_base.py 44 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
"""Base and mixin classes for nearest neighbors"""
# Authors: Jake Vanderplas <vanderplas@astro.washington.edu>
#          Fabian Pedregosa <fabian.pedregosa@inria.fr>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Sparseness support by Lars Buitinck
#          Multi-output support by Arnaud Joly <a.joly@ulg.ac.be>
#
# License: BSD 3 clause (C) INRIA, University of Amsterdam
from functools import partial

import warnings
from abc import ABCMeta, abstractmethod
import numbers

import numpy as np
from scipy.sparse import csr_matrix, issparse
import joblib
from joblib import Parallel, delayed, effective_n_jobs

from ._ball_tree import BallTree
from ._kd_tree import KDTree
from ..base import BaseEstimator, MultiOutputMixin
from ..metrics import pairwise_distances_chunked
from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS
from ..utils import check_array, gen_even_slices
from ..utils import _to_object_array
from ..utils.multiclass import check_classification_targets
from ..utils.validation import check_is_fitted
from ..utils.validation import check_non_negative
from ..utils.fixes import parse_version
from ..exceptions import DataConversionWarning, EfficiencyWarning

VALID_METRICS = dict(ball_tree=BallTree.valid_metrics,
                     kd_tree=KDTree.valid_metrics,
                     # The following list comes from the
                     # sklearn.metrics.pairwise doc string
                     brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) +
                            ['braycurtis', 'canberra', 'chebyshev',
                             'correlation', 'cosine', 'dice', 'hamming',
                             'jaccard', 'kulsinski', 'mahalanobis',
                             'matching', 'minkowski', 'rogerstanimoto',
                             'russellrao', 'seuclidean', 'sokalmichener',
                             'sokalsneath', 'sqeuclidean',
                             'yule', 'wminkowski']))


VALID_METRICS_SPARSE = dict(ball_tree=[],
                            kd_tree=[],
                            brute=(PAIRWISE_DISTANCE_FUNCTIONS.keys() -
                                   {'haversine', 'nan_euclidean'}))


def _check_weights(weights):
    """Check to make sure weights are valid"""
    if weights in (None, 'uniform', 'distance'):
        return weights
    elif callable(weights):
        return weights
    else:
        raise ValueError("weights not recognized: should be 'uniform', "
                         "'distance', or a callable function")


def _get_weights(dist, weights):
    """Get the weights from an array of distances and a parameter ``weights``

    Parameters
    ----------
    dist : ndarray
        The input distances
    weights : {'uniform', 'distance' or a callable}
        The kind of weighting used

    Returns
    -------
    weights_arr : array of the same shape as ``dist``
        if ``weights == 'uniform'``, then returns None
    """
    if weights in (None, 'uniform'):
        return None
    elif weights == 'distance':
        # if user attempts to classify a point that was zero distance from one
        # or more training points, those training points are weighted as 1.0
        # and the other points as 0.0
        if dist.dtype is np.dtype(object):
            for point_dist_i, point_dist in enumerate(dist):
                # check if point_dist is iterable
                # (ex: RadiusNeighborClassifier.predict may set an element of
                # dist to 1e-6 to represent an 'outlier')
                if hasattr(point_dist, '__contains__') and 0. in point_dist:
                    dist[point_dist_i] = point_dist == 0.
                else:
                    dist[point_dist_i] = 1. / point_dist
        else:
            with np.errstate(divide='ignore'):
                dist = 1. / dist
            inf_mask = np.isinf(dist)
            inf_row = np.any(inf_mask, axis=1)
            dist[inf_row] = inf_mask[inf_row]
        return dist
    elif callable(weights):
        return weights(dist)
    else:
        raise ValueError("weights not recognized: should be 'uniform', "
                         "'distance', or a callable function")


def _is_sorted_by_data(graph):
    """Returns whether the graph's non-zero entries are sorted by data

    The non-zero entries are stored in graph.data and graph.indices.
    For each row (or sample), the non-zero entries can be either:
        - sorted by indices, as after graph.sort_indices()
        - sorted by data, as after _check_precomputed(graph)
        - not sorted.

    Parameters
    ----------
    graph : CSR sparse matrix, shape (n_samples, n_samples)
        Neighbors graph as given by kneighbors_graph or radius_neighbors_graph

    Returns
    -------
    res : boolean
        Whether input graph is sorted by data
    """
    assert graph.format == 'csr'
    out_of_order = graph.data[:-1] > graph.data[1:]
    line_change = np.unique(graph.indptr[1:-1] - 1)
    line_change = line_change[line_change < out_of_order.shape[0]]
    return (out_of_order.sum() == out_of_order[line_change].sum())


def _check_precomputed(X):
    """Check precomputed distance matrix

    If the precomputed distance matrix is sparse, it checks that the non-zero
    entries are sorted by distances. If not, the matrix is copied and sorted.

