random_projection.py 23.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
# -*- coding: utf8
"""Random Projection transformers

Random Projections are a simple and computationally efficient way to
reduce the dimensionality of the data by trading a controlled amount
of accuracy (as additional variance) for faster processing times and
smaller model sizes.

The dimensions and distribution of Random Projections matrices are
controlled so as to preserve the pairwise distances between any two
samples of the dataset.

The main theoretical result behind the efficiency of random projection is the
`Johnson-Lindenstrauss lemma (quoting Wikipedia)
<https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma>`_:

  In mathematics, the Johnson-Lindenstrauss lemma is a result
  concerning low-distortion embeddings of points from high-dimensional
  into low-dimensional Euclidean space. The lemma states that a small set
  of points in a high-dimensional space can be embedded into a space of
  much lower dimension in such a way that distances between the points are
  nearly preserved. The map used for the embedding is at least Lipschitz,
  and can even be taken to be an orthogonal projection.

"""
# Authors: Olivier Grisel <olivier.grisel@ensta.org>,
#          Arnaud Joly <a.joly@ulg.ac.be>
# License: BSD 3 clause

import warnings
from abc import ABCMeta, abstractmethod

import numpy as np
import scipy.sparse as sp

from .base import BaseEstimator, TransformerMixin

from .utils import check_random_state
from .utils.extmath import safe_sparse_dot
from .utils.random import sample_without_replacement
from .utils.validation import check_array, check_is_fitted
from .utils.validation import _deprecate_positional_args
from .exceptions import DataDimensionalityWarning
from .utils import deprecated


__all__ = ["SparseRandomProjection",
           "GaussianRandomProjection",
           "johnson_lindenstrauss_min_dim"]


@_deprecate_positional_args
def johnson_lindenstrauss_min_dim(n_samples, *, eps=0.1):
    """Find a 'safe' number of components to randomly project to

    The distortion introduced by a random projection `p` only changes the
    distance between two points by a factor (1 +- eps) in an euclidean space
    with good probability. The projection `p` is an eps-embedding as defined
    by:

      (1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2

    Where u and v are any rows taken from a dataset of shape [n_samples,
    n_features], eps is in ]0, 1[ and p is a projection by a random Gaussian
    N(0, 1) matrix with shape [n_components, n_features] (or a sparse
    Achlioptas matrix).

    The minimum number of components to guarantee the eps-embedding is
    given by:

      n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)

    Note that the number of dimensions is independent of the original
    number of features but instead depends on the size of the dataset:
    the larger the dataset, the higher is the minimal dimensionality of
    an eps-embedding.

    Read more in the :ref:`User Guide <johnson_lindenstrauss>`.

    Parameters
    ----------
    n_samples : int or numpy array of int greater than 0,
        Number of samples. If an array is given, it will compute
        a safe number of components array-wise.

    eps : float or numpy array of float in ]0,1[, optional (default=0.1)
        Maximum distortion rate as defined by the Johnson-Lindenstrauss lemma.
        If an array is given, it will compute a safe number of components
        array-wise.

    Returns
    -------
    n_components : int or numpy array of int,
        The minimal number of components to guarantee with good probability
        an eps-embedding with n_samples.

    Examples
    --------

    >>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
    663

    >>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
    array([    663,   11841, 1112658])

    >>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
    array([ 7894,  9868, 11841])

    References
    ----------

    .. [1] https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma

    .. [2] Sanjoy Dasgupta and Anupam Gupta, 1999,
           "An elementary proof of the Johnson-Lindenstrauss Lemma."
           http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3654

    """
    eps = np.asarray(eps)
    n_samples = np.asarray(n_samples)

    if np.any(eps <= 0.0) or np.any(eps >= 1):
        raise ValueError(
            "The JL bound is defined for eps in ]0, 1[, got %r" % eps)

    if np.any(n_samples) <= 0:
        raise ValueError(
            "The JL bound is defined for n_samples greater than zero, got %r"
            % n_samples)

    denominator = (eps ** 2 / 2) - (eps ** 3 / 3)
    return (4 * np.log(n_samples) / denominator).astype(np.int)


def _check_density(density, n_features):
    """Factorize density check according to Li et al."""
    if density == 'auto':
        density = 1 / np.sqrt(n_features)

    elif density <= 0 or density > 1:
        raise ValueError("Expected density in range ]0, 1], got: %r"
                         % density)
    return density


def _check_input_size(n_components, n_features):
    """Factorize argument checking for random matrix generation"""
    if n_components <= 0:
        raise ValueError("n_components must be strictly positive, got %d" %
                         n_components)
    if n_features <= 0:
        raise ValueError("n_features must be strictly positive, got %d" %
                         n_features)


# TODO: remove in 0.24
@deprecated("gaussian_random_matrix is deprecated in "
            "0.22 and will be removed in version 0.24.")
def gaussian_random_matrix(n_components, n_features, random_state=None):
    return _gaussian_random_matrix(n_components, n_features, random_state)


def _gaussian_random_matrix(n_components, n_features, random_state=None):
    """Generate a dense Gaussian random matrix.

