test_data.py 92.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
# Authors:
#
#          Giorgio Patrini
#
# License: BSD 3 clause

import warnings
import itertools

import numpy as np
import numpy.linalg as la
from scipy import sparse, stats
from scipy.sparse import random as sparse_random

import pytest

from sklearn.utils import gen_batches

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_less
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_no_warnings
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import skip_if_32bit
from sklearn.utils._testing import _convert_container

from sklearn.utils.sparsefuncs import mean_variance_axis
from sklearn.preprocessing._data import _handle_zeros_in_scale
from sklearn.preprocessing._data import Binarizer
from sklearn.preprocessing._data import KernelCenterer
from sklearn.preprocessing._data import Normalizer
from sklearn.preprocessing._data import normalize
from sklearn.preprocessing._data import StandardScaler
from sklearn.preprocessing._data import scale
from sklearn.preprocessing._data import MinMaxScaler
from sklearn.preprocessing._data import minmax_scale
from sklearn.preprocessing._data import QuantileTransformer
from sklearn.preprocessing._data import quantile_transform
from sklearn.preprocessing._data import MaxAbsScaler
from sklearn.preprocessing._data import maxabs_scale
from sklearn.preprocessing._data import RobustScaler
from sklearn.preprocessing._data import robust_scale
from sklearn.preprocessing._data import add_dummy_feature
from sklearn.preprocessing._data import PolynomialFeatures
from sklearn.preprocessing._data import PowerTransformer
from sklearn.preprocessing._data import power_transform
from sklearn.preprocessing._data import BOUNDS_THRESHOLD
from sklearn.exceptions import NotFittedError

from sklearn.base import clone
from sklearn.pipeline import Pipeline
from sklearn.model_selection import cross_val_predict
from sklearn.svm import SVR
from sklearn.utils import shuffle

from sklearn import datasets

iris = datasets.load_iris()

# Make some data to be used many times
rng = np.random.RandomState(0)
n_features = 30
n_samples = 1000
offsets = rng.uniform(-1, 1, size=n_features)
scales = rng.uniform(1, 10, size=n_features)
X_2d = rng.randn(n_samples, n_features) * scales + offsets
X_1row = X_2d[0, :].reshape(1, n_features)
X_1col = X_2d[:, 0].reshape(n_samples, 1)
X_list_1row = X_1row.tolist()
X_list_1col = X_1col.tolist()


def toarray(a):
    if hasattr(a, "toarray"):
        a = a.toarray()
    return a


def _check_dim_1axis(a):
    return np.asarray(a).shape[0]


def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size,
                        n_samples_seen):
    if batch_stop != n:
        assert (i + 1) * chunk_size == n_samples_seen
    else:
        assert (i * chunk_size + (batch_stop - batch_start) ==
                     n_samples_seen)


def test_polynomial_features():
    # Test Polynomial Features
    X1 = np.arange(6)[:, np.newaxis]
    P1 = np.hstack([np.ones_like(X1),
                    X1, X1 ** 2, X1 ** 3])
    deg1 = 3

    X2 = np.arange(6).reshape((3, 2))
    x1 = X2[:, :1]
    x2 = X2[:, 1:]
    P2 = np.hstack([x1 ** 0 * x2 ** 0,
                    x1 ** 1 * x2 ** 0,
                    x1 ** 0 * x2 ** 1,
                    x1 ** 2 * x2 ** 0,
                    x1 ** 1 * x2 ** 1,
                    x1 ** 0 * x2 ** 2])
    deg2 = 2

    for (deg, X, P) in [(deg1, X1, P1), (deg2, X2, P2)]:
        P_test = PolynomialFeatures(deg, include_bias=True).fit_transform(X)
        assert_array_almost_equal(P_test, P)

        P_test = PolynomialFeatures(deg, include_bias=False).fit_transform(X)
        assert_array_almost_equal(P_test, P[:, 1:])

    interact = PolynomialFeatures(2, interaction_only=True, include_bias=True)
    X_poly = interact.fit_transform(X)
    assert_array_almost_equal(X_poly, P2[:, [0, 1, 2, 4]])

    assert interact.powers_.shape == (interact.n_output_features_,
                                      interact.n_input_features_)


def test_polynomial_feature_names():
    X = np.arange(30).reshape(10, 3)
    poly = PolynomialFeatures(degree=2, include_bias=True).fit(X)
    feature_names = poly.get_feature_names()
    assert_array_equal(['1', 'x0', 'x1', 'x2', 'x0^2', 'x0 x1',
                        'x0 x2', 'x1^2', 'x1 x2', 'x2^2'],
                       feature_names)

    poly = PolynomialFeatures(degree=3, include_bias=False).fit(X)
    feature_names = poly.get_feature_names(["a", "b", "c"])
    assert_array_equal(['a', 'b', 'c', 'a^2', 'a b', 'a c', 'b^2',
                        'b c', 'c^2', 'a^3', 'a^2 b', 'a^2 c',
                        'a b^2', 'a b c', 'a c^2', 'b^3', 'b^2 c',
                        'b c^2', 'c^3'], feature_names)
    # test some unicode
    poly = PolynomialFeatures(degree=1, include_bias=True).fit(X)
    feature_names = poly.get_feature_names(
        ["\u0001F40D", "\u262E", "\u05D0"])
    assert_array_equal(["1", "\u0001F40D", "\u262E", "\u05D0"],
                       feature_names)


def test_polynomial_feature_array_order():
    X = np.arange(10).reshape(5, 2)

    def is_c_contiguous(a):
        return np.isfortran(a.T)

    assert is_c_contiguous(PolynomialFeatures().fit_transform(X))
    assert is_c_contiguous(PolynomialFeatures(order='C').fit_transform(X))
    assert np.isfortran(PolynomialFeatures(order='F').fit_transform(X))


@pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'],
                         [(1, True, False, int),
                          (2, True, False, int),
                          (2, True, False, np.float32),
                          (2, True, False, np.float64),
                          (3, False, False, np.float64),
                          (3, False, True, np.float64),
                          (4, False, False, np.float64),
                          (4, False, True, np.float64)])
def test_polynomial_features_csc_X(deg, include_bias, interaction_only, dtype):
    rng = np.random.RandomState(0)
    X = rng.randint(0, 2, (100, 2))
    X_csc = sparse.csc_matrix(X)

    est = PolynomialFeatures(deg, include_bias=include_bias,
                             interaction_only=interaction_only)
    Xt_csc = est.fit_transform(X_csc.astype(dtype))
    Xt_dense = est.fit_transform(X.astype(dtype))

    assert isinstance(Xt_csc, sparse.csc_matrix)
    assert Xt_csc.dtype == Xt_dense.dtype
    assert_array_almost_equal(Xt_csc.A, Xt_dense)


@pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'],
                         [(1, True, False, int),
                          (2, True, False, int),
                          (2, True, False, np.float32),
                          (2, True, False, np.float64),
                          (3, False, False, np.float64),
                          (3, False, True, np.float64)])
def test_polynomial_features_csr_X(deg, include_bias, interaction_only, dtype):
    rng = np.random.RandomState(0)
    X = rng.randint(0, 2, (100, 2))
    X_csr = sparse.csr_matrix(X)

    est = PolynomialFeatures(deg, include_bias=include_bias,
                             interaction_only=interaction_only)
    Xt_csr = est.fit_transform(X_csr.astype(dtype))
    Xt_dense = est.fit_transform(X.astype(dtype, copy=False))

    assert isinstance(Xt_csr, sparse.csr_matrix)
    assert Xt_csr.dtype == Xt_dense.dtype
    assert_array_almost_equal(Xt_csr.A, Xt_dense)


@pytest.mark.parametrize(['deg', 'include_bias', 'interaction_only', 'dtype'],
                         [(2, True, False, np.float32),
                          (2, True, False, np.float64),
                          (3, False, False, np.float64),
                          (3, False, True, np.float64)])
def test_polynomial_features_csr_X_floats(deg, include_bias,
                                          interaction_only, dtype):
    X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr()
    X = X_csr.toarray()

    est = PolynomialFeatures(deg, include_bias=include_bias,
                             interaction_only=interaction_only)
    Xt_csr = est.fit_transform(X_csr.astype(dtype))
    Xt_dense = est.fit_transform(X.astype(dtype))

    assert isinstance(Xt_csr, sparse.csr_matrix)
    assert Xt_csr.dtype == Xt_dense.dtype
    assert_array_almost_equal(Xt_csr.A, Xt_dense)


@pytest.mark.parametrize(['zero_row_index', 'deg', 'interaction_only'],
                         [(0, 2, True), (1, 2, True), (2, 2, True),
                          (0, 3, True), (1, 3, True), (2, 3, True),
                          (0, 2, False), (1, 2, False), (2, 2, False),
                          (0, 3, False), (1, 3, False), (2, 3, False)])
def test_polynomial_features_csr_X_zero_row(zero_row_index, deg,
                                            interaction_only):
    X_csr = sparse_random(3, 10, 1.0, random_state=0).tocsr()
    X_csr[zero_row_index, :] = 0.0
    X = X_csr.toarray()

    est = PolynomialFeatures(deg, include_bias=False,
                             interaction_only=interaction_only)
    Xt_csr = est.fit_transform(X_csr)
    Xt_dense = est.fit_transform(X)

    assert isinstance(Xt_csr, sparse.csr_matrix)
    assert Xt_csr.dtype == Xt_dense.dtype
    assert_array_almost_equal(Xt_csr.A, Xt_dense)


# This degree should always be one more than the highest degree supported by
# _csr_expansion.
@pytest.mark.parametrize(['include_bias', 'interaction_only'],
                         [(True, True), (True, False),
                          (False, True), (False, False)])
def test_polynomial_features_csr_X_degree_4(include_bias, interaction_only):
    X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr()
    X = X_csr.toarray()

    est = PolynomialFeatures(4, include_bias=include_bias,
                             interaction_only=interaction_only)
    Xt_csr = est.fit_transform(X_csr)
    Xt_dense = est.fit_transform(X)

    assert isinstance(Xt_csr, sparse.csr_matrix)
    assert Xt_csr.dtype == Xt_dense.dtype
    assert_array_almost_equal(Xt_csr.A, Xt_dense)


@pytest.mark.parametrize(['deg', 'dim', 'interaction_only'],
                         [(2, 1, True),
                          (2, 2, True),
                          (3, 1, True),
                          (3, 2, True),
                          (3, 3, True),
                          (2, 1, False),
                          (2, 2, False),
                          (3, 1, False),
                          (3, 2, False),
                          (3, 3, False)])
def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only):
    X_csr = sparse_random(1000, dim, 0.5, random_state=0).tocsr()
    X = X_csr.toarray()

    est = PolynomialFeatures(deg, interaction_only=interaction_only)
    Xt_csr = est.fit_transform(X_csr)
    Xt_dense = est.fit_transform(X)

    assert isinstance(Xt_csr, sparse.csr_matrix)
    assert Xt_csr.dtype == Xt_dense.dtype
    assert_array_almost_equal(Xt_csr.A, Xt_dense)


def test_standard_scaler_1d():
    # Test scaling of dataset along single axis
    for X in [X_1row, X_1col, X_list_1row, X_list_1row]:

        scaler = StandardScaler()
        X_scaled = scaler.fit(X).transform(X, copy=True)

        if isinstance(X, list):
            X = np.array(X)  # cast only after scaling done

        if _check_dim_1axis(X) == 1:
            assert_almost_equal(scaler.mean_, X.ravel())
            assert_almost_equal(scaler.scale_, np.ones(n_features))
            assert_array_almost_equal(X_scaled.mean(axis=0),
                                      np.zeros_like(n_features))
            assert_array_almost_equal(X_scaled.std(axis=0),
                                      np.zeros_like(n_features))
        else:
            assert_almost_equal(scaler.mean_, X.mean())
            assert_almost_equal(scaler.scale_, X.std())
            assert_array_almost_equal(X_scaled.mean(axis=0),
                                      np.zeros_like(n_features))
            assert_array_almost_equal(X_scaled.mean(axis=0), .0)
            assert_array_almost_equal(X_scaled.std(axis=0), 1.)
        assert scaler.n_samples_seen_ == X.shape[0]

