSVC(random_state=0), svm.SVC()):
        clf.set_params(class_weight={0: .1, 1: 10})
        clf.fit(X_[:100], y_[:100])
        y_pred = clf.predict(X_[100:])
        assert f1_score(y_[100:], y_pred) > .3


@pytest.mark.parametrize("estimator", [svm.SVC(C=1e-2), svm.NuSVC()])
def test_svm_classifier_sided_sample_weight(estimator):
    # fit a linear SVM and check that giving more weight to opposed samples
    # in the space will flip the decision toward these samples.
    X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]]
    estimator.set_params(kernel='linear')

    # check that with unit weights, a sample is supposed to be predicted on
    # the boundary
    sample_weight = [1] * 6
    estimator.fit(X, Y, sample_weight=sample_weight)
    y_pred = estimator.decision_function([[-1., 1.]])
    assert y_pred == pytest.approx(0)

    # give more weights to opposed samples
    sample_weight = [10., .1, .1, .1, .1, 10]
    estimator.fit(X, Y, sample_weight=sample_weight)
    y_pred = estimator.decision_function([[-1., 1.]])
    assert y_pred < 0

    sample_weight = [1., .1, 10., 10., .1, .1]
    estimator.fit(X, Y, sample_weight=sample_weight)
    y_pred = estimator.decision_function([[-1., 1.]])
    assert y_pred > 0


@pytest.mark.parametrize(
    "estimator",
    [svm.SVR(C=1e-2), svm.NuSVR(C=1e-2)]
)
def test_svm_regressor_sided_sample_weight(estimator):
    # similar test to test_svm_classifier_sided_sample_weight but for
    # SVM regressors
    X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]]
    estimator.set_params(kernel='linear')

    # check that with unit weights, a sample is supposed to be predicted on
    # the boundary
    sample_weight = [1] * 6
    estimator.fit(X, Y, sample_weight=sample_weight)
    y_pred = estimator.predict([[-1., 1.]])
    assert y_pred == pytest.approx(1.5)

    # give more weights to opposed samples
    sample_weight = [10., .1, .1, .1, .1, 10]
    estimator.fit(X, Y, sample_weight=sample_weight)
    y_pred = estimator.predict([[-1., 1.]])
    assert y_pred < 1.5

    sample_weight = [1., .1, 10., 10., .1, .1]
    estimator.fit(X, Y, sample_weight=sample_weight)
    y_pred = estimator.predict([[-1., 1.]])
    assert y_pred > 1.5


def test_svm_equivalence_sample_weight_C():
    # test that rescaling all samples is the same as changing C
    clf = svm.SVC()
    clf.fit(X, Y)
    dual_coef_no_weight = clf.dual_coef_
    clf.set_params(C=100)
    clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X)))
    assert_allclose(dual_coef_no_weight, clf.dual_coef_)


@pytest.mark.parametrize(
    "Estimator, err_msg",
    [(svm.SVC,
      'Invalid input - all samples have zero or negative weights.'),
     (svm.NuSVC, '(negative dimensions are not allowed|nu is infeasible)'),
     (svm.SVR,
      'Invalid input - all samples have zero or negative weights.'),
     (svm.NuSVR,
      'Invalid input - all samples have zero or negative weights.'),
     (svm.OneClassSVM,
      'Invalid input - all samples have zero or negative weights.')
     ],
    ids=['SVC', 'NuSVC', 'SVR', 'NuSVR', 'OneClassSVM']
)
@pytest.mark.parametrize(
    "sample_weight",
    [[0] * len(Y), [-0.3] * len(Y)],
    ids=['weights-are-zero', 'weights-are-negative']
)
def test_negative_sample_weights_mask_all_samples(Estimator,
                                                  err_msg, sample_weight):
    est = Estimator(kernel='linear')
    with pytest.raises(ValueError, match=err_msg):
        est.fit(X, Y, sample_weight=sample_weight)


