_gaussian_mixture.py 27.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
"""Gaussian Mixture Model."""

# Author: Wei Xue <xuewei4d@gmail.com>
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import numpy as np

from scipy import linalg

from ._base import BaseMixture, _check_shape
from ..utils import check_array
from ..utils.extmath import row_norms
from ..utils.validation import _deprecate_positional_args


###############################################################################
# Gaussian mixture shape checkers used by the GaussianMixture class

def _check_weights(weights, n_components):
    """Check the user provided 'weights'.

    Parameters
    ----------
    weights : array-like, shape (n_components,)
        The proportions of components of each mixture.

    n_components : int
        Number of components.

    Returns
    -------
    weights : array, shape (n_components,)
    """
    weights = check_array(weights, dtype=[np.float64, np.float32],
                          ensure_2d=False)
    _check_shape(weights, (n_components,), 'weights')

    # check range
    if (any(np.less(weights, 0.)) or
            any(np.greater(weights, 1.))):
        raise ValueError("The parameter 'weights' should be in the range "
                         "[0, 1], but got max value %.5f, min value %.5f"
                         % (np.min(weights), np.max(weights)))

    # check normalization
    if not np.allclose(np.abs(1. - np.sum(weights)), 0.):
        raise ValueError("The parameter 'weights' should be normalized, "
                         "but got sum(weights) = %.5f" % np.sum(weights))
    return weights


def _check_means(means, n_components, n_features):
    """Validate the provided 'means'.

    Parameters
    ----------
    means : array-like, shape (n_components, n_features)
        The centers of the current components.

    n_components : int
        Number of components.

    n_features : int
        Number of features.

    Returns
    -------
    means : array, (n_components, n_features)
    """
    means = check_array(means, dtype=[np.float64, np.float32], ensure_2d=False)
    _check_shape(means, (n_components, n_features), 'means')
    return means


def _check_precision_positivity(precision, covariance_type):
    """Check a precision vector is positive-definite."""
    if np.any(np.less_equal(precision, 0.0)):
        raise ValueError("'%s precision' should be "
                         "positive" % covariance_type)


def _check_precision_matrix(precision, covariance_type):
    """Check a precision matrix is symmetric and positive-definite."""
    if not (np.allclose(precision, precision.T) and
            np.all(linalg.eigvalsh(precision) > 0.)):
        raise ValueError("'%s precision' should be symmetric, "
                         "positive-definite" % covariance_type)


def _check_precisions_full(precisions, covariance_type):
    """Check the precision matrices are symmetric and positive-definite."""
    for prec in precisions:
        _check_precision_matrix(prec, covariance_type)


def _check_precisions(precisions, covariance_type, n_components, n_features):
    """Validate user provided precisions.

    Parameters
    ----------
    precisions : array-like
        'full' : shape of (n_components, n_features, n_features)
        'tied' : shape of (n_features, n_features)
        'diag' : shape of (n_components, n_features)
        'spherical' : shape of (n_components,)

    covariance_type : string

    n_components : int
        Number of components.

    n_features : int
        Number of features.

    Returns
    -------
    precisions : array
    """
    precisions = check_array(precisions, dtype=[np.float64, np.float32],
                             ensure_2d=False,
                             allow_nd=covariance_type == 'full')

    precisions_shape = {'full': (n_components, n_features, n_features),
                        'tied': (n_features, n_features),
                        'diag': (n_components, n_features),
                        'spherical': (n_components,)}
    _check_shape(precisions, precisions_shape[covariance_type],
                 '%s precision' % covariance_type)

    _check_precisions = {'full': _check_precisions_full,
                         'tied': _check_precision_matrix,
                         'diag': _check_precision_positivity,
                         'spherical': _check_precision_positivity}
    _check_precisions[covariance_type](precisions, covariance_type)
    return precisions


###############################################################################
# Gaussian mixture parameters estimators (used by the M-Step)

def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar):
    """Estimate the full covariance matrices.

    Parameters
    ----------
    resp : array-like, shape (n_samples, n_components)

    X : array-like, shape (n_samples, n_features)

    nk : array-like, shape (n_components,)

    means : array-like, shape (n_components, n_features)

    reg_covar : float

    Returns
    -------
    covariances : array, shape (n_components, n_features, n_features)
        The covariance matrix of the current components.
    """
    n_components, n_features = means.shape
    covariances = np.empty((n_components, n_features, n_features))
    for k in range(n_components):
        diff = X - means[k]
        covariances[k] = np.dot(resp[:, k] * diff.T, diff) / nk[k]
        covariances[k].flat[::n_features + 1] += reg_covar
    return covariances


def _estimate_gaussian_covariances_tied(resp, X, nk, means, reg_covar):
    """Estimate the tied covariance matrix.