    Parameters
    ----------
    X : {sparse matrix, array-like}, (n_samples, n_samples)
        Distance matrix to other samples. X may be a sparse matrix, in which
        case only non-zero elements may be considered neighbors.

    Returns
    -------
    X : {sparse matrix, array-like}, (n_samples, n_samples)
        Distance matrix to other samples. X may be a sparse matrix, in which
        case only non-zero elements may be considered neighbors.
    """
    if not issparse(X):
        X = check_array(X)
        check_non_negative(X, whom="precomputed distance matrix.")
        return X
    else:
        graph = X

    if graph.format not in ('csr', 'csc', 'coo', 'lil'):
        raise TypeError('Sparse matrix in {!r} format is not supported due to '
                        'its handling of explicit zeros'.format(graph.format))
    copied = graph.format != 'csr'
    graph = check_array(graph, accept_sparse='csr')
    check_non_negative(graph, whom="precomputed distance matrix.")

    if not _is_sorted_by_data(graph):
        warnings.warn('Precomputed sparse input was not sorted by data.',
                      EfficiencyWarning)
        if not copied:
            graph = graph.copy()

        # if each sample has the same number of provided neighbors
        row_nnz = np.diff(graph.indptr)
        if row_nnz.max() == row_nnz.min():
            n_samples = graph.shape[0]
            distances = graph.data.reshape(n_samples, -1)

            order = np.argsort(distances, kind='mergesort')
            order += np.arange(n_samples)[:, None] * row_nnz[0]
            order = order.ravel()
            graph.data = graph.data[order]
            graph.indices = graph.indices[order]

        else:
            for start, stop in zip(graph.indptr, graph.indptr[1:]):
                order = np.argsort(graph.data[start:stop], kind='mergesort')
                graph.data[start:stop] = graph.data[start:stop][order]
                graph.indices[start:stop] = graph.indices[start:stop][order]
    return graph


def _kneighbors_from_graph(graph, n_neighbors, return_distance):
    """Decompose a nearest neighbors sparse graph into distances and indices

    Parameters
    ----------
    graph : CSR sparse matrix, shape (n_samples, n_samples)
        Neighbors graph as given by kneighbors_graph or radius_neighbors_graph

    n_neighbors : int
        Number of neighbors required for each sample.

    return_distance : boolean
        If False, distances will not be returned

    Returns
    -------
    neigh_dist : array, shape (n_samples, n_neighbors)
        Distances to nearest neighbors. Only present if return_distance=True.

    neigh_ind : array, shape (n_samples, n_neighbors)
        Indices of nearest neighbors.
    """
    n_samples = graph.shape[0]
    assert graph.format == 'csr'

    # number of neighbors by samples
    row_nnz = np.diff(graph.indptr)
    row_nnz_min = row_nnz.min()
    if n_neighbors is not None and row_nnz_min < n_neighbors:
        raise ValueError(
            '%d neighbors per samples are required, but some samples have only'
            ' %d neighbors in precomputed graph matrix. Decrease number of '
            'neighbors used or recompute the graph with more neighbors.'
            % (n_neighbors, row_nnz_min))

    def extract(a):
        # if each sample has the same number of provided neighbors
        if row_nnz.max() == row_nnz_min:
            return a.reshape(n_samples, -1)[:, :n_neighbors]
        else:
            idx = np.tile(np.arange(n_neighbors), (n_samples, 1))
            idx += graph.indptr[:-1, None]
            return a.take(idx, mode='clip').reshape(n_samples, n_neighbors)

    if return_distance:
        return extract(graph.data), extract(graph.indices)
    else:
        return extract(graph.indices)


def _radius_neighbors_from_graph(graph, radius, return_distance):
    """Decompose a nearest neighbors sparse graph into distances and indices

    Parameters
    ----------
    graph : CSR sparse matrix, shape (n_samples, n_samples)
        Neighbors graph as given by kneighbors_graph or radius_neighbors_graph

    radius : float > 0
        Radius of neighborhoods.

    return_distance : boolean
        If False, distances will not be returned

    Returns
    -------
    neigh_dist : array, shape (n_samples,) of arrays
        Distances to nearest neighbors. Only present if return_distance=True.

    neigh_ind :array, shape (n_samples,) of arrays
        Indices of nearest neighbors.
    """
    assert graph.format == 'csr'

    no_filter_needed = bool(graph.data.max() <= radius)

    if no_filter_needed:
        data, indices, indptr = graph.data, graph.indices, graph.indptr
    else:
        mask = graph.data <= radius
        if return_distance:
            data = np.compress(mask, graph.data)
        indices = np.compress(mask, graph.indices)
        indptr = np.concatenate(([0], np.cumsum(mask)))[graph.indptr]

    indices = indices.astype(np.intp, copy=no_filter_needed)

    if return_distance:
        neigh_dist = _to_object_array(np.split(data, indptr[1:-1]))
    neigh_ind = _to_object_array(np.split(indices, indptr[1:-1]))

    if return_distance:
        return neigh_dist, neigh_ind
    else:
        return neigh_ind


class NeighborsBase(MultiOutputMixin, BaseEstimator, metaclass=ABCMeta):
    """Base class for nearest neighbors estimators."""