@pytest.mark.parametrize(
    "Classifier, err_msg",
    [(svm.SVC,
     'Invalid input - all samples with positive weights have the same label'),
     (svm.NuSVC, 'specified nu is infeasible')],
    ids=['SVC', 'NuSVC']
)
@pytest.mark.parametrize(
    "sample_weight",
    [[0, -0.5, 0, 1, 1, 1],
     [1, 1, 1, 0, -0.1, -0.3]],
    ids=['mask-label-1', 'mask-label-2']
)
def test_negative_weights_svc_leave_just_one_label(Classifier,
                                                   err_msg,
                                                   sample_weight):
    clf = Classifier(kernel='linear')
    with pytest.raises(ValueError, match=err_msg):
        clf.fit(X, Y, sample_weight=sample_weight)


@pytest.mark.parametrize(
    "Classifier, model",
    [(svm.SVC, {'when-left': [0.3998, 0.4], 'when-right': [0.4, 0.3999]}),
     (svm.NuSVC, {'when-left': [0.3333, 0.3333],
      'when-right': [0.3333, 0.3333]})],
    ids=['SVC', 'NuSVC']
)
@pytest.mark.parametrize(
    "sample_weight, mask_side",
    [([1, -0.5, 1, 1, 1, 1], 'when-left'),
     ([1, 1, 1, 0, 1, 1], 'when-right')],
    ids=['partial-mask-label-1', 'partial-mask-label-2']
)
def test_negative_weights_svc_leave_two_labels(Classifier, model,
                                               sample_weight, mask_side):
    clf = Classifier(kernel='linear')
    clf.fit(X, Y, sample_weight=sample_weight)
    assert_allclose(clf.coef_, [model[mask_side]], rtol=1e-3)


@pytest.mark.parametrize(
    "Estimator",
    [svm.SVC, svm.NuSVC, svm.NuSVR],
    ids=['SVC', 'NuSVC', 'NuSVR']
)
@pytest.mark.parametrize(
    "sample_weight",
    [[1, -0.5, 1, 1, 1, 1], [1, 1, 1, 0, 1, 1]],
    ids=['partial-mask-label-1', 'partial-mask-label-2']
)
def test_negative_weight_equal_coeffs(Estimator, sample_weight):
    # model generates equal coefficients
    est = Estimator(kernel='linear')
    est.fit(X, Y, sample_weight=sample_weight)
    coef = np.abs(est.coef_).ravel()
    assert coef[0] == pytest.approx(coef[1], rel=1e-3)


@ignore_warnings(category=UndefinedMetricWarning)
def test_auto_weight():
    # Test class weights for imbalanced data
    from sklearn.linear_model import LogisticRegression
    # We take as dataset the two-dimensional projection of iris so
    # that it is not separable and remove half of predictors from
    # class 1.
    # We add one to the targets as a non-regression test:
    # class_weight="balanced"
    # used to work only when the labels where a range [0..K).
    from sklearn.utils import compute_class_weight
    X, y = iris.data[:, :2], iris.target + 1
    unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2])

    classes = np.unique(y[unbalanced])
    class_weights = compute_class_weight('balanced', classes=classes,
                                         y=y[unbalanced])
    assert np.argmax(class_weights) == 2

    for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0),
                LogisticRegression()):
        # check that score is better when class='balanced' is set.
        y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X)
        clf.set_params(class_weight='balanced')
        y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X)
        assert (metrics.f1_score(y, y_pred, average='macro')
                <= metrics.f1_score(y, y_pred_balanced,
                                    average='macro'))


def test_bad_input():
    # Test that it gives proper exception on deficient input
    # impossible value of C
    with pytest.raises(ValueError):
        svm.SVC(C=-1).fit(X, Y)

    # impossible value of nu
    clf = svm.NuSVC(nu=0.0)
    with pytest.raises(ValueError):
        clf.fit(X, Y)

    Y2 = Y[:-1]  # wrong dimensions for labels
    with pytest.raises(ValueError):
        clf.fit(X, Y2)

    # Test with arrays that are non-contiguous.
    for clf in (svm.SVC(), svm.LinearSVC(random_state=0)):
        Xf = np.asfortranarray(X)
        assert not Xf.flags['C_CONTIGUOUS']
        yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T)
        yf = yf[:, -1]
        assert not yf.flags['F_CONTIGUOUS']
        assert not yf.flags['C_CONTIGUOUS']
        clf.fit(Xf, yf)
        assert_array_equal(clf.predict(T), true_result)