    Parameters
    ----------
    resp : array-like, shape (n_samples, n_components)

    X : array-like, shape (n_samples, n_features)

    nk : array-like, shape (n_components,)

    means : array-like, shape (n_components, n_features)

    reg_covar : float

    Returns
    -------
    covariance : array, shape (n_features, n_features)
        The tied covariance matrix of the components.
    """
    avg_X2 = np.dot(X.T, X)
    avg_means2 = np.dot(nk * means.T, means)
    covariance = avg_X2 - avg_means2
    covariance /= nk.sum()
    covariance.flat[::len(covariance) + 1] += reg_covar
    return covariance


def _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar):
    """Estimate the diagonal covariance vectors.

    Parameters
    ----------
    responsibilities : array-like, shape (n_samples, n_components)

    X : array-like, shape (n_samples, n_features)

    nk : array-like, shape (n_components,)

    means : array-like, shape (n_components, n_features)

    reg_covar : float

    Returns
    -------
    covariances : array, shape (n_components, n_features)
        The covariance vector of the current components.
    """
    avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis]
    avg_means2 = means ** 2
    avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis]
    return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covar


def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar):
    """Estimate the spherical variance values.

    Parameters
    ----------
    responsibilities : array-like, shape (n_samples, n_components)

    X : array-like, shape (n_samples, n_features)

    nk : array-like, shape (n_components,)

    means : array-like, shape (n_components, n_features)

    reg_covar : float

    Returns
    -------
    variances : array, shape (n_components,)
        The variance values of each components.
    """
    return _estimate_gaussian_covariances_diag(resp, X, nk,
                                               means, reg_covar).mean(1)


def _estimate_gaussian_parameters(X, resp, reg_covar, covariance_type):
    """Estimate the Gaussian distribution parameters.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        The input data array.

    resp : array-like, shape (n_samples, n_components)
        The responsibilities for each data sample in X.

    reg_covar : float
        The regularization added to the diagonal of the covariance matrices.

    covariance_type : {'full', 'tied', 'diag', 'spherical'}
        The type of precision matrices.

    Returns
    -------
    nk : array-like, shape (n_components,)
        The numbers of data samples in the current components.

    means : array-like, shape (n_components, n_features)
        The centers of the current components.

    covariances : array-like
        The covariance matrix of the current components.
        The shape depends of the covariance_type.
    """
    nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps
    means = np.dot(resp.T, X) / nk[:, np.newaxis]
    covariances = {"full": _estimate_gaussian_covariances_full,
                   "tied": _estimate_gaussian_covariances_tied,
                   "diag": _estimate_gaussian_covariances_diag,
                   "spherical": _estimate_gaussian_covariances_spherical
                   }[covariance_type](resp, X, nk, means, reg_covar)
    return nk, means, covariances


def _compute_precision_cholesky(covariances, covariance_type):
    """Compute the Cholesky decomposition of the precisions.

    Parameters
    ----------
    covariances : array-like
        The covariance matrix of the current components.
        The shape depends of the covariance_type.

    covariance_type : {'full', 'tied', 'diag', 'spherical'}
        The type of precision matrices.

    Returns
    -------
    precisions_cholesky : array-like
        The cholesky decomposition of sample precisions of the current
        components. The shape depends of the covariance_type.
    """
    estimate_precision_error_message = (
        "Fitting the mixture model failed because some components have "
        "ill-defined empirical covariance (for instance caused by singleton "
        "or collapsed samples). Try to decrease the number of components, "
        "or increase reg_covar.")

    if covariance_type == 'full':
        n_components, n_features, _ = covariances.shape
        precisions_chol = np.empty((n_components, n_features, n_features))
        for k, covariance in enumerate(covariances):
            try:
                cov_chol = linalg.cholesky(covariance, lower=True)
            except linalg.LinAlgError:
                raise ValueError(estimate_precision_error_message)
            precisions_chol[k] = linalg.solve_triangular(cov_chol,
                                                         np.eye(n_features),
                                                         lower=True).T
    elif covariance_type == 'tied':
        _, n_features = covariances.shape
        try:
            cov_chol = linalg.cholesky(covariances, lower=True)
        except linalg.LinAlgError:
            raise ValueError(estimate_precision_error_message)
        precisions_chol = linalg.solve_triangular(cov_chol, np.eye(n_features),
                                                  lower=True).T
    else:
        if np.any(np.less_equal(covariances, 0.0)):
            raise ValueError(estimate_precision_error_message)
        precisions_chol = 1. / np.sqrt(covariances)
    return precisions_chol


###############################################################################
# Gaussian mixture probability estimators
def _compute_log_det_cholesky(matrix_chol, covariance_type, n_features):
    """Compute the log-det of the cholesky decomposition of matrices.