        # check inverse transform
        X_scaled_back = scaler.inverse_transform(X_scaled)
        assert_array_almost_equal(X_scaled_back, X)

    # Constant feature
    X = np.ones((5, 1))
    scaler = StandardScaler()
    X_scaled = scaler.fit(X).transform(X, copy=True)
    assert_almost_equal(scaler.mean_, 1.)
    assert_almost_equal(scaler.scale_, 1.)
    assert_array_almost_equal(X_scaled.mean(axis=0), .0)
    assert_array_almost_equal(X_scaled.std(axis=0), .0)
    assert scaler.n_samples_seen_ == X.shape[0]


def test_standard_scaler_dtype():
    # Ensure scaling does not affect dtype
    rng = np.random.RandomState(0)
    n_samples = 10
    n_features = 3
    for dtype in [np.float16, np.float32, np.float64]:
        X = rng.randn(n_samples, n_features).astype(dtype)
        scaler = StandardScaler()
        X_scaled = scaler.fit(X).transform(X)
        assert X.dtype == X_scaled.dtype
        assert scaler.mean_.dtype == np.float64
        assert scaler.scale_.dtype == np.float64


def test_scale_1d():
    # 1-d inputs
    X_list = [1., 3., 5., 0.]
    X_arr = np.array(X_list)

    for X in [X_list, X_arr]:
        X_scaled = scale(X)
        assert_array_almost_equal(X_scaled.mean(), 0.0)
        assert_array_almost_equal(X_scaled.std(), 1.0)
        assert_array_equal(scale(X, with_mean=False, with_std=False), X)


@skip_if_32bit
def test_standard_scaler_numerical_stability():
    # Test numerical stability of scaling
    # np.log(1e-5) is taken because of its floating point representation
    # was empirically found to cause numerical problems with np.mean & np.std.

    x = np.full(8, np.log(1e-5), dtype=np.float64)
    # This does not raise a warning as the number of samples is too low
    # to trigger the problem in recent numpy
    x_scaled = assert_no_warnings(scale, x)
    assert_array_almost_equal(scale(x), np.zeros(8))

    # with 2 more samples, the std computation run into numerical issues:
    x = np.full(10, np.log(1e-5), dtype=np.float64)
    w = "standard deviation of the data is probably very close to 0"
    x_scaled = assert_warns_message(UserWarning, w, scale, x)
    assert_array_almost_equal(x_scaled, np.zeros(10))

    x = np.full(10, 1e-100, dtype=np.float64)
    x_small_scaled = assert_no_warnings(scale, x)
    assert_array_almost_equal(x_small_scaled, np.zeros(10))

    # Large values can cause (often recoverable) numerical stability issues:
    x_big = np.full(10, 1e100, dtype=np.float64)
    w = "Dataset may contain too large values"
    x_big_scaled = assert_warns_message(UserWarning, w, scale, x_big)
    assert_array_almost_equal(x_big_scaled, np.zeros(10))
    assert_array_almost_equal(x_big_scaled, x_small_scaled)

    x_big_centered = assert_warns_message(UserWarning, w, scale, x_big,
                                          with_std=False)
    assert_array_almost_equal(x_big_centered, np.zeros(10))
    assert_array_almost_equal(x_big_centered, x_small_scaled)


def test_scaler_2d_arrays():
    # Test scaling of 2d array along first axis
    rng = np.random.RandomState(0)
    n_features = 5
    n_samples = 4
    X = rng.randn(n_samples, n_features)
    X[:, 0] = 0.0  # first feature is always of zero

    scaler = StandardScaler()
    X_scaled = scaler.fit(X).transform(X, copy=True)
    assert not np.any(np.isnan(X_scaled))
    assert scaler.n_samples_seen_ == n_samples

    assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
    # Check that X has been copied
    assert X_scaled is not X

    # check inverse transform
    X_scaled_back = scaler.inverse_transform(X_scaled)
    assert X_scaled_back is not X
    assert X_scaled_back is not X_scaled
    assert_array_almost_equal(X_scaled_back, X)

    X_scaled = scale(X, axis=1, with_std=False)
    assert not np.any(np.isnan(X_scaled))
    assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0])
    X_scaled = scale(X, axis=1, with_std=True)
    assert not np.any(np.isnan(X_scaled))
    assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0])
    assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0])
    # Check that the data hasn't been modified
    assert X_scaled is not X

    X_scaled = scaler.fit(X).transform(X, copy=False)
    assert not np.any(np.isnan(X_scaled))
    assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
    # Check that X has not been copied
    assert X_scaled is X

    X = rng.randn(4, 5)
    X[:, 0] = 1.0  # first feature is a constant, non zero feature
    scaler = StandardScaler()
    X_scaled = scaler.fit(X).transform(X, copy=True)
    assert not np.any(np.isnan(X_scaled))
    assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0])
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
    # Check that X has not been copied
    assert X_scaled is not X


def test_scaler_float16_overflow():
    # Test if the scaler will not overflow on float16 numpy arrays
    rng = np.random.RandomState(0)
    # float16 has a maximum of 65500.0. On the worst case 5 * 200000 is 100000
    # which is enough to overflow the data type
    X = rng.uniform(5, 10, [200000, 1]).astype(np.float16)

    with np.errstate(over='raise'):
        scaler = StandardScaler().fit(X)
        X_scaled = scaler.transform(X)

    # Calculate the float64 equivalent to verify result
    X_scaled_f64 = StandardScaler().fit_transform(X.astype(np.float64))

    # Overflow calculations may cause -inf, inf, or nan. Since there is no nan
    # input, all of the outputs should be finite. This may be redundant since a
    # FloatingPointError exception will be thrown on overflow above.
    assert np.all(np.isfinite(X_scaled))

    # The normal distribution is very unlikely to go above 4. At 4.0-8.0 the
    # float16 precision is 2^-8 which is around 0.004. Thus only 2 decimals are
    # checked to account for precision differences.
    assert_array_almost_equal(X_scaled, X_scaled_f64, decimal=2)


def test_handle_zeros_in_scale():
    s1 = np.array([0, 1, 2, 3])
    s2 = _handle_zeros_in_scale(s1, copy=True)

    assert not s1[0] == s2[0]
    assert_array_equal(s1, np.array([0, 1, 2, 3]))
    assert_array_equal(s2, np.array([1, 1, 2, 3]))


def test_minmax_scaler_partial_fit():
    # Test if partial_fit run over many batches of size 1 and 50
    # gives the same results as fit
    X = X_2d
    n = X.shape[0]

    for chunk_size in [1, 2, 50, n, n + 42]:
        # Test mean at the end of the process
        scaler_batch = MinMaxScaler().fit(X)

        scaler_incr = MinMaxScaler()
        for batch in gen_batches(n_samples, chunk_size):
            scaler_incr = scaler_incr.partial_fit(X[batch])

        assert_array_almost_equal(scaler_batch.data_min_,
                                  scaler_incr.data_min_)
        assert_array_almost_equal(scaler_batch.data_max_,
                                  scaler_incr.data_max_)
        assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
        assert_array_almost_equal(scaler_batch.data_range_,
                                  scaler_incr.data_range_)
        assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
        assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_)

        # Test std after 1 step
        batch0 = slice(0, chunk_size)
        scaler_batch = MinMaxScaler().fit(X[batch0])
        scaler_incr = MinMaxScaler().partial_fit(X[batch0])

        assert_array_almost_equal(scaler_batch.data_min_,
                                  scaler_incr.data_min_)
        assert_array_almost_equal(scaler_batch.data_max_,
                                  scaler_incr.data_max_)
        assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
        assert_array_almost_equal(scaler_batch.data_range_,
                                  scaler_incr.data_range_)
        assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
        assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_)

        # Test std until the end of partial fits, and
        scaler_batch = MinMaxScaler().fit(X)
        scaler_incr = MinMaxScaler()  # Clean estimator
        for i, batch in enumerate(gen_batches(n_samples, chunk_size)):
            scaler_incr = scaler_incr.partial_fit(X[batch])
            assert_correct_incr(i, batch_start=batch.start,
                                batch_stop=batch.stop, n=n,
                                chunk_size=chunk_size,
                                n_samples_seen=scaler_incr.n_samples_seen_)


def test_standard_scaler_partial_fit():
    # Test if partial_fit run over many batches of size 1 and 50
    # gives the same results as fit
    X = X_2d
    n = X.shape[0]

    for chunk_size in [1, 2, 50, n, n + 42]:
        # Test mean at the end of the process
        scaler_batch = StandardScaler(with_std=False).fit(X)

        scaler_incr = StandardScaler(with_std=False)
        for batch in gen_batches(n_samples, chunk_size):
            scaler_incr = scaler_incr.partial_fit(X[batch])

        assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_)
        assert scaler_batch.var_ == scaler_incr.var_  # Nones
        assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_

        # Test std after 1 step
        batch0 = slice(0, chunk_size)
        scaler_incr = StandardScaler().partial_fit(X[batch0])
        if chunk_size == 1:
            assert_array_almost_equal(np.zeros(n_features, dtype=np.float64),
                                      scaler_incr.var_)
            assert_array_almost_equal(np.ones(n_features, dtype=np.float64),
                                      scaler_incr.scale_)
        else:
            assert_array_almost_equal(np.var(X[batch0], axis=0),
                                      scaler_incr.var_)
            assert_array_almost_equal(np.std(X[batch0], axis=0),
                                      scaler_incr.scale_)  # no constants

        # Test std until the end of partial fits, and
        scaler_batch = StandardScaler().fit(X)
        scaler_incr = StandardScaler()  # Clean estimator
        for i, batch in enumerate(gen_batches(n_samples, chunk_size)):
            scaler_incr = scaler_incr.partial_fit(X[batch])
            assert_correct_incr(i, batch_start=batch.start,
                                batch_stop=batch.stop, n=n,
                                chunk_size=chunk_size,
                                n_samples_seen=scaler_incr.n_samples_seen_)

        assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_)
        assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_


def test_standard_scaler_partial_fit_numerical_stability():
    # Test if the incremental computation introduces significative errors
    # for large datasets with values of large magniture
    rng = np.random.RandomState(0)
    n_features = 2
    n_samples = 100
    offsets = rng.uniform(-1e15, 1e15, size=n_features)
    scales = rng.uniform(1e3, 1e6, size=n_features)
    X = rng.randn(n_samples, n_features) * scales + offsets

    scaler_batch = StandardScaler().fit(X)
    scaler_incr = StandardScaler()
    for chunk in X:
        scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features))

    # Regardless of abs values, they must not be more diff 6 significant digits
    tol = 10 ** (-6)
    assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol)
    assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol)
    assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol)
    # NOTE Be aware that for much larger offsets std is very unstable (last
    # assert) while mean is OK.