    # error for precomputed kernelsx
    clf = svm.SVC(kernel='precomputed')
    with pytest.raises(ValueError):
        clf.fit(X, Y)

    # predict with sparse input when trained with dense
    clf = svm.SVC().fit(X, Y)
    with pytest.raises(ValueError):
        clf.predict(sparse.lil_matrix(X))

    Xt = np.array(X).T
    clf.fit(np.dot(X, Xt), Y)
    with pytest.raises(ValueError):
        clf.predict(X)

    clf = svm.SVC()
    clf.fit(X, Y)
    with pytest.raises(ValueError):
        clf.predict(Xt)


@pytest.mark.parametrize(
    'Estimator, data',
    [(svm.SVC, datasets.load_iris(return_X_y=True)),
     (svm.NuSVC, datasets.load_iris(return_X_y=True)),
     (svm.SVR, datasets.load_diabetes(return_X_y=True)),
     (svm.NuSVR, datasets.load_diabetes(return_X_y=True)),
     (svm.OneClassSVM, datasets.load_iris(return_X_y=True))]
)
def test_svm_gamma_error(Estimator, data):
    X, y = data
    est = Estimator(gamma='auto_deprecated')
    err_msg = "When 'gamma' is a string, it should be either 'scale' or 'auto'"
    with pytest.raises(ValueError, match=err_msg):
        est.fit(X, y)


def test_unicode_kernel():
    # Test that a unicode kernel name does not cause a TypeError
    clf = svm.SVC(kernel='linear', probability=True)
    clf.fit(X, Y)
    clf.predict_proba(T)
    _libsvm.cross_validation(iris.data,
                             iris.target.astype(np.float64), 5,
                             kernel='linear',
                             random_seed=0)


def test_sparse_precomputed():
    clf = svm.SVC(kernel='precomputed')
    sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]])
    with pytest.raises(TypeError, match="Sparse precomputed"):
        clf.fit(sparse_gram, [0, 1])


def test_sparse_fit_support_vectors_empty():
    # Regression test for #14893
    X_train = sparse.csr_matrix([[0, 1, 0, 0],
                                 [0, 0, 0, 1],
                                 [0, 0, 1, 0],
                                 [0, 0, 0, 1]])
    y_train = np.array([0.04, 0.04, 0.10, 0.16])
    model = svm.SVR(kernel='linear')
    model.fit(X_train, y_train)
    assert not model.support_vectors_.data.size
    assert not model.dual_coef_.data.size


def test_linearsvc_parameters():
    # Test possible parameter combinations in LinearSVC
    # Generate list of possible parameter combinations
    losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo']
    penalties, duals = ['l1', 'l2', 'bar'], [True, False]

    X, y = make_classification(n_samples=5, n_features=5)

    for loss, penalty, dual in itertools.product(losses, penalties, duals):
        clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual)
        if ((loss, penalty) == ('hinge', 'l1') or
                (loss, penalty, dual) == ('hinge', 'l2', False) or
                (penalty, dual) == ('l1', True) or
                loss == 'foo' or penalty == 'bar'):

            with pytest.raises(ValueError, match="Unsupported set of "
                               "arguments.*penalty='%s.*loss='%s.*dual=%s"
                               % (penalty, loss, dual)):
                clf.fit(X, y)
        else:
            clf.fit(X, y)

    # Incorrect loss value - test if explicit error message is raised
    with pytest.raises(ValueError, match=".*loss='l3' is not supported.*"):
        svm.LinearSVC(loss="l3").fit(X, y)


def test_linear_svx_uppercase_loss_penality_raises_error():
    # Check if Upper case notation raises error at _fit_liblinear
    # which is called by fit

    X, y = [[0.0], [1.0]], [0, 1]

    assert_raise_message(ValueError, "loss='SQuared_hinge' is not supported",
                         svm.LinearSVC(loss="SQuared_hinge").fit, X, y)

    assert_raise_message(ValueError,
                         ("The combination of penalty='L2'"
                          " and loss='squared_hinge' is not supported"),
                         svm.LinearSVC(penalty="L2").fit, X, y)


def test_linearsvc():
    # Test basic routines using LinearSVC
    clf = svm.LinearSVC(random_state=0).fit(X, Y)