    The components of the random matrix are drawn from

        N(0, 1.0 / n_components).

    Read more in the :ref:`User Guide <gaussian_random_matrix>`.

    Parameters
    ----------
    n_components : int,
        Dimensionality of the target projection space.

    n_features : int,
        Dimensionality of the original source space.

    random_state : int, RandomState instance or None, optional (default=None)
        Controls the pseudo random number generator used to generate the matrix
        at fit time.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    components : numpy array of shape [n_components, n_features]
        The generated Gaussian random matrix.

    See Also
    --------
    GaussianRandomProjection
    """
    _check_input_size(n_components, n_features)
    rng = check_random_state(random_state)
    components = rng.normal(loc=0.0,
                            scale=1.0 / np.sqrt(n_components),
                            size=(n_components, n_features))
    return components


# TODO: remove in 0.24
@deprecated("gaussian_random_matrix is deprecated in "
            "0.22 and will be removed in version 0.24.")
def sparse_random_matrix(n_components, n_features, density='auto',
                         random_state=None):
    return _sparse_random_matrix(n_components, n_features, density,
                                 random_state)


def _sparse_random_matrix(n_components, n_features, density='auto',
                          random_state=None):
    """Generalized Achlioptas random sparse matrix for random projection

    Setting density to 1 / 3 will yield the original matrix by Dimitris
    Achlioptas while setting a lower value will yield the generalization
    by Ping Li et al.

    If we note :math:`s = 1 / density`, the components of the random matrix are
    drawn from:

      - -sqrt(s) / sqrt(n_components)   with probability 1 / 2s
      -  0                              with probability 1 - 1 / s
      - +sqrt(s) / sqrt(n_components)   with probability 1 / 2s

    Read more in the :ref:`User Guide <sparse_random_matrix>`.

    Parameters
    ----------
    n_components : int,
        Dimensionality of the target projection space.

    n_features : int,
        Dimensionality of the original source space.

    density : float in range ]0, 1] or 'auto', optional (default='auto')
        Ratio of non-zero component in the random projection matrix.

        If density = 'auto', the value is set to the minimum density
        as recommended by Ping Li et al.: 1 / sqrt(n_features).

        Use density = 1 / 3.0 if you want to reproduce the results from
        Achlioptas, 2001.

    random_state : int, RandomState instance or None, optional (default=None)
        Controls the pseudo random number generator used to generate the matrix
        at fit time.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    components : array or CSR matrix with shape [n_components, n_features]
        The generated Gaussian random matrix.

    See Also
    --------
    SparseRandomProjection

    References
    ----------

    .. [1] Ping Li, T. Hastie and K. W. Church, 2006,
           "Very Sparse Random Projections".
           https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf

    .. [2] D. Achlioptas, 2001, "Database-friendly random projections",
           http://www.cs.ucsc.edu/~optas/papers/jl.pdf

    """
    _check_input_size(n_components, n_features)
    density = _check_density(density, n_features)
    rng = check_random_state(random_state)

    if density == 1:
        # skip index generation if totally dense
        components = rng.binomial(1, 0.5, (n_components, n_features)) * 2 - 1
        return 1 / np.sqrt(n_components) * components

    else:
        # Generate location of non zero elements
        indices = []
        offset = 0
        indptr = [offset]
        for _ in range(n_components):
            # find the indices of the non-zero components for row i
            n_nonzero_i = rng.binomial(n_features, density)
            indices_i = sample_without_replacement(n_features, n_nonzero_i,
                                                   random_state=rng)
            indices.append(indices_i)
            offset += n_nonzero_i
            indptr.append(offset)

        indices = np.concatenate(indices)

        # Among non zero components the probability of the sign is 50%/50%
        data = rng.binomial(1, 0.5, size=np.size(indices)) * 2 - 1

        # build the CSR structure by concatenating the rows
        components = sp.csr_matrix((data, indices, indptr),
                                   shape=(n_components, n_features))

        return np.sqrt(1 / density) / np.sqrt(n_components) * components


class BaseRandomProjection(TransformerMixin, BaseEstimator, metaclass=ABCMeta):
    """Base class for random projections.