    # Sparse input
    size = (100, 3)
    scale = 1e20
    X = rng.randint(0, 2, size).astype(np.float64) * scale
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)

    for X in [X_csr, X_csc]:
        # with_mean=False is required with sparse input
        scaler = StandardScaler(with_mean=False).fit(X)
        scaler_incr = StandardScaler(with_mean=False)

        for chunk in X:
            # chunk = sparse.csr_matrix(data_chunks)
            scaler_incr = scaler_incr.partial_fit(chunk)

        # Regardless of magnitude, they must not differ more than of 6 digits
        tol = 10 ** (-6)
        assert scaler.mean_ is not None
        assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol)
        assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol)


def test_partial_fit_sparse_input():
    # Check that sparsity is not destroyed
    X = np.array([[1.], [0.], [0.], [5.]])
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)

    null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
    for X in [X_csr, X_csc]:

        X_null = null_transform.partial_fit(X).transform(X)
        assert_array_equal(X_null.data, X.data)
        X_orig = null_transform.inverse_transform(X_null)
        assert_array_equal(X_orig.data, X_null.data)
        assert_array_equal(X_orig.data, X.data)


def test_standard_scaler_trasform_with_partial_fit():
    # Check some postconditions after applying partial_fit and transform
    X = X_2d[:100, :]

    scaler_incr = StandardScaler()
    for i, batch in enumerate(gen_batches(X.shape[0], 1)):

        X_sofar = X[:(i + 1), :]
        chunks_copy = X_sofar.copy()
        scaled_batch = StandardScaler().fit_transform(X_sofar)

        scaler_incr = scaler_incr.partial_fit(X[batch])
        scaled_incr = scaler_incr.transform(X_sofar)

        assert_array_almost_equal(scaled_batch, scaled_incr)
        assert_array_almost_equal(X_sofar, chunks_copy)  # No change
        right_input = scaler_incr.inverse_transform(scaled_incr)
        assert_array_almost_equal(X_sofar, right_input)

        zero = np.zeros(X.shape[1])
        epsilon = np.finfo(float).eps
        assert_array_less(zero, scaler_incr.var_ + epsilon)  # as less or equal
        assert_array_less(zero, scaler_incr.scale_ + epsilon)
        # (i+1) because the Scaler has been already fitted
        assert (i + 1) == scaler_incr.n_samples_seen_


def test_min_max_scaler_iris():
    X = iris.data
    scaler = MinMaxScaler()
    # default params
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(X_trans.min(axis=0), 0)
    assert_array_almost_equal(X_trans.max(axis=0), 1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # not default params: min=1, max=2
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(X_trans.min(axis=0), 1)
    assert_array_almost_equal(X_trans.max(axis=0), 2)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # min=-.5, max=.6
    scaler = MinMaxScaler(feature_range=(-.5, .6))
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(X_trans.min(axis=0), -.5)
    assert_array_almost_equal(X_trans.max(axis=0), .6)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # raises on invalid range
    scaler = MinMaxScaler(feature_range=(2, 1))
    with pytest.raises(ValueError):
        scaler.fit(X)


def test_min_max_scaler_zero_variance_features():
    # Check min max scaler on toy data with zero variance features
    X = [[0., 1., +0.5],
         [0., 1., -0.1],
         [0., 1., +1.1]]

    X_new = [[+0., 2., 0.5],
             [-1., 1., 0.0],
             [+0., 1., 1.5]]

    # default params
    scaler = MinMaxScaler()
    X_trans = scaler.fit_transform(X)
    X_expected_0_1 = [[0., 0., 0.5],
                      [0., 0., 0.0],
                      [0., 0., 1.0]]
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    X_trans_new = scaler.transform(X_new)
    X_expected_0_1_new = [[+0., 1., 0.500],
                          [-1., 0., 0.083],
                          [+0., 0., 1.333]]
    assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2)

    # not default params
    scaler = MinMaxScaler(feature_range=(1, 2))
    X_trans = scaler.fit_transform(X)
    X_expected_1_2 = [[1., 1., 1.5],
                      [1., 1., 1.0],
                      [1., 1., 2.0]]
    assert_array_almost_equal(X_trans, X_expected_1_2)

    # function interface
    X_trans = minmax_scale(X)
    assert_array_almost_equal(X_trans, X_expected_0_1)
    X_trans = minmax_scale(X, feature_range=(1, 2))
    assert_array_almost_equal(X_trans, X_expected_1_2)


def test_minmax_scale_axis1():
    X = iris.data
    X_trans = minmax_scale(X, axis=1)
    assert_array_almost_equal(np.min(X_trans, axis=1), 0)
    assert_array_almost_equal(np.max(X_trans, axis=1), 1)


def test_min_max_scaler_1d():
    # Test scaling of dataset along single axis
    for X in [X_1row, X_1col, X_list_1row, X_list_1row]:

        scaler = MinMaxScaler(copy=True)
        X_scaled = scaler.fit(X).transform(X)

        if isinstance(X, list):
            X = np.array(X)  # cast only after scaling done

        if _check_dim_1axis(X) == 1:
            assert_array_almost_equal(X_scaled.min(axis=0),
                                      np.zeros(n_features))
            assert_array_almost_equal(X_scaled.max(axis=0),
                                      np.zeros(n_features))
        else:
            assert_array_almost_equal(X_scaled.min(axis=0), .0)
            assert_array_almost_equal(X_scaled.max(axis=0), 1.)
        assert scaler.n_samples_seen_ == X.shape[0]

        # check inverse transform
        X_scaled_back = scaler.inverse_transform(X_scaled)
        assert_array_almost_equal(X_scaled_back, X)

    # Constant feature
    X = np.ones((5, 1))
    scaler = MinMaxScaler()
    X_scaled = scaler.fit(X).transform(X)
    assert X_scaled.min() >= 0.
    assert X_scaled.max() <= 1.
    assert scaler.n_samples_seen_ == X.shape[0]

    # Function interface
    X_1d = X_1row.ravel()
    min_ = X_1d.min()
    max_ = X_1d.max()
    assert_array_almost_equal((X_1d - min_) / (max_ - min_),
                              minmax_scale(X_1d, copy=True))


def test_scaler_without_centering():
    rng = np.random.RandomState(42)
    X = rng.randn(4, 5)
    X[:, 0] = 0.0  # first feature is always of zero
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)

    with pytest.raises(ValueError):
        StandardScaler().fit(X_csr)
    with pytest.raises(ValueError):
        StandardScaler().fit(X_csc)

    null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
    X_null = null_transform.fit_transform(X_csr)
    assert_array_equal(X_null.data, X_csr.data)
    X_orig = null_transform.inverse_transform(X_null)
    assert_array_equal(X_orig.data, X_csr.data)

    scaler = StandardScaler(with_mean=False).fit(X)
    X_scaled = scaler.transform(X, copy=True)
    assert not np.any(np.isnan(X_scaled))

    scaler_csr = StandardScaler(with_mean=False).fit(X_csr)
    X_csr_scaled = scaler_csr.transform(X_csr, copy=True)
    assert not np.any(np.isnan(X_csr_scaled.data))

    scaler_csc = StandardScaler(with_mean=False).fit(X_csc)
    X_csc_scaled = scaler_csc.transform(X_csc, copy=True)
    assert not np.any(np.isnan(X_csc_scaled.data))

    assert_array_almost_equal(scaler.mean_, scaler_csr.mean_)
    assert_array_almost_equal(scaler.var_, scaler_csr.var_)
    assert_array_almost_equal(scaler.scale_, scaler_csr.scale_)

    assert_array_almost_equal(scaler.mean_, scaler_csc.mean_)
    assert_array_almost_equal(scaler.var_, scaler_csc.var_)
    assert_array_almost_equal(scaler.scale_, scaler_csc.scale_)

    assert_array_almost_equal(
        X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2)
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])

    X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0)
    assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
    assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))

    # Check that X has not been modified (copy)
    assert X_scaled is not X
    assert X_csr_scaled is not X_csr

    X_scaled_back = scaler.inverse_transform(X_scaled)
    assert X_scaled_back is not X
    assert X_scaled_back is not X_scaled
    assert_array_almost_equal(X_scaled_back, X)

    X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled)
    assert X_csr_scaled_back is not X_csr
    assert X_csr_scaled_back is not X_csr_scaled
    assert_array_almost_equal(X_csr_scaled_back.toarray(), X)

    X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc())
    assert X_csc_scaled_back is not X_csc
    assert X_csc_scaled_back is not X_csc_scaled
    assert_array_almost_equal(X_csc_scaled_back.toarray(), X)


@pytest.mark.parametrize("with_mean", [True, False])
@pytest.mark.parametrize("with_std", [True, False])
@pytest.mark.parametrize("array_constructor",
                         [np.asarray, sparse.csc_matrix, sparse.csr_matrix])
def test_scaler_n_samples_seen_with_nan(with_mean, with_std,
                                        array_constructor):
    X = np.array([[0, 1, 3],
                  [np.nan, 6, 10],
                  [5, 4, np.nan],
                  [8, 0, np.nan]],
                 dtype=np.float64)
    X = array_constructor(X)

    if sparse.issparse(X) and with_mean:
        pytest.skip("'with_mean=True' cannot be used with sparse matrix.")

    transformer = StandardScaler(with_mean=with_mean, with_std=with_std)
    transformer.fit(X)

    assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2]))


def _check_identity_scalers_attributes(scaler_1, scaler_2):
    assert scaler_1.mean_ is scaler_2.mean_ is None
    assert scaler_1.var_ is scaler_2.var_ is None
    assert scaler_1.scale_ is scaler_2.scale_ is None
    assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_


def test_scaler_return_identity():
    # test that the scaler return identity when with_mean and with_std are
    # False
    X_dense = np.array([[0, 1, 3],
                        [5, 6, 0],
                        [8, 0, 10]],
                       dtype=np.float64)
    X_csr = sparse.csr_matrix(X_dense)
    X_csc = X_csr.tocsc()

    transformer_dense = StandardScaler(with_mean=False, with_std=False)
    X_trans_dense = transformer_dense.fit_transform(X_dense)

    transformer_csr = clone(transformer_dense)
    X_trans_csr = transformer_csr.fit_transform(X_csr)

    transformer_csc = clone(transformer_dense)
    X_trans_csc = transformer_csc.fit_transform(X_csc)

    assert_allclose_dense_sparse(X_trans_csr, X_csr)
    assert_allclose_dense_sparse(X_trans_csc, X_csc)
    assert_allclose(X_trans_dense, X_dense)

    for trans_1, trans_2 in itertools.combinations([transformer_dense,
                                                    transformer_csr,
                                                    transformer_csc],
                                                   2):
        _check_identity_scalers_attributes(trans_1, trans_2)

    transformer_dense.partial_fit(X_dense)
    transformer_csr.partial_fit(X_csr)
    transformer_csc.partial_fit(X_csc)

    for trans_1, trans_2 in itertools.combinations([transformer_dense,
                                                    transformer_csr,
                                                    transformer_csc],
                                                   2):
        _check_identity_scalers_attributes(trans_1, trans_2)