    # by default should have intercept
    assert clf.fit_intercept

    assert_array_equal(clf.predict(T), true_result)
    assert_array_almost_equal(clf.intercept_, [0], decimal=3)

    # the same with l1 penalty
    clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False,
                        random_state=0).fit(X, Y)
    assert_array_equal(clf.predict(T), true_result)

    # l2 penalty with dual formulation
    clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y)
    assert_array_equal(clf.predict(T), true_result)

    # l2 penalty, l1 loss
    clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0)
    clf.fit(X, Y)
    assert_array_equal(clf.predict(T), true_result)

    # test also decision function
    dec = clf.decision_function(T)
    res = (dec > 0).astype(np.int) + 1
    assert_array_equal(res, true_result)


def test_linearsvc_crammer_singer():
    # Test LinearSVC with crammer_singer multi-class svm
    ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target)
    cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0)
    cs_clf.fit(iris.data, iris.target)

    # similar prediction for ovr and crammer-singer:
    assert (ovr_clf.predict(iris.data) ==
            cs_clf.predict(iris.data)).mean() > .9

    # classifiers shouldn't be the same
    assert (ovr_clf.coef_ != cs_clf.coef_).all()

    # test decision function
    assert_array_equal(cs_clf.predict(iris.data),
                       np.argmax(cs_clf.decision_function(iris.data), axis=1))
    dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_
    assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data))


def test_linearsvc_fit_sampleweight():
    # check correct result when sample_weight is 1
    n_samples = len(X)
    unit_weight = np.ones(n_samples)
    clf = svm.LinearSVC(random_state=0).fit(X, Y)
    clf_unitweight = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).\
        fit(X, Y, sample_weight=unit_weight)

    # check if same as sample_weight=None
    assert_array_equal(clf_unitweight.predict(T), clf.predict(T))
    assert_allclose(clf.coef_, clf_unitweight.coef_, 1, 0.0001)

    # check that fit(X)  = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where
    # X = X1 repeated n1 times, X2 repeated n2 times and so forth

    random_state = check_random_state(0)
    random_weight = random_state.randint(0, 10, n_samples)
    lsvc_unflat = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).\
        fit(X, Y, sample_weight=random_weight)
    pred1 = lsvc_unflat.predict(T)

    X_flat = np.repeat(X, random_weight, axis=0)
    y_flat = np.repeat(Y, random_weight, axis=0)
    lsvc_flat = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit(
        X_flat, y_flat)
    pred2 = lsvc_flat.predict(T)

    assert_array_equal(pred1, pred2)
    assert_allclose(lsvc_unflat.coef_, lsvc_flat.coef_, 1, 0.0001)


def test_crammer_singer_binary():
    # Test Crammer-Singer formulation in the binary case
    X, y = make_classification(n_classes=2, random_state=0)

    for fit_intercept in (True, False):
        acc = svm.LinearSVC(fit_intercept=fit_intercept,
                            multi_class="crammer_singer",
                            random_state=0).fit(X, y).score(X, y)
        assert acc > 0.9


def test_linearsvc_iris():
    # Test that LinearSVC gives plausible predictions on the iris dataset
    # Also, test symbolic class names (classes_).
    target = iris.target_names[iris.target]
    clf = svm.LinearSVC(random_state=0).fit(iris.data, target)
    assert set(clf.classes_) == set(iris.target_names)
    assert np.mean(clf.predict(iris.data) == target) > 0.8

    dec = clf.decision_function(iris.data)
    pred = iris.target_names[np.argmax(dec, 1)]
    assert_array_equal(pred, clf.predict(iris.data))


def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC):
    # Test that dense liblinear honours intercept_scaling param
    X = [[2, 1],
         [3, 1],
         [1, 3],
         [2, 3]]
    y = [0, 0, 1, 1]
    clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge',
                     dual=False, C=4, tol=1e-7, random_state=0)
    assert clf.intercept_scaling == 1, clf.intercept_scaling
    assert clf.fit_intercept