    @abstractmethod
    def __init__(self, n_neighbors=None, radius=None,
                 algorithm='auto', leaf_size=30, metric='minkowski',
                 p=2, metric_params=None, n_jobs=None):

        self.n_neighbors = n_neighbors
        self.radius = radius
        self.algorithm = algorithm
        self.leaf_size = leaf_size
        self.metric = metric
        self.metric_params = metric_params
        self.p = p
        self.n_jobs = n_jobs
        self._check_algorithm_metric()

    def _check_algorithm_metric(self):
        if self.algorithm not in ['auto', 'brute',
                                  'kd_tree', 'ball_tree']:
            raise ValueError("unrecognized algorithm: '%s'" % self.algorithm)

        if self.algorithm == 'auto':
            if self.metric == 'precomputed':
                alg_check = 'brute'
            elif (callable(self.metric) or
                  self.metric in VALID_METRICS['ball_tree']):
                alg_check = 'ball_tree'
            else:
                alg_check = 'brute'
        else:
            alg_check = self.algorithm

        if callable(self.metric):
            if self.algorithm == 'kd_tree':
                # callable metric is only valid for brute force and ball_tree
                raise ValueError(
                    "kd_tree does not support callable metric '%s'"
                    "Function call overhead will result"
                    "in very poor performance."
                    % self.metric)
        elif self.metric not in VALID_METRICS[alg_check]:
            raise ValueError("Metric '%s' not valid. Use "
                             "sorted(sklearn.neighbors.VALID_METRICS['%s']) "
                             "to get valid options. "
                             "Metric can also be a callable function."
                             % (self.metric, alg_check))

        if self.metric_params is not None and 'p' in self.metric_params:
            warnings.warn("Parameter p is found in metric_params. "
                          "The corresponding parameter from __init__ "
                          "is ignored.", SyntaxWarning, stacklevel=3)
            effective_p = self.metric_params['p']
        else:
            effective_p = self.p

        if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1:
            raise ValueError("p must be greater than one for minkowski metric")

    def _fit(self, X):
        self._check_algorithm_metric()
        if self.metric_params is None:
            self.effective_metric_params_ = {}
        else:
            self.effective_metric_params_ = self.metric_params.copy()

        effective_p = self.effective_metric_params_.get('p', self.p)
        if self.metric in ['wminkowski', 'minkowski']:
            self.effective_metric_params_['p'] = effective_p

        self.effective_metric_ = self.metric
        # For minkowski distance, use more efficient methods where available
        if self.metric == 'minkowski':
            p = self.effective_metric_params_.pop('p', 2)
            if p < 1:
                raise ValueError("p must be greater than one "
                                 "for minkowski metric")
            elif p == 1:
                self.effective_metric_ = 'manhattan'
            elif p == 2:
                self.effective_metric_ = 'euclidean'
            elif p == np.inf:
                self.effective_metric_ = 'chebyshev'
            else:
                self.effective_metric_params_['p'] = p

        if isinstance(X, NeighborsBase):
            self._fit_X = X._fit_X
            self._tree = X._tree
            self._fit_method = X._fit_method
            self.n_samples_fit_ = X.n_samples_fit_
            return self

        elif isinstance(X, BallTree):
            self._fit_X = X.data
            self._tree = X
            self._fit_method = 'ball_tree'
            self.n_samples_fit_ = X.data.shape[0]
            return self

        elif isinstance(X, KDTree):
            self._fit_X = X.data
            self._tree = X
            self._fit_method = 'kd_tree'
            self.n_samples_fit_ = X.data.shape[0]
            return self

        if self.effective_metric_ == 'precomputed':
            X = _check_precomputed(X)
            self.n_features_in_ = X.shape[1]
        else:
            X = self._validate_data(X, accept_sparse='csr')

        n_samples = X.shape[0]
        if n_samples == 0:
            raise ValueError("n_samples must be greater than 0")