    transformer_dense.fit(X_dense)
    transformer_csr.fit(X_csr)
    transformer_csc.fit(X_csc)

    for trans_1, trans_2 in itertools.combinations([transformer_dense,
                                                    transformer_csr,
                                                    transformer_csc],
                                                   2):
        _check_identity_scalers_attributes(trans_1, trans_2)


def test_scaler_int():
    # test that scaler converts integer input to floating
    # for both sparse and dense matrices
    rng = np.random.RandomState(42)
    X = rng.randint(20, size=(4, 5))
    X[:, 0] = 0  # first feature is always of zero
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)

    null_transform = StandardScaler(with_mean=False, with_std=False, copy=True)
    with warnings.catch_warnings(record=True):
        X_null = null_transform.fit_transform(X_csr)
    assert_array_equal(X_null.data, X_csr.data)
    X_orig = null_transform.inverse_transform(X_null)
    assert_array_equal(X_orig.data, X_csr.data)

    with warnings.catch_warnings(record=True):
        scaler = StandardScaler(with_mean=False).fit(X)
        X_scaled = scaler.transform(X, copy=True)
    assert not np.any(np.isnan(X_scaled))

    with warnings.catch_warnings(record=True):
        scaler_csr = StandardScaler(with_mean=False).fit(X_csr)
        X_csr_scaled = scaler_csr.transform(X_csr, copy=True)
    assert not np.any(np.isnan(X_csr_scaled.data))

    with warnings.catch_warnings(record=True):
        scaler_csc = StandardScaler(with_mean=False).fit(X_csc)
        X_csc_scaled = scaler_csc.transform(X_csc, copy=True)
    assert not np.any(np.isnan(X_csc_scaled.data))

    assert_array_almost_equal(scaler.mean_, scaler_csr.mean_)
    assert_array_almost_equal(scaler.var_, scaler_csr.var_)
    assert_array_almost_equal(scaler.scale_, scaler_csr.scale_)

    assert_array_almost_equal(scaler.mean_, scaler_csc.mean_)
    assert_array_almost_equal(scaler.var_, scaler_csc.var_)
    assert_array_almost_equal(scaler.scale_, scaler_csc.scale_)

    assert_array_almost_equal(
        X_scaled.mean(axis=0),
        [0., 1.109, 1.856, 21., 1.559], 2)
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])

    X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(
        X_csr_scaled.astype(np.float), 0)
    assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
    assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))

    # Check that X has not been modified (copy)
    assert X_scaled is not X
    assert X_csr_scaled is not X_csr

    X_scaled_back = scaler.inverse_transform(X_scaled)
    assert X_scaled_back is not X
    assert X_scaled_back is not X_scaled
    assert_array_almost_equal(X_scaled_back, X)

    X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled)
    assert X_csr_scaled_back is not X_csr
    assert X_csr_scaled_back is not X_csr_scaled
    assert_array_almost_equal(X_csr_scaled_back.toarray(), X)

    X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc())
    assert X_csc_scaled_back is not X_csc
    assert X_csc_scaled_back is not X_csc_scaled
    assert_array_almost_equal(X_csc_scaled_back.toarray(), X)


def test_scaler_without_copy():
    # Check that StandardScaler.fit does not change input
    rng = np.random.RandomState(42)
    X = rng.randn(4, 5)
    X[:, 0] = 0.0  # first feature is always of zero
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)

    X_copy = X.copy()
    StandardScaler(copy=False).fit(X)
    assert_array_equal(X, X_copy)

    X_csr_copy = X_csr.copy()
    StandardScaler(with_mean=False, copy=False).fit(X_csr)
    assert_array_equal(X_csr.toarray(), X_csr_copy.toarray())

    X_csc_copy = X_csc.copy()
    StandardScaler(with_mean=False, copy=False).fit(X_csc)
    assert_array_equal(X_csc.toarray(), X_csc_copy.toarray())


def test_scale_sparse_with_mean_raise_exception():
    rng = np.random.RandomState(42)
    X = rng.randn(4, 5)
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)

    # check scaling and fit with direct calls on sparse data
    with pytest.raises(ValueError):
        scale(X_csr, with_mean=True)
    with pytest.raises(ValueError):
        StandardScaler(with_mean=True).fit(X_csr)

    with pytest.raises(ValueError):
        scale(X_csc, with_mean=True)
    with pytest.raises(ValueError):
        StandardScaler(with_mean=True).fit(X_csc)

    # check transform and inverse_transform after a fit on a dense array
    scaler = StandardScaler(with_mean=True).fit(X)
    with pytest.raises(ValueError):
        scaler.transform(X_csr)
    with pytest.raises(ValueError):
        scaler.transform(X_csc)

    X_transformed_csr = sparse.csr_matrix(scaler.transform(X))
    with pytest.raises(ValueError):
        scaler.inverse_transform(X_transformed_csr)

    X_transformed_csc = sparse.csc_matrix(scaler.transform(X))
    with pytest.raises(ValueError):
        scaler.inverse_transform(X_transformed_csc)


def test_scale_input_finiteness_validation():
    # Check if non finite inputs raise ValueError
    X = [[np.inf, 5, 6, 7, 8]]
    with pytest.raises(ValueError, match="Input contains infinity "
                       "or a value too large"):
        scale(X)


def test_robust_scaler_error_sparse():
    X_sparse = sparse.rand(1000, 10)
    scaler = RobustScaler(with_centering=True)
    err_msg = "Cannot center sparse matrices"
    with pytest.raises(ValueError, match=err_msg):
        scaler.fit(X_sparse)


@pytest.mark.parametrize("with_centering", [True, False])
@pytest.mark.parametrize("with_scaling", [True, False])
@pytest.mark.parametrize("X", [np.random.randn(10, 3),
                               sparse.rand(10, 3, density=0.5)])
def test_robust_scaler_attributes(X, with_centering, with_scaling):
    # check consistent type of attributes
    if with_centering and sparse.issparse(X):
        pytest.skip("RobustScaler cannot center sparse matrix")

    scaler = RobustScaler(with_centering=with_centering,
                          with_scaling=with_scaling)
    scaler.fit(X)

    if with_centering:
        assert isinstance(scaler.center_, np.ndarray)
    else:
        assert scaler.center_ is None
    if with_scaling:
        assert isinstance(scaler.scale_, np.ndarray)
    else:
        assert scaler.scale_ is None


def test_robust_scaler_col_zero_sparse():
    # check that the scaler is working when there is not data materialized in a
    # column of a sparse matrix
    X = np.random.randn(10, 5)
    X[:, 0] = 0
    X = sparse.csr_matrix(X)

    scaler = RobustScaler(with_centering=False)
    scaler.fit(X)
    assert scaler.scale_[0] == pytest.approx(1)

    X_trans = scaler.transform(X)
    assert_allclose(X[:, 0].toarray(), X_trans[:, 0].toarray())


def test_robust_scaler_2d_arrays():
    # Test robust scaling of 2d array along first axis
    rng = np.random.RandomState(0)
    X = rng.randn(4, 5)
    X[:, 0] = 0.0  # first feature is always of zero

    scaler = RobustScaler()
    X_scaled = scaler.fit(X).transform(X)

    assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0])
    assert_array_almost_equal(X_scaled.std(axis=0)[0], 0)


@pytest.mark.parametrize("density", [0, 0.05, 0.1, 0.5, 1])
@pytest.mark.parametrize("strictly_signed",
                         ['positive', 'negative', 'zeros', None])
def test_robust_scaler_equivalence_dense_sparse(density, strictly_signed):
    # Check the equivalence of the fitting with dense and sparse matrices
    X_sparse = sparse.rand(1000, 5, density=density).tocsc()
    if strictly_signed == 'positive':
        X_sparse.data = np.abs(X_sparse.data)
    elif strictly_signed == 'negative':
        X_sparse.data = - np.abs(X_sparse.data)
    elif strictly_signed == 'zeros':
        X_sparse.data = np.zeros(X_sparse.data.shape, dtype=np.float64)
    X_dense = X_sparse.toarray()

    scaler_sparse = RobustScaler(with_centering=False)
    scaler_dense = RobustScaler(with_centering=False)

    scaler_sparse.fit(X_sparse)
    scaler_dense.fit(X_dense)

    assert_allclose(scaler_sparse.scale_, scaler_dense.scale_)


def test_robust_scaler_transform_one_row_csr():
    # Check RobustScaler on transforming csr matrix with one row
    rng = np.random.RandomState(0)
    X = rng.randn(4, 5)
    single_row = np.array([[0.1, 1., 2., 0., -1.]])
    scaler = RobustScaler(with_centering=False)
    scaler = scaler.fit(X)
    row_trans = scaler.transform(sparse.csr_matrix(single_row))
    row_expected = single_row / scaler.scale_
    assert_array_almost_equal(row_trans.toarray(), row_expected)
    row_scaled_back = scaler.inverse_transform(row_trans)
    assert_array_almost_equal(single_row, row_scaled_back.toarray())


def test_robust_scaler_iris():
    X = iris.data
    scaler = RobustScaler()
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(np.median(X_trans, axis=0), 0)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)
    q = np.percentile(X_trans, q=(25, 75), axis=0)
    iqr = q[1] - q[0]
    assert_array_almost_equal(iqr, 1)


def test_robust_scaler_iris_quantiles():
    X = iris.data
    scaler = RobustScaler(quantile_range=(10, 90))
    X_trans = scaler.fit_transform(X)
    assert_array_almost_equal(np.median(X_trans, axis=0), 0)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)
    q = np.percentile(X_trans, q=(10, 90), axis=0)
    q_range = q[1] - q[0]
    assert_array_almost_equal(q_range, 1)


def test_quantile_transform_iris():
    X = iris.data
    # uniform output distribution
    transformer = QuantileTransformer(n_quantiles=30)
    X_trans = transformer.fit_transform(X)
    X_trans_inv = transformer.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)
    # normal output distribution
    transformer = QuantileTransformer(n_quantiles=30,
                                      output_distribution='normal')
    X_trans = transformer.fit_transform(X)
    X_trans_inv = transformer.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)
    # make sure it is possible to take the inverse of a sparse matrix
    # which contain negative value; this is the case in the iris dataset
    X_sparse = sparse.csc_matrix(X)
    X_sparse_tran = transformer.fit_transform(X_sparse)
    X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran)
    assert_array_almost_equal(X_sparse.A, X_sparse_tran_inv.A)


def test_quantile_transform_check_error():
    X = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
                      [2, 4, 0, 0, 6, 8, 0, 10, 0, 0],
                      [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]])
    X = sparse.csc_matrix(X)
    X_neg = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
                          [-2, 4, 0, 0, 6, 8, 0, 10, 0, 0],
                          [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]])
    X_neg = sparse.csc_matrix(X_neg)

    err_msg = "Invalid value for 'n_quantiles': 0."
    with pytest.raises(ValueError, match=err_msg):
        QuantileTransformer(n_quantiles=0).fit(X)
    err_msg = "Invalid value for 'subsample': 0."
    with pytest.raises(ValueError, match=err_msg):
        QuantileTransformer(subsample=0).fit(X)
    err_msg = ("The number of quantiles cannot be greater than "
               "the number of samples used. Got 1000 quantiles "
               "and 10 samples.")
    with pytest.raises(ValueError, match=err_msg):
        QuantileTransformer(subsample=10).fit(X)

    transformer = QuantileTransformer(n_quantiles=10)
    err_msg = "QuantileTransformer only accepts non-negative sparse matrices."
    with pytest.raises(ValueError, match=err_msg):
        transformer.fit(X_neg)
    transformer.fit(X)
    err_msg = "QuantileTransformer only accepts non-negative sparse matrices."
    with pytest.raises(ValueError, match=err_msg):
        transformer.transform(X_neg)