    # when intercept_scaling is low the intercept value is highly "penalized"
    # by regularization
    clf.intercept_scaling = 1
    clf.fit(X, y)
    assert_almost_equal(clf.intercept_, 0, decimal=5)

    # when intercept_scaling is sufficiently high, the intercept value
    # is not affected by regularization
    clf.intercept_scaling = 100
    clf.fit(X, y)
    intercept1 = clf.intercept_
    assert intercept1 < -1

    # when intercept_scaling is sufficiently high, the intercept value
    # doesn't depend on intercept_scaling value
    clf.intercept_scaling = 1000
    clf.fit(X, y)
    intercept2 = clf.intercept_
    assert_array_almost_equal(intercept1, intercept2, decimal=2)


def test_liblinear_set_coef():
    # multi-class case
    clf = svm.LinearSVC().fit(iris.data, iris.target)
    values = clf.decision_function(iris.data)
    clf.coef_ = clf.coef_.copy()
    clf.intercept_ = clf.intercept_.copy()
    values2 = clf.decision_function(iris.data)
    assert_array_almost_equal(values, values2)

    # binary-class case
    X = [[2, 1],
         [3, 1],
         [1, 3],
         [2, 3]]
    y = [0, 0, 1, 1]

    clf = svm.LinearSVC().fit(X, y)
    values = clf.decision_function(X)
    clf.coef_ = clf.coef_.copy()
    clf.intercept_ = clf.intercept_.copy()
    values2 = clf.decision_function(X)
    assert_array_equal(values, values2)


def test_immutable_coef_property():
    # Check that primal coef modification are not silently ignored
    svms = [
        svm.SVC(kernel='linear').fit(iris.data, iris.target),
        svm.NuSVC(kernel='linear').fit(iris.data, iris.target),
        svm.SVR(kernel='linear').fit(iris.data, iris.target),
        svm.NuSVR(kernel='linear').fit(iris.data, iris.target),
        svm.OneClassSVM(kernel='linear').fit(iris.data),
    ]
    for clf in svms:
        with pytest.raises(AttributeError):
            clf.__setattr__('coef_', np.arange(3))
        with pytest.raises((RuntimeError, ValueError)):
            clf.coef_.__setitem__((0, 0), 0)


def test_linearsvc_verbose():
    # stdout: redirect
    import os
    stdout = os.dup(1)  # save original stdout
    os.dup2(os.pipe()[1], 1)  # replace it

    # actual call
    clf = svm.LinearSVC(verbose=1)
    clf.fit(X, Y)

    # stdout: restore
    os.dup2(stdout, 1)  # restore original stdout


def test_svc_clone_with_callable_kernel():
    # create SVM with callable linear kernel, check that results are the same
    # as with built-in linear kernel
    svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T),
                           probability=True, random_state=0,
                           decision_function_shape='ovr')
    # clone for checking clonability with lambda functions..
    svm_cloned = base.clone(svm_callable)
    svm_cloned.fit(iris.data, iris.target)

    svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0,
                          decision_function_shape='ovr')
    svm_builtin.fit(iris.data, iris.target)

    assert_array_almost_equal(svm_cloned.dual_coef_,
                              svm_builtin.dual_coef_)
    assert_array_almost_equal(svm_cloned.intercept_,
                              svm_builtin.intercept_)
    assert_array_equal(svm_cloned.predict(iris.data),
                       svm_builtin.predict(iris.data))

    assert_array_almost_equal(svm_cloned.predict_proba(iris.data),
                              svm_builtin.predict_proba(iris.data),
                              decimal=4)
    assert_array_almost_equal(svm_cloned.decision_function(iris.data),
                              svm_builtin.decision_function(iris.data))


def test_svc_bad_kernel():
    svc = svm.SVC(kernel=lambda x, y: x)
    with pytest.raises(ValueError):
        svc.fit(X, Y)


def test_timeout():
    a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True,
                random_state=0, max_iter=1)
    assert_warns(ConvergenceWarning, a.fit, np.array(X), Y)


def test_unfitted():
    X = "foo!"  # input validation not required when SVM not fitted

    clf = svm.SVC()
    with pytest.raises(Exception, match=r".*\bSVC\b.*\bnot\b.*\bfitted\b"):
        clf.predict(X)

    clf = svm.NuSVR()
    with pytest.raises(Exception, match=r".*\bNuSVR\b.*\bnot\b.*\bfitted\b"):
        clf.predict(X)