    Warning: This class should not be used directly.
    Use derived classes instead.
    """

    @abstractmethod
    def __init__(self, n_components='auto', *, eps=0.1, dense_output=False,
                 random_state=None):
        self.n_components = n_components
        self.eps = eps
        self.dense_output = dense_output
        self.random_state = random_state

    @abstractmethod
    def _make_random_matrix(self, n_components, n_features):
        """ Generate the random projection matrix

        Parameters
        ----------
        n_components : int,
            Dimensionality of the target projection space.

        n_features : int,
            Dimensionality of the original source space.

        Returns
        -------
        components : numpy array or CSR matrix [n_components, n_features]
            The generated random matrix.

        """

    def fit(self, X, y=None):
        """Generate a sparse random projection matrix

        Parameters
        ----------
        X : numpy array or scipy.sparse of shape [n_samples, n_features]
            Training set: only the shape is used to find optimal random
            matrix dimensions based on the theory referenced in the
            afore mentioned papers.

        y
            Ignored

        Returns
        -------
        self

        """
        X = self._validate_data(X, accept_sparse=['csr', 'csc'])

        n_samples, n_features = X.shape

        if self.n_components == 'auto':
            self.n_components_ = johnson_lindenstrauss_min_dim(
                n_samples=n_samples, eps=self.eps)

            if self.n_components_ <= 0:
                raise ValueError(
                    'eps=%f and n_samples=%d lead to a target dimension of '
                    '%d which is invalid' % (
                        self.eps, n_samples, self.n_components_))

            elif self.n_components_ > n_features:
                raise ValueError(
                    'eps=%f and n_samples=%d lead to a target dimension of '
                    '%d which is larger than the original space with '
                    'n_features=%d' % (self.eps, n_samples, self.n_components_,
                                       n_features))
        else:
            if self.n_components <= 0:
                raise ValueError("n_components must be greater than 0, got %s"
                                 % self.n_components)

            elif self.n_components > n_features:
                warnings.warn(
                    "The number of components is higher than the number of"
                    " features: n_features < n_components (%s < %s)."
                    "The dimensionality of the problem will not be reduced."
                    % (n_features, self.n_components),
                    DataDimensionalityWarning)

            self.n_components_ = self.n_components

        # Generate a projection matrix of size [n_components, n_features]
        self.components_ = self._make_random_matrix(self.n_components_,
                                                    n_features)

        # Check contract
        assert self.components_.shape == (self.n_components_, n_features), (
                'An error has occurred the self.components_ matrix has '
                ' not the proper shape.')

        return self

    def transform(self, X):
        """Project the data by using matrix product with the random matrix

        Parameters
        ----------
        X : numpy array or scipy.sparse of shape [n_samples, n_features]
            The input data to project into a smaller dimensional space.

        Returns
        -------
        X_new : numpy array or scipy sparse of shape [n_samples, n_components]
            Projected array.
        """
        X = check_array(X, accept_sparse=['csr', 'csc'])

        check_is_fitted(self)

        if X.shape[1] != self.components_.shape[1]:
            raise ValueError(
                'Impossible to perform projection:'
                'X at fit stage had a different number of features. '
                '(%s != %s)' % (X.shape[1], self.components_.shape[1]))

        X_new = safe_sparse_dot(X, self.components_.T,
                                dense_output=self.dense_output)
        return X_new


class GaussianRandomProjection(BaseRandomProjection):
    """Reduce dimensionality through Gaussian random projection

    The components of the random matrix are drawn from N(0, 1 / n_components).

    Read more in the :ref:`User Guide <gaussian_random_matrix>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    n_components : int or 'auto', optional (default = 'auto')
        Dimensionality of the target projection space.

        n_components can be automatically adjusted according to the
        number of samples in the dataset and the bound given by the
        Johnson-Lindenstrauss lemma. In that case the quality of the
        embedding is controlled by the ``eps`` parameter.

        It should be noted that Johnson-Lindenstrauss lemma can yield
        very conservative estimated of the required number of components
        as it makes no assumption on the structure of the dataset.

    eps : strictly positive float, optional (default=0.1)
        Parameter to control the quality of the embedding according to
        the Johnson-Lindenstrauss lemma when n_components is set to
        'auto'.

        Smaller values lead to better embedding and higher number of
        dimensions (n_components) in the target projection space.

    random_state : int, RandomState instance or None, optional (default=None)
        Controls the pseudo random number generator used to generate the
        projection matrix at fit time.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    n_components_ : int
        Concrete number of components computed when n_components="auto".

    components_ : numpy array of shape [n_components, n_features]
        Random matrix used for the projection.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.random_projection import GaussianRandomProjection
    >>> rng = np.random.RandomState(42)
    >>> X = rng.rand(100, 10000)
    >>> transformer = GaussianRandomProjection(random_state=rng)
    >>> X_new = transformer.fit_transform(X)
    >>> X_new.shape
    (100, 3947)

    See Also
    --------
    SparseRandomProjection

    """
    @_deprecate_positional_args
    def __init__(self, n_components='auto', *, eps=0.1, random_state=None):
        super().__init__(
            n_components=n_components,
            eps=eps,
            dense_output=True,
            random_state=random_state)

    def _make_random_matrix(self, n_components, n_features):
        """ Generate the random projection matrix

        Parameters
        ----------
        n_components : int,
            Dimensionality of the target projection space.

        n_features : int,
            Dimensionality of the original source space.