    X_bad_feat = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100],
                               [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]])
    err_msg = ("X does not have the same number of features as the previously"
               " fitted " "data. Got 2 instead of 3.")
    with pytest.raises(ValueError, match=err_msg):
        transformer.transform(X_bad_feat)
    err_msg = ("X does not have the same number of features "
               "as the previously fitted data. Got 2 instead of 3.")
    with pytest.raises(ValueError, match=err_msg):
        transformer.inverse_transform(X_bad_feat)

    transformer = QuantileTransformer(n_quantiles=10,
                                      output_distribution='rnd')
    # check that an error is raised at fit time
    err_msg = ("'output_distribution' has to be either 'normal' or "
               "'uniform'. Got 'rnd' instead.")
    with pytest.raises(ValueError, match=err_msg):
        transformer.fit(X)
    # check that an error is raised at transform time
    transformer.output_distribution = 'uniform'
    transformer.fit(X)
    X_tran = transformer.transform(X)
    transformer.output_distribution = 'rnd'
    err_msg = ("'output_distribution' has to be either 'normal' or 'uniform'."
               " Got 'rnd' instead.")
    with pytest.raises(ValueError, match=err_msg):
        transformer.transform(X)
    # check that an error is raised at inverse_transform time
    err_msg = ("'output_distribution' has to be either 'normal' or 'uniform'."
               " Got 'rnd' instead.")
    with pytest.raises(ValueError, match=err_msg):
        transformer.inverse_transform(X_tran)
    # check that an error is raised if input is scalar
    with pytest.raises(ValueError,
                       match='Expected 2D array, got scalar array instead'):
        transformer.transform(10)
    # check that a warning is raised is n_quantiles > n_samples
    transformer = QuantileTransformer(n_quantiles=100)
    warn_msg = "n_quantiles is set to n_samples"
    with pytest.warns(UserWarning, match=warn_msg) as record:
        transformer.fit(X)
    assert len(record) == 1
    assert transformer.n_quantiles_ == X.shape[0]


def test_quantile_transform_sparse_ignore_zeros():
    X = np.array([[0, 1],
                  [0, 0],
                  [0, 2],
                  [0, 2],
                  [0, 1]])
    X_sparse = sparse.csc_matrix(X)
    transformer = QuantileTransformer(ignore_implicit_zeros=True,
                                      n_quantiles=5)

    # dense case -> warning raise
    assert_warns_message(UserWarning, "'ignore_implicit_zeros' takes effect"
                         " only with sparse matrix. This parameter has no"
                         " effect.", transformer.fit, X)

    X_expected = np.array([[0, 0],
                           [0, 0],
                           [0, 1],
                           [0, 1],
                           [0, 0]])
    X_trans = transformer.fit_transform(X_sparse)
    assert_almost_equal(X_expected, X_trans.A)

    # consider the case where sparse entries are missing values and user-given
    # zeros are to be considered
    X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0])
    X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1])
    X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8])
    X_sparse = sparse.csc_matrix((X_data, (X_row, X_col)))
    X_trans = transformer.fit_transform(X_sparse)
    X_expected = np.array([[0., 0.5],
                           [0., 0.],
                           [0., 1.],
                           [0., 1.],
                           [0., 0.5],
                           [0., 0.],
                           [0., 0.5],
                           [0., 1.],
                           [0., 0.]])
    assert_almost_equal(X_expected, X_trans.A)

    transformer = QuantileTransformer(ignore_implicit_zeros=True,
                                      n_quantiles=5)
    X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1])
    X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1])
    X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6])
    X_sparse = sparse.csc_matrix((X_data, (X_row, X_col)))
    X_trans = transformer.fit_transform(X_sparse)
    X_expected = np.array([[0, 1],
                           [0, 0.375],
                           [0, 0.375],
                           [0, 0.375],
                           [0, 1],
                           [0, 0],
                           [0, 1]])
    assert_almost_equal(X_expected, X_trans.A)
    assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A)

    # check in conjunction with subsampling
    transformer = QuantileTransformer(ignore_implicit_zeros=True,
                                      n_quantiles=5,
                                      subsample=8,
                                      random_state=0)
    X_trans = transformer.fit_transform(X_sparse)
    assert_almost_equal(X_expected, X_trans.A)
    assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A)


def test_quantile_transform_dense_toy():
    X = np.array([[0, 2, 2.6],
                  [25, 4, 4.1],
                  [50, 6, 2.3],
                  [75, 8, 9.5],
                  [100, 10, 0.1]])

    transformer = QuantileTransformer(n_quantiles=5)
    transformer.fit(X)

    # using the a uniform output, each entry of X should be map between 0 and 1
    # and equally spaced
    X_trans = transformer.fit_transform(X)
    X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T
    assert_almost_equal(np.sort(X_trans, axis=0), X_expected)

    X_test = np.array([
        [-1, 1, 0],
        [101, 11, 10],
    ])
    X_expected = np.array([
        [0, 0, 0],
        [1, 1, 1],
    ])
    assert_array_almost_equal(transformer.transform(X_test), X_expected)

    X_trans_inv = transformer.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)


def test_quantile_transform_subsampling():
    # Test that subsampling the input yield to a consistent results We check
    # that the computed quantiles are almost mapped to a [0, 1] vector where
    # values are equally spaced. The infinite norm is checked to be smaller
    # than a given threshold. This is repeated 5 times.

    # dense support
    n_samples = 1000000
    n_quantiles = 1000
    X = np.sort(np.random.sample((n_samples, 1)), axis=0)
    ROUND = 5
    inf_norm_arr = []
    for random_state in range(ROUND):
        transformer = QuantileTransformer(random_state=random_state,
                                          n_quantiles=n_quantiles,
                                          subsample=n_samples // 10)
        transformer.fit(X)
        diff = (np.linspace(0, 1, n_quantiles) -
                np.ravel(transformer.quantiles_))
        inf_norm = np.max(np.abs(diff))
        assert inf_norm < 1e-2
        inf_norm_arr.append(inf_norm)
    # each random subsampling yield a unique approximation to the expected
    # linspace CDF
    assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr)

    # sparse support

    X = sparse.rand(n_samples, 1, density=.99, format='csc', random_state=0)
    inf_norm_arr = []
    for random_state in range(ROUND):
        transformer = QuantileTransformer(random_state=random_state,
                                          n_quantiles=n_quantiles,
                                          subsample=n_samples // 10)
        transformer.fit(X)
        diff = (np.linspace(0, 1, n_quantiles) -
                np.ravel(transformer.quantiles_))
        inf_norm = np.max(np.abs(diff))
        assert inf_norm < 1e-1
        inf_norm_arr.append(inf_norm)
    # each random subsampling yield a unique approximation to the expected
    # linspace CDF
    assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr)


def test_quantile_transform_sparse_toy():
    X = np.array([[0., 2., 0.],
                  [25., 4., 0.],
                  [50., 0., 2.6],
                  [0., 0., 4.1],
                  [0., 6., 0.],
                  [0., 8., 0.],
                  [75., 0., 2.3],
                  [0., 10., 0.],
                  [0., 0., 9.5],
                  [100., 0., 0.1]])

    X = sparse.csc_matrix(X)

    transformer = QuantileTransformer(n_quantiles=10)
    transformer.fit(X)

    X_trans = transformer.fit_transform(X)
    assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.)
    assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.)

    X_trans_inv = transformer.inverse_transform(X_trans)
    assert_array_almost_equal(X.toarray(), X_trans_inv.toarray())

    transformer_dense = QuantileTransformer(n_quantiles=10).fit(
        X.toarray())

    X_trans = transformer_dense.transform(X)
    assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.)
    assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.)

    X_trans_inv = transformer_dense.inverse_transform(X_trans)
    assert_array_almost_equal(X.toarray(), X_trans_inv.toarray())


def test_quantile_transform_axis1():
    X = np.array([[0, 25, 50, 75, 100],
                  [2, 4, 6, 8, 10],
                  [2.6, 4.1, 2.3, 9.5, 0.1]])

    X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5)
    X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5)
    assert_array_almost_equal(X_trans_a0, X_trans_a1.T)


def test_quantile_transform_bounds():
    # Lower and upper bounds are manually mapped. We checked that in the case
    # of a constant feature and binary feature, the bounds are properly mapped.
    X_dense = np.array([[0, 0],
                        [0, 0],
                        [1, 0]])
    X_sparse = sparse.csc_matrix(X_dense)

    # check sparse and dense are consistent
    X_trans = QuantileTransformer(n_quantiles=3,
                                  random_state=0).fit_transform(X_dense)
    assert_array_almost_equal(X_trans, X_dense)
    X_trans_sp = QuantileTransformer(n_quantiles=3,
                                     random_state=0).fit_transform(X_sparse)
    assert_array_almost_equal(X_trans_sp.A, X_dense)
    assert_array_almost_equal(X_trans, X_trans_sp.A)

    # check the consistency of the bounds by learning on 1 matrix
    # and transforming another
    X = np.array([[0, 1],
                  [0, 0.5],
                  [1, 0]])
    X1 = np.array([[0, 0.1],
                   [0, 0.5],
                   [1, 0.1]])
    transformer = QuantileTransformer(n_quantiles=3).fit(X)
    X_trans = transformer.transform(X1)
    assert_array_almost_equal(X_trans, X1)

    # check that values outside of the range learned will be mapped properly.
    X = np.random.random((1000, 1))
    transformer = QuantileTransformer()
    transformer.fit(X)
    assert (transformer.transform([[-10]]) ==
                 transformer.transform([[np.min(X)]]))
    assert (transformer.transform([[10]]) ==
                 transformer.transform([[np.max(X)]]))
    assert (transformer.inverse_transform([[-10]]) ==
                 transformer.inverse_transform(
                     [[np.min(transformer.references_)]]))
    assert (transformer.inverse_transform([[10]]) ==
                 transformer.inverse_transform(
                     [[np.max(transformer.references_)]]))


def test_quantile_transform_and_inverse():
    X_1 = iris.data
    X_2 = np.array([[0.], [BOUNDS_THRESHOLD / 10], [1.5], [2], [3], [3], [4]])
    for X in [X_1, X_2]:
        transformer = QuantileTransformer(n_quantiles=1000, random_state=0)
        X_trans = transformer.fit_transform(X)
        X_trans_inv = transformer.inverse_transform(X_trans)
        assert_array_almost_equal(X, X_trans_inv, decimal=9)


def test_quantile_transform_nan():
    X = np.array([[np.nan, 0,  0, 1],
                  [np.nan, np.nan, 0, 0.5],
                  [np.nan, 1, 1, 0]])

    transformer = QuantileTransformer(n_quantiles=10, random_state=42)
    transformer.fit_transform(X)

    # check that the quantile of the first column is all NaN
    assert np.isnan(transformer.quantiles_[:, 0]).all()
    # all other column should not contain NaN
    assert not np.isnan(transformer.quantiles_[:, 1:]).any()