        # Precomputed matrix X must be squared
        if self.metric == 'precomputed' and X.shape[0] != X.shape[1]:
            raise ValueError("Precomputed matrix must be a square matrix."
                             " Input is a {}x{} matrix."
                             .format(X.shape[0], X.shape[1]))

        if issparse(X):
            if self.algorithm not in ('auto', 'brute'):
                warnings.warn("cannot use tree with sparse input: "
                              "using brute force")
            if self.effective_metric_ not in VALID_METRICS_SPARSE['brute'] \
                    and not callable(self.effective_metric_):
                raise ValueError("Metric '%s' not valid for sparse input. "
                                 "Use sorted(sklearn.neighbors."
                                 "VALID_METRICS_SPARSE['brute']) "
                                 "to get valid options. "
                                 "Metric can also be a callable function."
                                 % (self.effective_metric_))
            self._fit_X = X.copy()
            self._tree = None
            self._fit_method = 'brute'
            self.n_samples_fit_ = X.shape[0]
            return self

        self._fit_method = self.algorithm
        self._fit_X = X
        self.n_samples_fit_ = X.shape[0]

        if self._fit_method == 'auto':
            # A tree approach is better for small number of neighbors,
            # and KDTree is generally faster when available
            if ((self.n_neighbors is None or
                 self.n_neighbors < self._fit_X.shape[0] // 2) and
                    self.metric != 'precomputed'):
                if self.effective_metric_ in VALID_METRICS['kd_tree']:
                    self._fit_method = 'kd_tree'
                elif (callable(self.effective_metric_) or
                        self.effective_metric_ in VALID_METRICS['ball_tree']):
                    self._fit_method = 'ball_tree'
                else:
                    self._fit_method = 'brute'
            else:
                self._fit_method = 'brute'

        if self._fit_method == 'ball_tree':
            self._tree = BallTree(X, self.leaf_size,
                                  metric=self.effective_metric_,
                                  **self.effective_metric_params_)
        elif self._fit_method == 'kd_tree':
            self._tree = KDTree(X, self.leaf_size,
                                metric=self.effective_metric_,
                                **self.effective_metric_params_)
        elif self._fit_method == 'brute':
            self._tree = None
        else:
            raise ValueError("algorithm = '%s' not recognized"
                             % self.algorithm)

        if self.n_neighbors is not None:
            if self.n_neighbors <= 0:
                raise ValueError(
                    "Expected n_neighbors > 0. Got %d" %
                    self.n_neighbors
                )
            else:
                if not isinstance(self.n_neighbors, numbers.Integral):
                    raise TypeError(
                        "n_neighbors does not take %s value, "
                        "enter integer value" %
                        type(self.n_neighbors))

        return self

    @property
    def _pairwise(self):
        # For cross-validation routines to split data correctly
        return self.metric == 'precomputed'


def _tree_query_parallel_helper(tree, *args, **kwargs):
    """Helper for the Parallel calls in KNeighborsMixin.kneighbors

    The Cython method tree.query is not directly picklable by cloudpickle
    under PyPy.
    """
    return tree.query(*args, **kwargs)


class KNeighborsMixin:
    """Mixin for k-neighbors searches"""

    def _kneighbors_reduce_func(self, dist, start,
                                n_neighbors, return_distance):
        """Reduce a chunk of distances to the nearest neighbors

        Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`

        Parameters
        ----------
        dist : array of shape (n_samples_chunk, n_samples)
        start : int
            The index in X which the first row of dist corresponds to.
        n_neighbors : int
        return_distance : bool

        Returns
        -------
        dist : array of shape (n_samples_chunk, n_neighbors), optional
            Returned only if return_distance
        neigh : array of shape (n_samples_chunk, n_neighbors)
        """
        sample_range = np.arange(dist.shape[0])[:, None]
        neigh_ind = np.argpartition(dist, n_neighbors - 1, axis=1)
        neigh_ind = neigh_ind[:, :n_neighbors]
        # argpartition doesn't guarantee sorted order, so we sort again
        neigh_ind = neigh_ind[
            sample_range, np.argsort(dist[sample_range, neigh_ind])]
        if return_distance:
            if self.effective_metric_ == 'euclidean':
                result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind
            else:
                result = dist[sample_range, neigh_ind], neigh_ind
        else:
            result = neigh_ind
        return result

    def kneighbors(self, X=None, n_neighbors=None, return_distance=True):
        """Finds the K-neighbors of a point.
        Returns indices of and distances to the neighbors of each point.

        Parameters
        ----------
        X : array-like, shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            The query point or points.
            If not provided, neighbors of each indexed point are returned.
            In this case, the query point is not considered its own neighbor.

        n_neighbors : int
            Number of neighbors to get (default is the value
            passed to the constructor).

        return_distance : boolean, optional. Defaults to True.
            If False, distances will not be returned

        Returns
        -------
        neigh_dist : array, shape (n_queries, n_neighbors)
            Array representing the lengths to points, only present if
            return_distance=True

        neigh_ind : array, shape (n_queries, n_neighbors)
            Indices of the nearest points in the population matrix.