# ignore convergence warnings from max_iter=1
@ignore_warnings
def test_consistent_proba():
    a = svm.SVC(probability=True, max_iter=1, random_state=0)
    proba_1 = a.fit(X, Y).predict_proba(X)
    a = svm.SVC(probability=True, max_iter=1, random_state=0)
    proba_2 = a.fit(X, Y).predict_proba(X)
    assert_array_almost_equal(proba_1, proba_2)


def test_linear_svm_convergence_warnings():
    # Test that warnings are raised if model does not converge

    lsvc = svm.LinearSVC(random_state=0, max_iter=2)
    assert_warns(ConvergenceWarning, lsvc.fit, X, Y)
    assert lsvc.n_iter_ == 2

    lsvr = svm.LinearSVR(random_state=0, max_iter=2)
    assert_warns(ConvergenceWarning, lsvr.fit, iris.data, iris.target)
    assert lsvr.n_iter_ == 2


def test_svr_coef_sign():
    # Test that SVR(kernel="linear") has coef_ with the right sign.
    # Non-regression test for #2933.
    X = np.random.RandomState(21).randn(10, 3)
    y = np.random.RandomState(12).randn(10)

    for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'),
                svm.LinearSVR()]:
        svr.fit(X, y)
        assert_array_almost_equal(
            svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_
        )


def test_linear_svc_intercept_scaling():
    # Test that the right error message is thrown when intercept_scaling <= 0

    for i in [-1, 0]:
        lsvc = svm.LinearSVC(intercept_scaling=i)
        msg = ('Intercept scaling is %r but needs to be greater than 0.'
               ' To disable fitting an intercept,'
               ' set fit_intercept=False.' % lsvc.intercept_scaling)
        assert_raise_message(ValueError, msg, lsvc.fit, X, Y)


def test_lsvc_intercept_scaling_zero():
    # Test that intercept_scaling is ignored when fit_intercept is False

    lsvc = svm.LinearSVC(fit_intercept=False)
    lsvc.fit(X, Y)
    assert lsvc.intercept_ == 0.


def test_hasattr_predict_proba():
    # Method must be (un)available before or after fit, switched by
    # `probability` param

    G = svm.SVC(probability=True)
    assert hasattr(G, 'predict_proba')
    G.fit(iris.data, iris.target)
    assert hasattr(G, 'predict_proba')

    G = svm.SVC(probability=False)
    assert not hasattr(G, 'predict_proba')
    G.fit(iris.data, iris.target)
    assert not hasattr(G, 'predict_proba')

    # Switching to `probability=True` after fitting should make
    # predict_proba available, but calling it must not work:
    G.probability = True
    assert hasattr(G, 'predict_proba')
    msg = "predict_proba is not available when fitted with probability=False"
    assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data)


def test_decision_function_shape_two_class():
    for n_classes in [2, 3]:
        X, y = make_blobs(centers=n_classes, random_state=0)
        for estimator in [svm.SVC, svm.NuSVC]:
            clf = OneVsRestClassifier(
                estimator(decision_function_shape="ovr")).fit(X, y)
            assert len(clf.predict(X)) == len(y)


def test_ovr_decision_function():
    # One point from each quadrant represents one class
    X_train = np.array([[1, 1], [-1, 1], [-1, -1], [1, -1]])
    y_train = [0, 1, 2, 3]

    # First point is closer to the decision boundaries than the second point
    base_points = np.array([[5, 5], [10, 10]])

    # For all the quadrants (classes)
    X_test = np.vstack((
        base_points * [1, 1],    # Q1
        base_points * [-1, 1],   # Q2
        base_points * [-1, -1],  # Q3
        base_points * [1, -1]    # Q4
    ))

    y_test = [0] * 2 + [1] * 2 + [2] * 2 + [3] * 2

    clf = svm.SVC(kernel='linear', decision_function_shape='ovr')
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)

    # Test if the prediction is the same as y
    assert_array_equal(y_pred, y_test)

    deci_val = clf.decision_function(X_test)