@pytest.mark.parametrize("array_type", ['array', 'sparse'])
def test_quantile_transformer_sorted_quantiles(array_type):
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/15733
    # Taken from upstream bug report:
    # https://github.com/numpy/numpy/issues/14685
    X = np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, 8, 8, 7] * 10)
    X = 0.1 * X.reshape(-1, 1)
    X = _convert_container(X, array_type)

    n_quantiles = 100
    qt = QuantileTransformer(n_quantiles=n_quantiles).fit(X)

    # Check that the estimated quantile threasholds are monotically
    # increasing:
    quantiles = qt.quantiles_[:, 0]
    assert len(quantiles) == 100
    assert all(np.diff(quantiles) >= 0)


def test_robust_scaler_invalid_range():
    for range_ in [
        (-1, 90),
        (-2, -3),
        (10, 101),
        (100.5, 101),
        (90, 50),
    ]:
        scaler = RobustScaler(quantile_range=range_)

        with pytest.raises(ValueError, match=r'Invalid quantile range: \('):
            scaler.fit(iris.data)


def test_scale_function_without_centering():
    rng = np.random.RandomState(42)
    X = rng.randn(4, 5)
    X[:, 0] = 0.0  # first feature is always of zero
    X_csr = sparse.csr_matrix(X)

    X_scaled = scale(X, with_mean=False)
    assert not np.any(np.isnan(X_scaled))

    X_csr_scaled = scale(X_csr, with_mean=False)
    assert not np.any(np.isnan(X_csr_scaled.data))

    # test csc has same outcome
    X_csc_scaled = scale(X_csr.tocsc(), with_mean=False)
    assert_array_almost_equal(X_scaled, X_csc_scaled.toarray())

    # raises value error on axis != 0
    with pytest.raises(ValueError):
        scale(X_csr, with_mean=False, axis=1)

    assert_array_almost_equal(X_scaled.mean(axis=0),
                              [0., -0.01, 2.24, -0.35, -0.78], 2)
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
    # Check that X has not been copied
    assert X_scaled is not X

    X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0)
    assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
    assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))

    # null scale
    X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True)
    assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray())


def test_robust_scale_axis1():
    X = iris.data
    X_trans = robust_scale(X, axis=1)
    assert_array_almost_equal(np.median(X_trans, axis=1), 0)
    q = np.percentile(X_trans, q=(25, 75), axis=1)
    iqr = q[1] - q[0]
    assert_array_almost_equal(iqr, 1)


def test_robust_scale_1d_array():
    X = iris.data[:, 1]
    X_trans = robust_scale(X)
    assert_array_almost_equal(np.median(X_trans), 0)
    q = np.percentile(X_trans, q=(25, 75))
    iqr = q[1] - q[0]
    assert_array_almost_equal(iqr, 1)


def test_robust_scaler_zero_variance_features():
    # Check RobustScaler on toy data with zero variance features
    X = [[0., 1., +0.5],
         [0., 1., -0.1],
         [0., 1., +1.1]]

    scaler = RobustScaler()
    X_trans = scaler.fit_transform(X)

    # NOTE: for such a small sample size, what we expect in the third column
    # depends HEAVILY on the method used to calculate quantiles. The values
    # here were calculated to fit the quantiles produces by np.percentile
    # using numpy 1.9 Calculating quantiles with
    # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles
    # would yield very different results!
    X_expected = [[0., 0., +0.0],
                  [0., 0., -1.0],
                  [0., 0., +1.0]]
    assert_array_almost_equal(X_trans, X_expected)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # make sure new data gets transformed correctly
    X_new = [[+0., 2., 0.5],
             [-1., 1., 0.0],
             [+0., 1., 1.5]]
    X_trans_new = scaler.transform(X_new)
    X_expected_new = [[+0., 1., +0.],
                      [-1., 0., -0.83333],
                      [+0., 0., +1.66667]]
    assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3)


def test_maxabs_scaler_zero_variance_features():
    # Check MaxAbsScaler on toy data with zero variance features
    X = [[0., 1., +0.5],
         [0., 1., -0.3],
         [0., 1., +1.5],
         [0., 0., +0.0]]

    scaler = MaxAbsScaler()
    X_trans = scaler.fit_transform(X)
    X_expected = [[0., 1., 1.0 / 3.0],
                  [0., 1., -0.2],
                  [0., 1., 1.0],
                  [0., 0., 0.0]]
    assert_array_almost_equal(X_trans, X_expected)
    X_trans_inv = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X, X_trans_inv)

    # make sure new data gets transformed correctly
    X_new = [[+0., 2., 0.5],
             [-1., 1., 0.0],
             [+0., 1., 1.5]]
    X_trans_new = scaler.transform(X_new)
    X_expected_new = [[+0., 2.0, 1.0 / 3.0],
                      [-1., 1.0, 0.0],
                      [+0., 1.0, 1.0]]

    assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2)

    # function interface
    X_trans = maxabs_scale(X)
    assert_array_almost_equal(X_trans, X_expected)

    # sparse data
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)
    X_trans_csr = scaler.fit_transform(X_csr)
    X_trans_csc = scaler.fit_transform(X_csc)
    X_expected = [[0., 1., 1.0 / 3.0],
                  [0., 1., -0.2],
                  [0., 1., 1.0],
                  [0., 0., 0.0]]
    assert_array_almost_equal(X_trans_csr.A, X_expected)
    assert_array_almost_equal(X_trans_csc.A, X_expected)
    X_trans_csr_inv = scaler.inverse_transform(X_trans_csr)
    X_trans_csc_inv = scaler.inverse_transform(X_trans_csc)
    assert_array_almost_equal(X, X_trans_csr_inv.A)
    assert_array_almost_equal(X, X_trans_csc_inv.A)


def test_maxabs_scaler_large_negative_value():
    # Check MaxAbsScaler on toy data with a large negative value
    X = [[0., 1.,   +0.5, -1.0],
         [0., 1.,   -0.3, -0.5],
         [0., 1., -100.0,  0.0],
         [0., 0.,   +0.0, -2.0]]

    scaler = MaxAbsScaler()
    X_trans = scaler.fit_transform(X)
    X_expected = [[0., 1.,  0.005,    -0.5],
                  [0., 1., -0.003,    -0.25],
                  [0., 1., -1.0,       0.0],
                  [0., 0.,  0.0,      -1.0]]
    assert_array_almost_equal(X_trans, X_expected)


def test_maxabs_scaler_transform_one_row_csr():
    # Check MaxAbsScaler on transforming csr matrix with one row
    X = sparse.csr_matrix([[0.5, 1., 1.]])
    scaler = MaxAbsScaler()
    scaler = scaler.fit(X)
    X_trans = scaler.transform(X)
    X_expected = sparse.csr_matrix([[1., 1., 1.]])
    assert_array_almost_equal(X_trans.toarray(), X_expected.toarray())
    X_scaled_back = scaler.inverse_transform(X_trans)
    assert_array_almost_equal(X.toarray(), X_scaled_back.toarray())


def test_maxabs_scaler_1d():
    # Test scaling of dataset along single axis
    for X in [X_1row, X_1col, X_list_1row, X_list_1row]:

        scaler = MaxAbsScaler(copy=True)
        X_scaled = scaler.fit(X).transform(X)

        if isinstance(X, list):
            X = np.array(X)  # cast only after scaling done

        if _check_dim_1axis(X) == 1:
            assert_array_almost_equal(np.abs(X_scaled.max(axis=0)),
                                      np.ones(n_features))
        else:
            assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.)
        assert scaler.n_samples_seen_ == X.shape[0]

        # check inverse transform
        X_scaled_back = scaler.inverse_transform(X_scaled)
        assert_array_almost_equal(X_scaled_back, X)

    # Constant feature
    X = np.ones((5, 1))
    scaler = MaxAbsScaler()
    X_scaled = scaler.fit(X).transform(X)
    assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.)
    assert scaler.n_samples_seen_ == X.shape[0]

    # function interface
    X_1d = X_1row.ravel()
    max_abs = np.abs(X_1d).max()
    assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True))


def test_maxabs_scaler_partial_fit():
    # Test if partial_fit run over many batches of size 1 and 50
    # gives the same results as fit
    X = X_2d[:100, :]
    n = X.shape[0]

    for chunk_size in [1, 2, 50, n, n + 42]:
        # Test mean at the end of the process
        scaler_batch = MaxAbsScaler().fit(X)

        scaler_incr = MaxAbsScaler()
        scaler_incr_csr = MaxAbsScaler()
        scaler_incr_csc = MaxAbsScaler()
        for batch in gen_batches(n, chunk_size):
            scaler_incr = scaler_incr.partial_fit(X[batch])
            X_csr = sparse.csr_matrix(X[batch])
            scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr)
            X_csc = sparse.csc_matrix(X[batch])
            scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc)

        assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_)
        assert_array_almost_equal(scaler_batch.max_abs_,
                                  scaler_incr_csr.max_abs_)
        assert_array_almost_equal(scaler_batch.max_abs_,
                                  scaler_incr_csc.max_abs_)
        assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
        assert (scaler_batch.n_samples_seen_ ==
                     scaler_incr_csr.n_samples_seen_)
        assert (scaler_batch.n_samples_seen_ ==
                     scaler_incr_csc.n_samples_seen_)
        assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
        assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_)
        assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_)
        assert_array_almost_equal(scaler_batch.transform(X),
                                  scaler_incr.transform(X))

        # Test std after 1 step
        batch0 = slice(0, chunk_size)
        scaler_batch = MaxAbsScaler().fit(X[batch0])
        scaler_incr = MaxAbsScaler().partial_fit(X[batch0])

        assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_)
        assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_
        assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_)
        assert_array_almost_equal(scaler_batch.transform(X),
                                  scaler_incr.transform(X))

        # Test std until the end of partial fits, and
        scaler_batch = MaxAbsScaler().fit(X)
        scaler_incr = MaxAbsScaler()  # Clean estimator
        for i, batch in enumerate(gen_batches(n, chunk_size)):
            scaler_incr = scaler_incr.partial_fit(X[batch])
            assert_correct_incr(i, batch_start=batch.start,
                                batch_stop=batch.stop, n=n,
                                chunk_size=chunk_size,
                                n_samples_seen=scaler_incr.n_samples_seen_)


def test_normalizer_l1():
    rng = np.random.RandomState(0)
    X_dense = rng.randn(4, 5)
    X_sparse_unpruned = sparse.csr_matrix(X_dense)

    # set the row number 3 to zero
    X_dense[3, :] = 0.0

    # set the row number 3 to zero without pruning (can happen in real life)
    indptr_3 = X_sparse_unpruned.indptr[3]
    indptr_4 = X_sparse_unpruned.indptr[4]
    X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0

    # build the pruned variant using the regular constructor
    X_sparse_pruned = sparse.csr_matrix(X_dense)

    # check inputs that support the no-copy optim
    for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):

        normalizer = Normalizer(norm='l1', copy=True)
        X_norm = normalizer.transform(X)
        assert X_norm is not X
        X_norm1 = toarray(X_norm)

        normalizer = Normalizer(norm='l1', copy=False)
        X_norm = normalizer.transform(X)
        assert X_norm is X
        X_norm2 = toarray(X_norm)

        for X_norm in (X_norm1, X_norm2):
            row_sums = np.abs(X_norm).sum(axis=1)
            for i in range(3):
                assert_almost_equal(row_sums[i], 1.0)
            assert_almost_equal(row_sums[3], 0.0)