        Examples
        --------
        In the following example, we construct a NearestNeighbors
        class from an array representing our data set and ask who's
        the closest point to [1,1,1]

        >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(n_neighbors=1)
        >>> neigh.fit(samples)
        NearestNeighbors(n_neighbors=1)
        >>> print(neigh.kneighbors([[1., 1., 1.]]))
        (array([[0.5]]), array([[2]]))

        As you can see, it returns [[0.5]], and [[2]], which means that the
        element is at distance 0.5 and is the third element of samples
        (indexes start at 0). You can also query for multiple points:

        >>> X = [[0., 1., 0.], [1., 0., 1.]]
        >>> neigh.kneighbors(X, return_distance=False)
        array([[1],
               [2]]...)

        """
        check_is_fitted(self)

        if n_neighbors is None:
            n_neighbors = self.n_neighbors
        elif n_neighbors <= 0:
            raise ValueError(
                "Expected n_neighbors > 0. Got %d" %
                n_neighbors
            )
        else:
            if not isinstance(n_neighbors, numbers.Integral):
                raise TypeError(
                    "n_neighbors does not take %s value, "
                    "enter integer value" %
                    type(n_neighbors))

        if X is not None:
            query_is_train = False
            if self.effective_metric_ == 'precomputed':
                X = _check_precomputed(X)
            else:
                X = check_array(X, accept_sparse='csr')
        else:
            query_is_train = True
            X = self._fit_X
            # Include an extra neighbor to account for the sample itself being
            # returned, which is removed later
            n_neighbors += 1

        n_samples_fit = self.n_samples_fit_
        if n_neighbors > n_samples_fit:
            raise ValueError(
                "Expected n_neighbors <= n_samples, "
                " but n_samples = %d, n_neighbors = %d" %
                (n_samples_fit, n_neighbors)
            )

        n_jobs = effective_n_jobs(self.n_jobs)
        chunked_results = None
        if (self._fit_method == 'brute' and
                self.effective_metric_ == 'precomputed' and issparse(X)):
            results = _kneighbors_from_graph(
                X, n_neighbors=n_neighbors,
                return_distance=return_distance)

        elif self._fit_method == 'brute':
            reduce_func = partial(self._kneighbors_reduce_func,
                                  n_neighbors=n_neighbors,
                                  return_distance=return_distance)

            # for efficiency, use squared euclidean distances
            if self.effective_metric_ == 'euclidean':
                kwds = {'squared': True}
            else:
                kwds = self.effective_metric_params_

            chunked_results = list(pairwise_distances_chunked(
                X, self._fit_X, reduce_func=reduce_func,
                metric=self.effective_metric_, n_jobs=n_jobs,
                **kwds))

        elif self._fit_method in ['ball_tree', 'kd_tree']:
            if issparse(X):
                raise ValueError(
                    "%s does not work with sparse matrices. Densify the data, "
                    "or set algorithm='brute'" % self._fit_method)
            old_joblib = (
                    parse_version(joblib.__version__) < parse_version('0.12'))
            if old_joblib:
                # Deal with change of API in joblib
                check_pickle = False if old_joblib else None
                delayed_query = delayed(_tree_query_parallel_helper,
                                        check_pickle=check_pickle)
                parallel_kwargs = {"backend": "threading"}
            else:
                delayed_query = delayed(_tree_query_parallel_helper)
                parallel_kwargs = {"prefer": "threads"}
            chunked_results = Parallel(n_jobs, **parallel_kwargs)(
                delayed_query(
                    self._tree, X[s], n_neighbors, return_distance)
                for s in gen_even_slices(X.shape[0], n_jobs)
            )
        else:
            raise ValueError("internal: _fit_method not recognized")

        if chunked_results is not None:
            if return_distance:
                neigh_dist, neigh_ind = zip(*chunked_results)
                results = np.vstack(neigh_dist), np.vstack(neigh_ind)
            else:
                results = np.vstack(chunked_results)

        if not query_is_train:
            return results
        else:
            # If the query data is the same as the indexed data, we would like
            # to ignore the first nearest neighbor of every sample, i.e
            # the sample itself.
            if return_distance:
                neigh_dist, neigh_ind = results
            else:
                neigh_ind = results

            n_queries, _ = X.shape
            sample_range = np.arange(n_queries)[:, None]
            sample_mask = neigh_ind != sample_range

            # Corner case: When the number of duplicates are more
            # than the number of neighbors, the first NN will not
            # be the sample, but a duplicate.
            # In that case mask the first duplicate.
            dup_gr_nbrs = np.all(sample_mask, axis=1)
            sample_mask[:, 0][dup_gr_nbrs] = False
            neigh_ind = np.reshape(
                neigh_ind[sample_mask], (n_queries, n_neighbors - 1))

            if return_distance:
                neigh_dist = np.reshape(
                    neigh_dist[sample_mask], (n_queries, n_neighbors - 1))
                return neigh_dist, neigh_ind
            return neigh_ind

    def kneighbors_graph(self, X=None, n_neighbors=None,
                         mode='connectivity'):
        """Computes the (weighted) graph of k-Neighbors for points in X

        Parameters
        ----------
        X : array-like, shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            The query point or points.
            If not provided, neighbors of each indexed point are returned.
            In this case, the query point is not considered its own neighbor.

        n_neighbors : int
            Number of neighbors for each sample.
            (default is value passed to the constructor).

        mode : {'connectivity', 'distance'}, optional
            Type of returned matrix: 'connectivity' will return the
            connectivity matrix with ones and zeros, in 'distance' the
            edges are Euclidean distance between points.