    Parameters
    ----------
    matrix_chol : array-like
        Cholesky decompositions of the matrices.
        'full' : shape of (n_components, n_features, n_features)
        'tied' : shape of (n_features, n_features)
        'diag' : shape of (n_components, n_features)
        'spherical' : shape of (n_components,)

    covariance_type : {'full', 'tied', 'diag', 'spherical'}

    n_features : int
        Number of features.

    Returns
    -------
    log_det_precision_chol : array-like, shape (n_components,)
        The determinant of the precision matrix for each component.
    """
    if covariance_type == 'full':
        n_components, _, _ = matrix_chol.shape
        log_det_chol = (np.sum(np.log(
            matrix_chol.reshape(
                n_components, -1)[:, ::n_features + 1]), 1))

    elif covariance_type == 'tied':
        log_det_chol = (np.sum(np.log(np.diag(matrix_chol))))

    elif covariance_type == 'diag':
        log_det_chol = (np.sum(np.log(matrix_chol), axis=1))

    else:
        log_det_chol = n_features * (np.log(matrix_chol))

    return log_det_chol


def _estimate_log_gaussian_prob(X, means, precisions_chol, covariance_type):
    """Estimate the log Gaussian probability.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)

    means : array-like, shape (n_components, n_features)

    precisions_chol : array-like
        Cholesky decompositions of the precision matrices.
        'full' : shape of (n_components, n_features, n_features)
        'tied' : shape of (n_features, n_features)
        'diag' : shape of (n_components, n_features)
        'spherical' : shape of (n_components,)

    covariance_type : {'full', 'tied', 'diag', 'spherical'}

    Returns
    -------
    log_prob : array, shape (n_samples, n_components)
    """
    n_samples, n_features = X.shape
    n_components, _ = means.shape
    # det(precision_chol) is half of det(precision)
    log_det = _compute_log_det_cholesky(
        precisions_chol, covariance_type, n_features)

    if covariance_type == 'full':
        log_prob = np.empty((n_samples, n_components))
        for k, (mu, prec_chol) in enumerate(zip(means, precisions_chol)):
            y = np.dot(X, prec_chol) - np.dot(mu, prec_chol)
            log_prob[:, k] = np.sum(np.square(y), axis=1)

    elif covariance_type == 'tied':
        log_prob = np.empty((n_samples, n_components))
        for k, mu in enumerate(means):
            y = np.dot(X, precisions_chol) - np.dot(mu, precisions_chol)
            log_prob[:, k] = np.sum(np.square(y), axis=1)

    elif covariance_type == 'diag':
        precisions = precisions_chol ** 2
        log_prob = (np.sum((means ** 2 * precisions), 1) -
                    2. * np.dot(X, (means * precisions).T) +
                    np.dot(X ** 2, precisions.T))

    elif covariance_type == 'spherical':
        precisions = precisions_chol ** 2
        log_prob = (np.sum(means ** 2, 1) * precisions -
                    2 * np.dot(X, means.T * precisions) +
                    np.outer(row_norms(X, squared=True), precisions))
    return -.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_det


class GaussianMixture(BaseMixture):
    """Gaussian Mixture.

    Representation of a Gaussian mixture model probability distribution.
    This class allows to estimate the parameters of a Gaussian mixture
    distribution.