    # check input for which copy=False won't prevent a copy
    for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix):
        X = init(X_dense)
        X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X)

        assert X_norm is not X
        assert isinstance(X_norm, sparse.csr_matrix)

        X_norm = toarray(X_norm)
        for i in range(3):
            assert_almost_equal(row_sums[i], 1.0)
        assert_almost_equal(la.norm(X_norm[3]), 0.0)


def test_normalizer_l2():
    rng = np.random.RandomState(0)
    X_dense = rng.randn(4, 5)
    X_sparse_unpruned = sparse.csr_matrix(X_dense)

    # set the row number 3 to zero
    X_dense[3, :] = 0.0

    # set the row number 3 to zero without pruning (can happen in real life)
    indptr_3 = X_sparse_unpruned.indptr[3]
    indptr_4 = X_sparse_unpruned.indptr[4]
    X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0

    # build the pruned variant using the regular constructor
    X_sparse_pruned = sparse.csr_matrix(X_dense)

    # check inputs that support the no-copy optim
    for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):

        normalizer = Normalizer(norm='l2', copy=True)
        X_norm1 = normalizer.transform(X)
        assert X_norm1 is not X
        X_norm1 = toarray(X_norm1)

        normalizer = Normalizer(norm='l2', copy=False)
        X_norm2 = normalizer.transform(X)
        assert X_norm2 is X
        X_norm2 = toarray(X_norm2)

        for X_norm in (X_norm1, X_norm2):
            for i in range(3):
                assert_almost_equal(la.norm(X_norm[i]), 1.0)
            assert_almost_equal(la.norm(X_norm[3]), 0.0)

    # check input for which copy=False won't prevent a copy
    for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix):
        X = init(X_dense)
        X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X)

        assert X_norm is not X
        assert isinstance(X_norm, sparse.csr_matrix)

        X_norm = toarray(X_norm)
        for i in range(3):
            assert_almost_equal(la.norm(X_norm[i]), 1.0)
        assert_almost_equal(la.norm(X_norm[3]), 0.0)


def test_normalizer_max():
    rng = np.random.RandomState(0)
    X_dense = rng.randn(4, 5)
    X_sparse_unpruned = sparse.csr_matrix(X_dense)

    # set the row number 3 to zero
    X_dense[3, :] = 0.0

    # set the row number 3 to zero without pruning (can happen in real life)
    indptr_3 = X_sparse_unpruned.indptr[3]
    indptr_4 = X_sparse_unpruned.indptr[4]
    X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0

    # build the pruned variant using the regular constructor
    X_sparse_pruned = sparse.csr_matrix(X_dense)

    # check inputs that support the no-copy optim
    for X in (X_dense, X_sparse_pruned, X_sparse_unpruned):

        normalizer = Normalizer(norm='max', copy=True)
        X_norm1 = normalizer.transform(X)
        assert X_norm1 is not X
        X_norm1 = toarray(X_norm1)

        normalizer = Normalizer(norm='max', copy=False)
        X_norm2 = normalizer.transform(X)
        assert X_norm2 is X
        X_norm2 = toarray(X_norm2)

        for X_norm in (X_norm1, X_norm2):
            row_maxs = abs(X_norm).max(axis=1)
            for i in range(3):
                assert_almost_equal(row_maxs[i], 1.0)
            assert_almost_equal(row_maxs[3], 0.0)

    # check input for which copy=False won't prevent a copy
    for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix):
        X = init(X_dense)
        X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X)

        assert X_norm is not X
        assert isinstance(X_norm, sparse.csr_matrix)

        X_norm = toarray(X_norm)
        for i in range(3):
            assert_almost_equal(row_maxs[i], 1.0)
        assert_almost_equal(la.norm(X_norm[3]), 0.0)


def test_normalizer_max_sign():
    # check that we normalize by a positive number even for negative data
    rng = np.random.RandomState(0)
    X_dense = rng.randn(4, 5)
    # set the row number 3 to zero
    X_dense[3, :] = 0.0
    # check for mixed data where the value with
    # largest magnitude is negative
    X_dense[2, abs(X_dense[2, :]).argmax()] *= -1
    X_all_neg = -np.abs(X_dense)
    X_all_neg_sparse = sparse.csr_matrix(X_all_neg)

    for X in (X_dense, X_all_neg, X_all_neg_sparse):
        normalizer = Normalizer(norm='max')
        X_norm = normalizer.transform(X)
        assert X_norm is not X
        X_norm = toarray(X_norm)
        assert_array_equal(
            np.sign(X_norm), np.sign(toarray(X)))


def test_normalize():
    # Test normalize function
    # Only tests functionality not used by the tests for Normalizer.
    X = np.random.RandomState(37).randn(3, 2)
    assert_array_equal(normalize(X, copy=False),
                       normalize(X.T, axis=0, copy=False).T)
    with pytest.raises(ValueError):
        normalize([[0]], axis=2)
    with pytest.raises(ValueError):
        normalize([[0]], norm='l3')

    rs = np.random.RandomState(0)
    X_dense = rs.randn(10, 5)
    X_sparse = sparse.csr_matrix(X_dense)
    ones = np.ones((10))
    for X in (X_dense, X_sparse):
        for dtype in (np.float32, np.float64):
            for norm in ('l1', 'l2'):
                X = X.astype(dtype)
                X_norm = normalize(X, norm=norm)
                assert X_norm.dtype == dtype

                X_norm = toarray(X_norm)
                if norm == 'l1':
                    row_sums = np.abs(X_norm).sum(axis=1)
                else:
                    X_norm_squared = X_norm**2
                    row_sums = X_norm_squared.sum(axis=1)

                assert_array_almost_equal(row_sums, ones)

    # Test return_norm
    X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]])
    for norm in ('l1', 'l2', 'max'):
        _, norms = normalize(X_dense, norm=norm, return_norm=True)
        if norm == 'l1':
            assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0]))
        elif norm == 'l2':
            assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127]))
        else:
            assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0]))

    X_sparse = sparse.csr_matrix(X_dense)
    for norm in ('l1', 'l2'):
        with pytest.raises(NotImplementedError):
            normalize(X_sparse, norm=norm, return_norm=True)
    _, norms = normalize(X_sparse, norm='max', return_norm=True)
    assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0]))


def test_binarizer():
    X_ = np.array([[1, 0, 5], [2, 3, -1]])

    for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix):

        X = init(X_.copy())

        binarizer = Binarizer(threshold=2.0, copy=True)
        X_bin = toarray(binarizer.transform(X))
        assert np.sum(X_bin == 0) == 4
        assert np.sum(X_bin == 1) == 2
        X_bin = binarizer.transform(X)
        assert sparse.issparse(X) == sparse.issparse(X_bin)

        binarizer = Binarizer(copy=True).fit(X)
        X_bin = toarray(binarizer.transform(X))
        assert X_bin is not X
        assert np.sum(X_bin == 0) == 2
        assert np.sum(X_bin == 1) == 4

        binarizer = Binarizer(copy=True)
        X_bin = binarizer.transform(X)
        assert X_bin is not X
        X_bin = toarray(X_bin)
        assert np.sum(X_bin == 0) == 2
        assert np.sum(X_bin == 1) == 4

        binarizer = Binarizer(copy=False)
        X_bin = binarizer.transform(X)
        if init is not list:
            assert X_bin is X

        binarizer = Binarizer(copy=False)
        X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64)
        X_bin = binarizer.transform(X_float)
        if init is not list:
            assert X_bin is X_float

        X_bin = toarray(X_bin)
        assert np.sum(X_bin == 0) == 2
        assert np.sum(X_bin == 1) == 4

    binarizer = Binarizer(threshold=-0.5, copy=True)
    for init in (np.array, list):
        X = init(X_.copy())

        X_bin = toarray(binarizer.transform(X))
        assert np.sum(X_bin == 0) == 1
        assert np.sum(X_bin == 1) == 5
        X_bin = binarizer.transform(X)

    # Cannot use threshold < 0 for sparse
    with pytest.raises(ValueError):
        binarizer.transform(sparse.csc_matrix(X))


def test_center_kernel():
    # Test that KernelCenterer is equivalent to StandardScaler
    # in feature space
    rng = np.random.RandomState(0)
    X_fit = rng.random_sample((5, 4))
    scaler = StandardScaler(with_std=False)
    scaler.fit(X_fit)
    X_fit_centered = scaler.transform(X_fit)
    K_fit = np.dot(X_fit, X_fit.T)

    # center fit time matrix
    centerer = KernelCenterer()
    K_fit_centered = np.dot(X_fit_centered, X_fit_centered.T)
    K_fit_centered2 = centerer.fit_transform(K_fit)
    assert_array_almost_equal(K_fit_centered, K_fit_centered2)

    # center predict time matrix
    X_pred = rng.random_sample((2, 4))
    K_pred = np.dot(X_pred, X_fit.T)
    X_pred_centered = scaler.transform(X_pred)
    K_pred_centered = np.dot(X_pred_centered, X_fit_centered.T)
    K_pred_centered2 = centerer.transform(K_pred)
    assert_array_almost_equal(K_pred_centered, K_pred_centered2)


def test_cv_pipeline_precomputed():
    # Cross-validate a regression on four coplanar points with the same
    # value. Use precomputed kernel to ensure Pipeline with KernelCenterer
    # is treated as a _pairwise operation.
    X = np.array([[3, 0, 0], [0, 3, 0], [0, 0, 3], [1, 1, 1]])
    y_true = np.ones((4,))
    K = X.dot(X.T)
    kcent = KernelCenterer()
    pipeline = Pipeline([("kernel_centerer", kcent), ("svr", SVR())])

    # did the pipeline set the _pairwise attribute?
    assert pipeline._pairwise

    # test cross-validation, score should be almost perfect
    # NB: this test is pretty vacuous -- it's mainly to test integration
    #     of Pipeline and KernelCenterer
    y_pred = cross_val_predict(pipeline, K, y_true, cv=2)
    assert_array_almost_equal(y_true, y_pred)


def test_fit_transform():
    rng = np.random.RandomState(0)
    X = rng.random_sample((5, 4))
    for obj in ((StandardScaler(), Normalizer(), Binarizer())):
        X_transformed = obj.fit(X).transform(X)
        X_transformed2 = obj.fit_transform(X)
        assert_array_equal(X_transformed, X_transformed2)


def test_add_dummy_feature():
    X = [[1, 0], [0, 1], [0, 1]]
    X = add_dummy_feature(X)
    assert_array_equal(X, [[1, 1, 0], [1, 0, 1], [1, 0, 1]])


def test_add_dummy_feature_coo():
    X = sparse.coo_matrix([[1, 0], [0, 1], [0, 1]])
    X = add_dummy_feature(X)
    assert sparse.isspmatrix_coo(X), X
    assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])


def test_add_dummy_feature_csc():
    X = sparse.csc_matrix([[1, 0], [0, 1], [0, 1]])
    X = add_dummy_feature(X)
    assert sparse.isspmatrix_csc(X), X
    assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])


def test_add_dummy_feature_csr():
    X = sparse.csr_matrix([[1, 0], [0, 1], [0, 1]])
    X = add_dummy_feature(X)
    assert sparse.isspmatrix_csr(X), X
    assert_array_equal(X.toarray(), [[1, 1, 0], [1, 0, 1], [1, 0, 1]])


def test_fit_cold_start():
    X = iris.data
    X_2d = X[:, :2]