        Returns
        -------
        A : sparse graph in CSR format, shape = [n_queries, n_samples_fit]
            n_samples_fit is the number of samples in the fitted data
            A[i, j] is assigned the weight of edge that connects i to j.

        Examples
        --------
        >>> X = [[0], [3], [1]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(n_neighbors=2)
        >>> neigh.fit(X)
        NearestNeighbors(n_neighbors=2)
        >>> A = neigh.kneighbors_graph(X)
        >>> A.toarray()
        array([[1., 0., 1.],
               [0., 1., 1.],
               [1., 0., 1.]])

        See also
        --------
        NearestNeighbors.radius_neighbors_graph
        """
        check_is_fitted(self)
        if n_neighbors is None:
            n_neighbors = self.n_neighbors

        # check the input only in self.kneighbors

        # construct CSR matrix representation of the k-NN graph
        if mode == 'connectivity':
            A_ind = self.kneighbors(X, n_neighbors, return_distance=False)
            n_queries = A_ind.shape[0]
            A_data = np.ones(n_queries * n_neighbors)

        elif mode == 'distance':
            A_data, A_ind = self.kneighbors(
                X, n_neighbors, return_distance=True)
            A_data = np.ravel(A_data)

        else:
            raise ValueError(
                'Unsupported mode, must be one of "connectivity" '
                'or "distance" but got "%s" instead' % mode)

        n_queries = A_ind.shape[0]
        n_samples_fit = self.n_samples_fit_
        n_nonzero = n_queries * n_neighbors
        A_indptr = np.arange(0, n_nonzero + 1, n_neighbors)

        kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr),
                                      shape=(n_queries, n_samples_fit))

        return kneighbors_graph


def _tree_query_radius_parallel_helper(tree, *args, **kwargs):
    """Helper for the Parallel calls in RadiusNeighborsMixin.radius_neighbors

    The Cython method tree.query_radius is not directly picklable by
    cloudpickle under PyPy.
    """
    return tree.query_radius(*args, **kwargs)


class RadiusNeighborsMixin:
    """Mixin for radius-based neighbors searches"""

    def _radius_neighbors_reduce_func(self, dist, start,
                                      radius, return_distance):
        """Reduce a chunk of distances to the nearest neighbors

        Callback to :func:`sklearn.metrics.pairwise.pairwise_distances_chunked`

        Parameters
        ----------
        dist : array of shape (n_samples_chunk, n_samples)
        start : int
            The index in X which the first row of dist corresponds to.
        radius : float
        return_distance : bool

        Returns
        -------
        dist : list of n_samples_chunk 1d arrays, optional
            Returned only if return_distance
        neigh : list of n_samples_chunk 1d arrays
        """
        neigh_ind = [np.where(d <= radius)[0] for d in dist]

        if return_distance:
            if self.effective_metric_ == 'euclidean':
                dist = [np.sqrt(d[neigh_ind[i]])
                        for i, d in enumerate(dist)]
            else:
                dist = [d[neigh_ind[i]]
                        for i, d in enumerate(dist)]
            results = dist, neigh_ind
        else:
            results = neigh_ind
        return results

    def radius_neighbors(self, X=None, radius=None, return_distance=True,
                         sort_results=False):
        """Finds the neighbors within a given radius of a point or points.

        Return the indices and distances of each point from the dataset
        lying in a ball with size ``radius`` around the points of the query
        array. Points lying on the boundary are included in the results.

        The result points are *not* necessarily sorted by distance to their
        query point.

        Parameters
        ----------
        X : array-like, (n_samples, n_features), optional
            The query point or points.
            If not provided, neighbors of each indexed point are returned.
            In this case, the query point is not considered its own neighbor.

        radius : float
            Limiting distance of neighbors to return.
            (default is the value passed to the constructor).

        return_distance : boolean, optional. Defaults to True.
            If False, distances will not be returned.

        sort_results : boolean, optional. Defaults to False.
            If True, the distances and indices will be sorted before being
            returned. If False, the results will not be sorted. If
            return_distance == False, setting sort_results = True will
            result in an error.