        Returns
        -------
        components : numpy array or CSR matrix [n_components, n_features]
            The generated random matrix.

        """
        random_state = check_random_state(self.random_state)
        return _gaussian_random_matrix(n_components,
                                       n_features,
                                       random_state=random_state)


class SparseRandomProjection(BaseRandomProjection):
    """Reduce dimensionality through sparse random projection

    Sparse random matrix is an alternative to dense random
    projection matrix that guarantees similar embedding quality while being
    much more memory efficient and allowing faster computation of the
    projected data.

    If we note `s = 1 / density` the components of the random matrix are
    drawn from:

      - -sqrt(s) / sqrt(n_components)   with probability 1 / 2s
      -  0                              with probability 1 - 1 / s
      - +sqrt(s) / sqrt(n_components)   with probability 1 / 2s

    Read more in the :ref:`User Guide <sparse_random_matrix>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    n_components : int or 'auto', optional (default = 'auto')
        Dimensionality of the target projection space.

        n_components can be automatically adjusted according to the
        number of samples in the dataset and the bound given by the
        Johnson-Lindenstrauss lemma. In that case the quality of the
        embedding is controlled by the ``eps`` parameter.

        It should be noted that Johnson-Lindenstrauss lemma can yield
        very conservative estimated of the required number of components
        as it makes no assumption on the structure of the dataset.

    density : float in range ]0, 1], optional (default='auto')
        Ratio of non-zero component in the random projection matrix.

        If density = 'auto', the value is set to the minimum density
        as recommended by Ping Li et al.: 1 / sqrt(n_features).

        Use density = 1 / 3.0 if you want to reproduce the results from
        Achlioptas, 2001.

    eps : strictly positive float, optional, (default=0.1)
        Parameter to control the quality of the embedding according to
        the Johnson-Lindenstrauss lemma when n_components is set to
        'auto'.

        Smaller values lead to better embedding and higher number of
        dimensions (n_components) in the target projection space.

    dense_output : boolean, optional (default=False)
        If True, ensure that the output of the random projection is a
        dense numpy array even if the input and random projection matrix
        are both sparse. In practice, if the number of components is
        small the number of zero components in the projected data will
        be very small and it will be more CPU and memory efficient to
        use a dense representation.

        If False, the projected data uses a sparse representation if
        the input is sparse.

    random_state : int, RandomState instance or None, optional (default=None)
        Controls the pseudo random number generator used to generate the
        projection matrix at fit time.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    n_components_ : int
        Concrete number of components computed when n_components="auto".

    components_ : CSR matrix with shape [n_components, n_features]
        Random matrix used for the projection.

    density_ : float in range 0.0 - 1.0
        Concrete density computed from when density = "auto".

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.random_projection import SparseRandomProjection
    >>> rng = np.random.RandomState(42)
    >>> X = rng.rand(100, 10000)
    >>> transformer = SparseRandomProjection(random_state=rng)
    >>> X_new = transformer.fit_transform(X)
    >>> X_new.shape
    (100, 3947)
    >>> # very few components are non-zero
    >>> np.mean(transformer.components_ != 0)
    0.0100...

    See Also
    --------
    GaussianRandomProjection

    References
    ----------

    .. [1] Ping Li, T. Hastie and K. W. Church, 2006,
           "Very Sparse Random Projections".
           https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf

    .. [2] D. Achlioptas, 2001, "Database-friendly random projections",
           https://users.soe.ucsc.edu/~optas/papers/jl.pdf

    """
    @_deprecate_positional_args
    def __init__(self, n_components='auto', *, density='auto', eps=0.1,
                 dense_output=False, random_state=None):
        super().__init__(
            n_components=n_components,
            eps=eps,
            dense_output=dense_output,
            random_state=random_state)

        self.density = density

    def _make_random_matrix(self, n_components, n_features):
        """ Generate the random projection matrix

        Parameters
        ----------
        n_components : int,
            Dimensionality of the target projection space.

        n_features : int,
            Dimensionality of the original source space.

        Returns
        -------
        components : numpy array or CSR matrix [n_components, n_features]
            The generated random matrix.

        """
        random_state = check_random_state(self.random_state)
        self.density_ = _check_density(self.density, n_features)
        return _sparse_random_matrix(n_components,
                                     n_features,
                                     density=self.density_,
                                     random_state=random_state)