    # Assert that the predicted class has the maximum value
    assert_array_equal(np.argmax(deci_val, axis=1), y_pred)

    # Get decision value at test points for the predicted class
    pred_class_deci_val = deci_val[range(8), y_pred].reshape((4, 2))

    # Assert pred_class_deci_val > 0 here
    assert np.min(pred_class_deci_val) > 0.0

    # Test if the first point has lower decision value on every quadrant
    # compared to the second point
    assert np.all(pred_class_deci_val[:, 0] < pred_class_deci_val[:, 1])


@pytest.mark.parametrize("SVCClass", [svm.SVC, svm.NuSVC])
def test_svc_invalid_break_ties_param(SVCClass):
    X, y = make_blobs(random_state=42)

    svm = SVCClass(kernel="linear", decision_function_shape='ovo',
                   break_ties=True, random_state=42).fit(X, y)

    with pytest.raises(ValueError, match="break_ties must be False"):
        svm.predict(y)


@pytest.mark.parametrize("SVCClass", [svm.SVC, svm.NuSVC])
def test_svc_ovr_tie_breaking(SVCClass):
    """Test if predict breaks ties in OVR mode.
    Related issue: https://github.com/scikit-learn/scikit-learn/issues/8277
    """
    X, y = make_blobs(random_state=27)

    xs = np.linspace(X[:, 0].min(), X[:, 0].max(), 1000)
    ys = np.linspace(X[:, 1].min(), X[:, 1].max(), 1000)
    xx, yy = np.meshgrid(xs, ys)

    svm = SVCClass(kernel="linear", decision_function_shape='ovr',
                   break_ties=False, random_state=42).fit(X, y)
    pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])
    dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()])
    assert not np.all(pred == np.argmax(dv, axis=1))

    svm = SVCClass(kernel="linear", decision_function_shape='ovr',
                   break_ties=True, random_state=42).fit(X, y)
    pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])
    dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()])
    assert np.all(pred == np.argmax(dv, axis=1))


def test_gamma_auto():
    X, y = [[0.0, 1.2], [1.0, 1.3]], [0, 1]

    assert_no_warnings(svm.SVC(kernel='linear').fit, X, y)
    assert_no_warnings(svm.SVC(kernel='precomputed').fit, X, y)


def test_gamma_scale():
    X, y = [[0.], [1.]], [0, 1]

    clf = svm.SVC()
    assert_no_warnings(clf.fit, X, y)
    assert_almost_equal(clf._gamma, 4)

    # X_var ~= 1 shouldn't raise warning, for when
    # gamma is not explicitly set.
    X, y = [[1, 2], [3, 2 * np.sqrt(6) / 3 + 2]], [0, 1]
    assert_no_warnings(clf.fit, X, y)


@pytest.mark.parametrize(
    "SVM, params",
    [(LinearSVC, {'penalty': 'l1', 'loss': 'squared_hinge', 'dual': False}),
     (LinearSVC, {'penalty': 'l2', 'loss': 'squared_hinge', 'dual': True}),
     (LinearSVC, {'penalty': 'l2', 'loss': 'squared_hinge', 'dual': False}),
     (LinearSVC, {'penalty': 'l2', 'loss': 'hinge', 'dual': True}),
     (LinearSVR, {'loss': 'epsilon_insensitive', 'dual': True}),
     (LinearSVR, {'loss': 'squared_epsilon_insensitive', 'dual': True}),
     (LinearSVR, {'loss': 'squared_epsilon_insensitive', 'dual': True})]
)
def test_linearsvm_liblinear_sample_weight(SVM, params):
    X = np.array([[1, 3], [1, 3], [1, 3], [1, 3],
                  [2, 1], [2, 1], [2, 1], [2, 1],
                  [3, 3], [3, 3], [3, 3], [3, 3],
                  [4, 1], [4, 1], [4, 1], [4, 1]], dtype=np.dtype('float'))
    y = np.array([1, 1, 1, 1, 2, 2, 2, 2,
                  1, 1, 1, 1, 2, 2, 2, 2], dtype=np.dtype('int'))