            .. versionadded:: 0.22

        Returns
        -------
        neigh_dist : array, shape (n_samples,) of arrays
            Array representing the distances to each point, only present if
            return_distance=True. The distance values are computed according
            to the ``metric`` constructor parameter.

        neigh_ind : array, shape (n_samples,) of arrays
            An array of arrays of indices of the approximate nearest points
            from the population matrix that lie within a ball of size
            ``radius`` around the query points.

        Examples
        --------
        In the following example, we construct a NeighborsClassifier
        class from an array representing our data set and ask who's
        the closest point to [1, 1, 1]:

        >>> import numpy as np
        >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(radius=1.6)
        >>> neigh.fit(samples)
        NearestNeighbors(radius=1.6)
        >>> rng = neigh.radius_neighbors([[1., 1., 1.]])
        >>> print(np.asarray(rng[0][0]))
        [1.5 0.5]
        >>> print(np.asarray(rng[1][0]))
        [1 2]

        The first array returned contains the distances to all points which
        are closer than 1.6, while the second array returned contains their
        indices.  In general, multiple points can be queried at the same time.

        Notes
        -----
        Because the number of neighbors of each point is not necessarily
        equal, the results for multiple query points cannot be fit in a
        standard data array.
        For efficiency, `radius_neighbors` returns arrays of objects, where
        each object is a 1D array of indices or distances.
        """
        check_is_fitted(self)

        if X is not None:
            query_is_train = False
            if self.effective_metric_ == 'precomputed':
                X = _check_precomputed(X)
            else:
                X = check_array(X, accept_sparse='csr')
        else:
            query_is_train = True
            X = self._fit_X

        if radius is None:
            radius = self.radius

        if (self._fit_method == 'brute' and
                self.effective_metric_ == 'precomputed' and issparse(X)):
            results = _radius_neighbors_from_graph(
                X, radius=radius, return_distance=return_distance)

        elif self._fit_method == 'brute':
            # for efficiency, use squared euclidean distances
            if self.effective_metric_ == 'euclidean':
                radius *= radius
                kwds = {'squared': True}
            else:
                kwds = self.effective_metric_params_

            reduce_func = partial(self._radius_neighbors_reduce_func,
                                  radius=radius,
                                  return_distance=return_distance)

            chunked_results = pairwise_distances_chunked(
                X, self._fit_X, reduce_func=reduce_func,
                metric=self.effective_metric_, n_jobs=self.n_jobs,
                **kwds)
            if return_distance:
                neigh_dist_chunks, neigh_ind_chunks = zip(*chunked_results)
                neigh_dist_list = sum(neigh_dist_chunks, [])
                neigh_ind_list = sum(neigh_ind_chunks, [])
                neigh_dist = _to_object_array(neigh_dist_list)
                neigh_ind = _to_object_array(neigh_ind_list)
                results = neigh_dist, neigh_ind
            else:
                neigh_ind_list = sum(chunked_results, [])
                results = _to_object_array(neigh_ind_list)

        elif self._fit_method in ['ball_tree', 'kd_tree']:
            if issparse(X):
                raise ValueError(
                    "%s does not work with sparse matrices. Densify the data, "
                    "or set algorithm='brute'" % self._fit_method)

            n_jobs = effective_n_jobs(self.n_jobs)
            if parse_version(joblib.__version__) < parse_version('0.12'):
                # Deal with change of API in joblib
                delayed_query = delayed(_tree_query_radius_parallel_helper,
                                        check_pickle=False)
                parallel_kwargs = {"backend": "threading"}
            else:
                delayed_query = delayed(_tree_query_radius_parallel_helper)
                parallel_kwargs = {"prefer": "threads"}

            chunked_results = Parallel(n_jobs, **parallel_kwargs)(
                delayed_query(self._tree, X[s], radius, return_distance,
                              sort_results=sort_results)

                for s in gen_even_slices(X.shape[0], n_jobs)
            )
            if return_distance:
                neigh_ind, neigh_dist = tuple(zip(*chunked_results))
                results = np.hstack(neigh_dist), np.hstack(neigh_ind)
            else:
                results = np.hstack(chunked_results)
        else:
            raise ValueError("internal: _fit_method not recognized")

        if not query_is_train:
            return results
        else:
            # If the query data is the same as the indexed data, we would like
            # to ignore the first nearest neighbor of every sample, i.e
            # the sample itself.
            if return_distance:
                neigh_dist, neigh_ind = results
            else:
                neigh_ind = results

            for ind, ind_neighbor in enumerate(neigh_ind):
                mask = ind_neighbor != ind

                neigh_ind[ind] = ind_neighbor[mask]
                if return_distance:
                    neigh_dist[ind] = neigh_dist[ind][mask]

            if return_distance:
                return neigh_dist, neigh_ind
            return neigh_ind

    def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity',
                               sort_results=False):
        """Computes the (weighted) graph of Neighbors for points in X

        Neighborhoods are restricted the points at a distance lower than
        radius.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features), default=None
            The query point or points.
            If not provided, neighbors of each indexed point are returned.
            In this case, the query point is not considered its own neighbor.

        radius : float
            Radius of neighborhoods.
            (default is the value passed to the constructor).

        mode : {'connectivity', 'distance'}, optional
            Type of returned matrix: 'connectivity' will return the
            connectivity matrix with ones and zeros, in 'distance' the
            edges are Euclidean distance between points.

        sort_results : boolean, optional. Defaults to False.
            If True, the distances and indices will be sorted before being
            returned. If False, the results will not be sorted.
            Only used with mode='distance'.