    Read more in the :ref:`User Guide <gmm>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    n_components : int, defaults to 1.
        The number of mixture components.

    covariance_type : {'full' (default), 'tied', 'diag', 'spherical'}
        String describing the type of covariance parameters to use.
        Must be one of:

        'full'
            each component has its own general covariance matrix
        'tied'
            all components share the same general covariance matrix
        'diag'
            each component has its own diagonal covariance matrix
        'spherical'
            each component has its own single variance

    tol : float, defaults to 1e-3.
        The convergence threshold. EM iterations will stop when the
        lower bound average gain is below this threshold.

    reg_covar : float, defaults to 1e-6.
        Non-negative regularization added to the diagonal of covariance.
        Allows to assure that the covariance matrices are all positive.

    max_iter : int, defaults to 100.
        The number of EM iterations to perform.

    n_init : int, defaults to 1.
        The number of initializations to perform. The best results are kept.

    init_params : {'kmeans', 'random'}, defaults to 'kmeans'.
        The method used to initialize the weights, the means and the
        precisions.
        Must be one of::

            'kmeans' : responsibilities are initialized using kmeans.
            'random' : responsibilities are initialized randomly.

    weights_init : array-like, shape (n_components, ), optional
        The user-provided initial weights, defaults to None.
        If it None, weights are initialized using the `init_params` method.

    means_init : array-like, shape (n_components, n_features), optional
        The user-provided initial means, defaults to None,
        If it None, means are initialized using the `init_params` method.

    precisions_init : array-like, optional.
        The user-provided initial precisions (inverse of the covariance
        matrices), defaults to None.
        If it None, precisions are initialized using the 'init_params' method.
        The shape depends on 'covariance_type'::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    random_state : int, RandomState instance or None, optional (default=None)
        Controls the random seed given to the method chosen to initialize the
        parameters (see `init_params`).
        In addition, it controls the generation of random samples from the
        fitted distribution (see the method `sample`).
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    warm_start : bool, default to False.
        If 'warm_start' is True, the solution of the last fitting is used as
        initialization for the next call of fit(). This can speed up
        convergence when fit is called several times on similar problems.
        In that case, 'n_init' is ignored and only a single initialization
        occurs upon the first call.
        See :term:`the Glossary <warm_start>`.

    verbose : int, default to 0.
        Enable verbose output. If 1 then it prints the current
        initialization and each iteration step. If greater than 1 then
        it prints also the log probability and the time needed
        for each step.

    verbose_interval : int, default to 10.
        Number of iteration done before the next print.

    Attributes
    ----------
    weights_ : array-like, shape (n_components,)
        The weights of each mixture components.

    means_ : array-like, shape (n_components, n_features)
        The mean of each mixture component.

    covariances_ : array-like
        The covariance of each mixture component.
        The shape depends on `covariance_type`::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    precisions_ : array-like
        The precision matrices for each component in the mixture. A precision
        matrix is the inverse of a covariance matrix. A covariance matrix is
        symmetric positive definite so the mixture of Gaussian can be
        equivalently parameterized by the precision matrices. Storing the
        precision matrices instead of the covariance matrices makes it more
        efficient to compute the log-likelihood of new samples at test time.
        The shape depends on `covariance_type`::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    precisions_cholesky_ : array-like
        The cholesky decomposition of the precision matrices of each mixture
        component. A precision matrix is the inverse of a covariance matrix.
        A covariance matrix is symmetric positive definite so the mixture of
        Gaussian can be equivalently parameterized by the precision matrices.
        Storing the precision matrices instead of the covariance matrices makes
        it more efficient to compute the log-likelihood of new samples at test
        time. The shape depends on `covariance_type`::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    converged_ : bool
        True when convergence was reached in fit(), False otherwise.

    n_iter_ : int
        Number of step used by the best fit of EM to reach the convergence.

    lower_bound_ : float
        Lower bound value on the log-likelihood (of the training data with
        respect to the model) of the best fit of EM.

    See Also
    --------
    BayesianGaussianMixture : Gaussian mixture model fit with a variational
        inference.
    """
    @_deprecate_positional_args
    def __init__(self, n_components=1, *, covariance_type='full', tol=1e-3,
                 reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans',
                 weights_init=None, means_init=None, precisions_init=None,
                 random_state=None, warm_start=False,
                 verbose=0, verbose_interval=10):
        super().__init__(
            n_components=n_components, tol=tol, reg_covar=reg_covar,
            max_iter=max_iter, n_init=n_init, init_params=init_params,
            random_state=random_state, warm_start=warm_start,
            verbose=verbose, verbose_interval=verbose_interval)

        self.covariance_type = covariance_type
        self.weights_init = weights_init
        self.means_init = means_init
        self.precisions_init = precisions_init