    X2 = np.vstack([X, X])
    y2 = np.hstack([y, 3 - y])
    sample_weight = np.ones(shape=len(y) * 2)
    sample_weight[len(y):] = 0
    X2, y2, sample_weight = shuffle(X2, y2, sample_weight, random_state=0)

    base_estimator = SVM(random_state=42)
    base_estimator.set_params(**params)
    base_estimator.set_params(tol=1e-12, max_iter=1000)
    est_no_weight = base.clone(base_estimator).fit(X, y)
    est_with_weight = base.clone(base_estimator).fit(
        X2, y2, sample_weight=sample_weight
    )

    for method in ("predict", "decision_function"):
        if hasattr(base_estimator, method):
            X_est_no_weight = getattr(est_no_weight, method)(X)
            X_est_with_weight = getattr(est_with_weight, method)(X)
            assert_allclose(X_est_no_weight, X_est_with_weight)


def test_n_support_oneclass_svr():
    # Make n_support is correct for oneclass and SVR (used to be
    # non-initialized)
    # this is a non regression test for issue #14774
    X = np.array([[0], [0.44], [0.45], [0.46], [1]])
    clf = svm.OneClassSVM()
    assert not hasattr(clf, 'n_support_')
    clf.fit(X)
    assert clf.n_support_ == clf.support_vectors_.shape[0]
    assert clf.n_support_.size == 1
    assert clf.n_support_ == 3

    y = np.arange(X.shape[0])
    reg = svm.SVR().fit(X, y)
    assert reg.n_support_ == reg.support_vectors_.shape[0]
    assert reg.n_support_.size == 1
    assert reg.n_support_ == 4


# TODO: Remove in 0.25 when probA_ and probB_ are deprecated
@pytest.mark.parametrize("SVMClass, data", [
    (svm.OneClassSVM, (X, )),
    (svm.SVR, (X, Y))
])
@pytest.mark.parametrize("deprecated_prob", ["probA_", "probB_"])
def test_svm_probA_proB_deprecated(SVMClass, data, deprecated_prob):
    clf = SVMClass().fit(*data)

    msg = ("The {} attribute is deprecated in version 0.23 and will be "
           "removed in version 0.25.").format(deprecated_prob)
    with pytest.warns(FutureWarning, match=msg):
        getattr(clf, deprecated_prob)


@pytest.mark.parametrize("Estimator", [svm.SVC, svm.SVR])
def test_custom_kernel_not_array_input(Estimator):
    """Test using a custom kernel that is not fed with array-like for floats"""
    data = ["A A", "A", "B", "B B", "A B"]
    X = np.array([[2, 0], [1, 0], [0, 1], [0, 2], [1, 1]])  # count encoding
    y = np.array([1, 1, 2, 2, 1])

    def string_kernel(X1, X2):
        assert isinstance(X1[0], str)
        n_samples1 = _num_samples(X1)
        n_samples2 = _num_samples(X2)
        K = np.zeros((n_samples1, n_samples2))
        for ii in range(n_samples1):
            for jj in range(ii, n_samples2):
                K[ii, jj] = X1[ii].count('A') * X2[jj].count('A')
                K[ii, jj] += X1[ii].count('B') * X2[jj].count('B')
                K[jj, ii] = K[ii, jj]
        return K

    K = string_kernel(data, data)
    assert_array_equal(np.dot(X, X.T), K)

    svc1 = Estimator(kernel=string_kernel).fit(data, y)
    svc2 = Estimator(kernel='linear').fit(X, y)
    svc3 = Estimator(kernel='precomputed').fit(K, y)

    assert svc1.score(data, y) == svc3.score(K, y)
    assert svc1.score(data, y) == svc2.score(X, y)
    if hasattr(svc1, 'decision_function'):  # classifier
        assert_allclose(svc1.decision_function(data),
                        svc2.decision_function(X))
        assert_allclose(svc1.decision_function(data),
                        svc3.decision_function(K))
        assert_array_equal(svc1.predict(data), svc2.predict(X))
        assert_array_equal(svc1.predict(data), svc3.predict(K))
    else:  # regressor
        assert_allclose(svc1.predict(data), svc2.predict(X))
        assert_allclose(svc1.predict(data), svc3.predict(K))