            .. versionadded:: 0.22

        Returns
        -------
        A : sparse graph in CSR format, shape = [n_queries, n_samples_fit]
            n_samples_fit is the number of samples in the fitted data
            A[i, j] is assigned the weight of edge that connects i to j.

        Examples
        --------
        >>> X = [[0], [3], [1]]
        >>> from sklearn.neighbors import NearestNeighbors
        >>> neigh = NearestNeighbors(radius=1.5)
        >>> neigh.fit(X)
        NearestNeighbors(radius=1.5)
        >>> A = neigh.radius_neighbors_graph(X)
        >>> A.toarray()
        array([[1., 0., 1.],
               [0., 1., 0.],
               [1., 0., 1.]])

        See also
        --------
        kneighbors_graph
        """
        check_is_fitted(self)

        # check the input only in self.radius_neighbors

        if radius is None:
            radius = self.radius

        # construct CSR matrix representation of the NN graph
        if mode == 'connectivity':
            A_ind = self.radius_neighbors(X, radius,
                                          return_distance=False)
            A_data = None
        elif mode == 'distance':
            dist, A_ind = self.radius_neighbors(X, radius,
                                                return_distance=True,
                                                sort_results=sort_results)
            A_data = np.concatenate(list(dist))
        else:
            raise ValueError(
                'Unsupported mode, must be one of "connectivity", '
                'or "distance" but got %s instead' % mode)

        n_queries = A_ind.shape[0]
        n_samples_fit = self.n_samples_fit_
        n_neighbors = np.array([len(a) for a in A_ind])
        A_ind = np.concatenate(list(A_ind))
        if A_data is None:
            A_data = np.ones(len(A_ind))
        A_indptr = np.concatenate((np.zeros(1, dtype=int),
                                   np.cumsum(n_neighbors)))

        return csr_matrix((A_data, A_ind, A_indptr),
                          shape=(n_queries, n_samples_fit))


class SupervisedFloatMixin:
    def fit(self, X, y):
        """Fit the model using X as training data and y as target values

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, KDTree}
            Training data. If array or matrix, shape [n_samples, n_features],
            or [n_samples, n_samples] if metric='precomputed'.

        y : {array-like, sparse matrix}
            Target values, array of float values, shape = [n_samples]
             or [n_samples, n_outputs]
        """
        if not isinstance(X, (KDTree, BallTree)):
            X, y = self._validate_data(X, y, accept_sparse="csr",
                                       multi_output=True)
        self._y = y
        return self._fit(X)

    def _more_tags(self):
        return {'requires_y': True}


class SupervisedIntegerMixin:
    def fit(self, X, y):
        """Fit the model using X as training data and y as target values

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, KDTree}
            Training data. If array or matrix, shape [n_samples, n_features],
            or [n_samples, n_samples] if metric='precomputed'.

        y : {array-like, sparse matrix}
            Target values of shape = [n_samples] or [n_samples, n_outputs]

        """
        if not isinstance(X, (KDTree, BallTree)):
            X, y = self._validate_data(X, y, accept_sparse="csr",
                                       multi_output=True)

        if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1:
            if y.ndim != 1:
                warnings.warn("A column-vector y was passed when a 1d array "
                              "was expected. Please change the shape of y to "
                              "(n_samples, ), for example using ravel().",
                              DataConversionWarning, stacklevel=2)

            self.outputs_2d_ = False
            y = y.reshape((-1, 1))
        else:
            self.outputs_2d_ = True

        check_classification_targets(y)
        self.classes_ = []
        self._y = np.empty(y.shape, dtype=np.int)
        for k in range(self._y.shape[1]):
            classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True)
            self.classes_.append(classes)

        if not self.outputs_2d_:
            self.classes_ = self.classes_[0]
            self._y = self._y.ravel()

        return self._fit(X)

    def _more_tags(self):
        return {'requires_y': True}


class UnsupervisedMixin:
    def fit(self, X, y=None):
        """Fit the model using X as training data

        Parameters
        ----------
        X : {array-like, sparse matrix, BallTree, KDTree}
            Training data. If array or matrix, shape [n_samples, n_features],
            or [n_samples, n_samples] if metric='precomputed'.
        """
        return self._fit(X)