    def _check_parameters(self, X):
        """Check the Gaussian mixture parameters are well defined."""
        _, n_features = X.shape
        if self.covariance_type not in ['spherical', 'tied', 'diag', 'full']:
            raise ValueError("Invalid value for 'covariance_type': %s "
                             "'covariance_type' should be in "
                             "['spherical', 'tied', 'diag', 'full']"
                             % self.covariance_type)

        if self.weights_init is not None:
            self.weights_init = _check_weights(self.weights_init,
                                               self.n_components)

        if self.means_init is not None:
            self.means_init = _check_means(self.means_init,
                                           self.n_components, n_features)

        if self.precisions_init is not None:
            self.precisions_init = _check_precisions(self.precisions_init,
                                                     self.covariance_type,
                                                     self.n_components,
                                                     n_features)

    def _initialize(self, X, resp):
        """Initialization of the Gaussian mixture parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        resp : array-like, shape (n_samples, n_components)
        """
        n_samples, _ = X.shape

        weights, means, covariances = _estimate_gaussian_parameters(
            X, resp, self.reg_covar, self.covariance_type)
        weights /= n_samples

        self.weights_ = (weights if self.weights_init is None
                         else self.weights_init)
        self.means_ = means if self.means_init is None else self.means_init

        if self.precisions_init is None:
            self.covariances_ = covariances
            self.precisions_cholesky_ = _compute_precision_cholesky(
                covariances, self.covariance_type)
        elif self.covariance_type == 'full':
            self.precisions_cholesky_ = np.array(
                [linalg.cholesky(prec_init, lower=True)
                 for prec_init in self.precisions_init])
        elif self.covariance_type == 'tied':
            self.precisions_cholesky_ = linalg.cholesky(self.precisions_init,
                                                        lower=True)
        else:
            self.precisions_cholesky_ = self.precisions_init

    def _m_step(self, X, log_resp):
        """M step.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        log_resp : array-like, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        n_samples, _ = X.shape
        self.weights_, self.means_, self.covariances_ = (
            _estimate_gaussian_parameters(X, np.exp(log_resp), self.reg_covar,
                                          self.covariance_type))
        self.weights_ /= n_samples
        self.precisions_cholesky_ = _compute_precision_cholesky(
            self.covariances_, self.covariance_type)

    def _estimate_log_prob(self, X):
        return _estimate_log_gaussian_prob(
            X, self.means_, self.precisions_cholesky_, self.covariance_type)

    def _estimate_log_weights(self):
        return np.log(self.weights_)

    def _compute_lower_bound(self, _, log_prob_norm):
        return log_prob_norm

    def _get_parameters(self):
        return (self.weights_, self.means_, self.covariances_,
                self.precisions_cholesky_)

    def _set_parameters(self, params):
        (self.weights_, self.means_, self.covariances_,
         self.precisions_cholesky_) = params

        # Attributes computation
        _, n_features = self.means_.shape

        if self.covariance_type == 'full':
            self.precisions_ = np.empty(self.precisions_cholesky_.shape)
            for k, prec_chol in enumerate(self.precisions_cholesky_):
                self.precisions_[k] = np.dot(prec_chol, prec_chol.T)

        elif self.covariance_type == 'tied':
            self.precisions_ = np.dot(self.precisions_cholesky_,
                                      self.precisions_cholesky_.T)
        else:
            self.precisions_ = self.precisions_cholesky_ ** 2

    def _n_parameters(self):
        """Return the number of free parameters in the model."""
        _, n_features = self.means_.shape
        if self.covariance_type == 'full':
            cov_params = self.n_components * n_features * (n_features + 1) / 2.
        elif self.covariance_type == 'diag':
            cov_params = self.n_components * n_features
        elif self.covariance_type == 'tied':
            cov_params = n_features * (n_features + 1) / 2.
        elif self.covariance_type == 'spherical':
            cov_params = self.n_components
        mean_params = n_features * self.n_components
        return int(cov_params + mean_params + self.n_components - 1)

    def bic(self, X):
        """Bayesian information criterion for the current model on the input X.

        Parameters
        ----------
        X : array of shape (n_samples, n_dimensions)

        Returns
        -------
        bic : float
            The lower the better.
        """
        return (-2 * self.score(X) * X.shape[0] +
                self._n_parameters() * np.log(X.shape[0]))

    def aic(self, X):
        """Akaike information criterion for the current model on the input X.

        Parameters
        ----------
        X : array of shape (n_samples, n_dimensions)

        Returns
        -------
        aic : float
            The lower the better.
        """
        return -2 * self.score(X) * X.shape[0] + 2 * self._n_parameters()