    # Scalers that have a partial_fit method
    scalers = [StandardScaler(with_mean=False, with_std=False),
               MinMaxScaler(),
               MaxAbsScaler()]

    for scaler in scalers:
        scaler.fit_transform(X)
        # with a different shape, this may break the scaler unless the internal
        # state is reset
        scaler.fit_transform(X_2d)


def test_quantile_transform_valid_axis():
    X = np.array([[0, 25, 50, 75, 100],
                  [2, 4, 6, 8, 10],
                  [2.6, 4.1, 2.3, 9.5, 0.1]])

    with pytest.raises(ValueError, match="axis should be either equal "
                                         "to 0 or 1. Got axis=2"):
        quantile_transform(X.T, axis=2)


@pytest.mark.parametrize("method", ['box-cox', 'yeo-johnson'])
def test_power_transformer_notfitted(method):
    pt = PowerTransformer(method=method)
    X = np.abs(X_1col)
    with pytest.raises(NotFittedError):
        pt.transform(X)
    with pytest.raises(NotFittedError):
        pt.inverse_transform(X)


@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
@pytest.mark.parametrize('X', [X_1col, X_2d])
def test_power_transformer_inverse(method, standardize, X):
    # Make sure we get the original input when applying transform and then
    # inverse transform
    X = np.abs(X) if method == 'box-cox' else X
    pt = PowerTransformer(method=method, standardize=standardize)
    X_trans = pt.fit_transform(X)
    assert_almost_equal(X, pt.inverse_transform(X_trans))


def test_power_transformer_1d():
    X = np.abs(X_1col)

    for standardize in [True, False]:
        pt = PowerTransformer(method='box-cox', standardize=standardize)

        X_trans = pt.fit_transform(X)
        X_trans_func = power_transform(
            X, method='box-cox',
            standardize=standardize
        )

        X_expected, lambda_expected = stats.boxcox(X.flatten())

        if standardize:
            X_expected = scale(X_expected)

        assert_almost_equal(X_expected.reshape(-1, 1), X_trans)
        assert_almost_equal(X_expected.reshape(-1, 1), X_trans_func)

        assert_almost_equal(X, pt.inverse_transform(X_trans))
        assert_almost_equal(lambda_expected, pt.lambdas_[0])

        assert len(pt.lambdas_) == X.shape[1]
        assert isinstance(pt.lambdas_, np.ndarray)


def test_power_transformer_2d():
    X = np.abs(X_2d)

    for standardize in [True, False]:
        pt = PowerTransformer(method='box-cox', standardize=standardize)

        X_trans_class = pt.fit_transform(X)
        X_trans_func = power_transform(
            X, method='box-cox',
            standardize=standardize
        )

        for X_trans in [X_trans_class, X_trans_func]:
            for j in range(X_trans.shape[1]):
                X_expected, lmbda = stats.boxcox(X[:, j].flatten())

                if standardize:
                    X_expected = scale(X_expected)

                assert_almost_equal(X_trans[:, j], X_expected)
                assert_almost_equal(lmbda, pt.lambdas_[j])

            # Test inverse transformation
            X_inv = pt.inverse_transform(X_trans)
            assert_array_almost_equal(X_inv, X)

        assert len(pt.lambdas_) == X.shape[1]
        assert isinstance(pt.lambdas_, np.ndarray)


def test_power_transformer_boxcox_strictly_positive_exception():
    # Exceptions should be raised for negative arrays and zero arrays when
    # method is boxcox

    pt = PowerTransformer(method='box-cox')
    pt.fit(np.abs(X_2d))
    X_with_negatives = X_2d
    not_positive_message = 'strictly positive'

    with pytest.raises(ValueError, match=not_positive_message):
        pt.transform(X_with_negatives)

    with pytest.raises(ValueError, match=not_positive_message):
        pt.fit(X_with_negatives)

    with pytest.raises(ValueError, match=not_positive_message):
        power_transform(X_with_negatives, method='box-cox')

    with pytest.raises(ValueError, match=not_positive_message):
        pt.transform(np.zeros(X_2d.shape))

    with pytest.raises(ValueError, match=not_positive_message):
        pt.fit(np.zeros(X_2d.shape))

    with pytest.raises(ValueError, match=not_positive_message):
        power_transform(np.zeros(X_2d.shape), method='box-cox')


@pytest.mark.parametrize('X', [X_2d, np.abs(X_2d), -np.abs(X_2d),
                               np.zeros(X_2d.shape)])
def test_power_transformer_yeojohnson_any_input(X):
    # Yeo-Johnson method should support any kind of input
    power_transform(X, method='yeo-johnson')


@pytest.mark.parametrize("method", ['box-cox', 'yeo-johnson'])
def test_power_transformer_shape_exception(method):
    pt = PowerTransformer(method=method)
    X = np.abs(X_2d)
    pt.fit(X)

    # Exceptions should be raised for arrays with different num_columns
    # than during fitting
    wrong_shape_message = 'Input data has a different number of features'

    with pytest.raises(ValueError, match=wrong_shape_message):
        pt.transform(X[:, 0:1])

    with pytest.raises(ValueError, match=wrong_shape_message):
        pt.inverse_transform(X[:, 0:1])


def test_power_transformer_method_exception():
    pt = PowerTransformer(method='monty-python')
    X = np.abs(X_2d)

    # An exception should be raised if PowerTransformer.method isn't valid
    bad_method_message = "'method' must be one of"
    with pytest.raises(ValueError, match=bad_method_message):
        pt.fit(X)


def test_power_transformer_lambda_zero():
    pt = PowerTransformer(method='box-cox', standardize=False)
    X = np.abs(X_2d)[:, 0:1]

    # Test the lambda = 0 case
    pt.lambdas_ = np.array([0])
    X_trans = pt.transform(X)
    assert_array_almost_equal(pt.inverse_transform(X_trans), X)


def test_power_transformer_lambda_one():
    # Make sure lambda = 1 corresponds to the identity for yeo-johnson
    pt = PowerTransformer(method='yeo-johnson', standardize=False)
    X = np.abs(X_2d)[:, 0:1]

    pt.lambdas_ = np.array([1])
    X_trans = pt.transform(X)
    assert_array_almost_equal(X_trans, X)


@pytest.mark.parametrize("method, lmbda", [('box-cox', .1),
                                           ('box-cox', .5),
                                           ('yeo-johnson', .1),
                                           ('yeo-johnson', .5),
                                           ('yeo-johnson', 1.),
                                           ])
def test_optimization_power_transformer(method, lmbda):
    # Test the optimization procedure:
    # - set a predefined value for lambda
    # - apply inverse_transform to a normal dist (we get X_inv)
    # - apply fit_transform to X_inv (we get X_inv_trans)
    # - check that X_inv_trans is roughly equal to X

    rng = np.random.RandomState(0)
    n_samples = 20000
    X = rng.normal(loc=0, scale=1, size=(n_samples, 1))

    pt = PowerTransformer(method=method, standardize=False)
    pt.lambdas_ = [lmbda]
    X_inv = pt.inverse_transform(X)

    pt = PowerTransformer(method=method, standardize=False)
    X_inv_trans = pt.fit_transform(X_inv)

    assert_almost_equal(0, np.linalg.norm(X - X_inv_trans) / n_samples,
                        decimal=2)
    assert_almost_equal(0, X_inv_trans.mean(), decimal=1)
    assert_almost_equal(1, X_inv_trans.std(), decimal=1)


def test_yeo_johnson_darwin_example():
    # test from original paper "A new family of power transformations to
    # improve normality or symmetry" by Yeo and Johnson.
    X = [6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0, 9.3,
         7.5, -6.0]
    X = np.array(X).reshape(-1, 1)
    lmbda = PowerTransformer(method='yeo-johnson').fit(X).lambdas_
    assert np.allclose(lmbda, 1.305, atol=1e-3)


@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
def test_power_transformer_nans(method):
    # Make sure lambda estimation is not influenced by NaN values
    # and that transform() supports NaN silently

    X = np.abs(X_1col)
    pt = PowerTransformer(method=method)
    pt.fit(X)
    lmbda_no_nans = pt.lambdas_[0]

    # concat nans at the end and check lambda stays the same
    X = np.concatenate([X, np.full_like(X, np.nan)])
    X = shuffle(X, random_state=0)

    pt.fit(X)
    lmbda_nans = pt.lambdas_[0]

    assert_almost_equal(lmbda_no_nans, lmbda_nans, decimal=5)

    X_trans = pt.transform(X)
    assert_array_equal(np.isnan(X_trans), np.isnan(X))


@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
def test_power_transformer_fit_transform(method, standardize):
    # check that fit_transform() and fit().transform() return the same values
    X = X_1col
    if method == 'box-cox':
        X = np.abs(X)

    pt = PowerTransformer(method, standardize=standardize)
    assert_array_almost_equal(pt.fit(X).transform(X), pt.fit_transform(X))


@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
def test_power_transformer_copy_True(method, standardize):
    # Check that neither fit, transform, fit_transform nor inverse_transform
    # modify X inplace when copy=True
    X = X_1col
    if method == 'box-cox':
        X = np.abs(X)

    X_original = X.copy()
    assert X is not X_original  # sanity checks
    assert_array_almost_equal(X, X_original)

    pt = PowerTransformer(method, standardize=standardize, copy=True)

    pt.fit(X)
    assert_array_almost_equal(X, X_original)
    X_trans = pt.transform(X)
    assert X_trans is not X

    X_trans = pt.fit_transform(X)
    assert_array_almost_equal(X, X_original)
    assert X_trans is not X

    X_inv_trans = pt.inverse_transform(X_trans)
    assert X_trans is not X_inv_trans


@pytest.mark.parametrize('method', ['box-cox', 'yeo-johnson'])
@pytest.mark.parametrize('standardize', [True, False])
def test_power_transformer_copy_False(method, standardize):
    # check that when copy=False fit doesn't change X inplace but transform,
    # fit_transform and inverse_transform do.
    X = X_1col
    if method == 'box-cox':
        X = np.abs(X)

    X_original = X.copy()
    assert X is not X_original  # sanity checks
    assert_array_almost_equal(X, X_original)

    pt = PowerTransformer(method, standardize=standardize, copy=False)

    pt.fit(X)
    assert_array_almost_equal(X, X_original)  # fit didn't change X

    X_trans = pt.transform(X)
    assert X_trans is X

    if method == 'box-cox':
        X = np.abs(X)
    X_trans = pt.fit_transform(X)
    assert X_trans is X

    X_inv_trans = pt.inverse_transform(X_trans)
    assert X_trans is X_inv_trans


@pytest.mark.parametrize(
    "X_2",
    [sparse.random(10, 1, density=0.8, random_state=0),
     sparse.csr_matrix(np.full((10, 1), fill_value=np.nan))]
)
def test_standard_scaler_sparse_partial_fit_finite_variance(X_2):
    # non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/16448
    X_1 = sparse.random(5, 1, density=0.8)
    scaler = StandardScaler(with_mean=False)
    scaler.fit(X_1).partial_fit(X_2)
    assert np.isfinite(scaler.var_[0])