_base.py 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
"""Base class for mixture models."""

# Author: Wei Xue <xuewei4d@gmail.com>
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import warnings
from abc import ABCMeta, abstractmethod
from time import time

import numpy as np
from scipy.special import logsumexp

from .. import cluster
from ..base import BaseEstimator
from ..base import DensityMixin
from ..exceptions import ConvergenceWarning
from ..utils import check_array, check_random_state
from ..utils.validation import check_is_fitted


def _check_shape(param, param_shape, name):
    """Validate the shape of the input parameter 'param'.

    Parameters
    ----------
    param : array

    param_shape : tuple

    name : string
    """
    param = np.array(param)
    if param.shape != param_shape:
        raise ValueError("The parameter '%s' should have the shape of %s, "
                         "but got %s" % (name, param_shape, param.shape))


def _check_X(X, n_components=None, n_features=None, ensure_min_samples=1):
    """Check the input data X.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)

    n_components : int

    Returns
    -------
    X : array, shape (n_samples, n_features)
    """
    X = check_array(X, dtype=[np.float64, np.float32],
                    ensure_min_samples=ensure_min_samples)
    if n_components is not None and X.shape[0] < n_components:
        raise ValueError('Expected n_samples >= n_components '
                         'but got n_components = %d, n_samples = %d'
                         % (n_components, X.shape[0]))
    if n_features is not None and X.shape[1] != n_features:
        raise ValueError("Expected the input data X have %d features, "
                         "but got %d features"
                         % (n_features, X.shape[1]))
    return X


class BaseMixture(DensityMixin, BaseEstimator, metaclass=ABCMeta):
    """Base class for mixture models.

    This abstract class specifies an interface for all mixture classes and
    provides basic common methods for mixture models.
    """

    def __init__(self, n_components, tol, reg_covar,
                 max_iter, n_init, init_params, random_state, warm_start,
                 verbose, verbose_interval):
        self.n_components = n_components
        self.tol = tol
        self.reg_covar = reg_covar
        self.max_iter = max_iter
        self.n_init = n_init
        self.init_params = init_params
        self.random_state = random_state
        self.warm_start = warm_start
        self.verbose = verbose
        self.verbose_interval = verbose_interval

    def _check_initial_parameters(self, X):
        """Check values of the basic parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
        """
        if self.n_components < 1:
            raise ValueError("Invalid value for 'n_components': %d "
                             "Estimation requires at least one component"
                             % self.n_components)

        if self.tol < 0.:
            raise ValueError("Invalid value for 'tol': %.5f "
                             "Tolerance used by the EM must be non-negative"
                             % self.tol)

        if self.n_init < 1:
            raise ValueError("Invalid value for 'n_init': %d "
                             "Estimation requires at least one run"
                             % self.n_init)

        if self.max_iter < 1:
            raise ValueError("Invalid value for 'max_iter': %d "
                             "Estimation requires at least one iteration"
                             % self.max_iter)

        if self.reg_covar < 0.:
            raise ValueError("Invalid value for 'reg_covar': %.5f "
                             "regularization on covariance must be "
                             "non-negative"
                             % self.reg_covar)

        # Check all the parameters values of the derived class
        self._check_parameters(X)

    @abstractmethod
    def _check_parameters(self, X):
        """Check initial parameters of the derived class.

        Parameters
        ----------
        X : array-like, shape  (n_samples, n_features)
        """
        pass

    def _initialize_parameters(self, X, random_state):
        """Initialize the model parameters.

        Parameters
        ----------
        X : array-like, shape  (n_samples, n_features)

        random_state : RandomState
            A random number generator instance that controls the random seed
            used for the method chosen to initialize the parameters.
        """
        n_samples, _ = X.shape

        if self.init_params == 'kmeans':
            resp = np.zeros((n_samples, self.n_components))
            label = cluster.KMeans(n_clusters=self.n_components, n_init=1,
                                   random_state=random_state).fit(X).labels_
            resp[np.arange(n_samples), label] = 1
        elif self.init_params == 'random':
            resp = random_state.rand(n_samples, self.n_components)
            resp /= resp.sum(axis=1)[:, np.newaxis]
        else:
            raise ValueError("Unimplemented initialization method '%s'"
                             % self.init_params)

        self._initialize(X, resp)

    @abstractmethod
    def _initialize(self, X, resp):
        """Initialize the model parameters of the derived class.

        Parameters
        ----------
        X : array-like, shape  (n_samples, n_features)

        resp : array-like, shape (n_samples, n_components)
        """
        pass

    def fit(self, X, y=None):
        """Estimate model parameters with the EM algorithm.

        The method fits the model ``n_init`` times and sets the parameters with
        which the model has the largest likelihood or lower bound. Within each
        trial, the method iterates between E-step and M-step for ``max_iter``
        times until the change of likelihood or lower bound is less than
        ``tol``, otherwise, a ``ConvergenceWarning`` is raised.
        If ``warm_start`` is ``True``, then ``n_init`` is ignored and a single
        initialization is performed upon the first call. Upon consecutive
        calls, training starts where it left off.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        self
        """
        self.fit_predict(X, y)
        return self

    def fit_predict(self, X, y=None):
        """Estimate model parameters using X and predict the labels for X.

        The method fits the model n_init times and sets the parameters with
        which the model has the largest likelihood or lower bound. Within each
        trial, the method iterates between E-step and M-step for `max_iter`
        times until the change of likelihood or lower bound is less than
        `tol`, otherwise, a :class:`~sklearn.exceptions.ConvergenceWarning` is
        raised. After fitting, it predicts the most probable label for the
        input data points.

        .. versionadded:: 0.20

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        labels : array, shape (n_samples,)
            Component labels.
        """
        X = _check_X(X, self.n_components, ensure_min_samples=2)
        self._check_n_features(X, reset=True)
        self._check_initial_parameters(X)

        # if we enable warm_start, we will have a unique initialisation
        do_init = not(self.warm_start and hasattr(self, 'converged_'))
        n_init = self.n_init if do_init else 1

        max_lower_bound = -np.infty
        self.converged_ = False

        random_state = check_random_state(self.random_state)

        n_samples, _ = X.shape
        for init in range(n_init):
            self._print_verbose_msg_init_beg(init)

            if do_init:
                self._initialize_parameters(X, random_state)

            lower_bound = (-np.infty if do_init else self.lower_bound_)

            for n_iter in range(1, self.max_iter + 1):
                prev_lower_bound = lower_bound

                log_prob_norm, log_resp = self._e_step(X)
                self._m_step(X, log_resp)
                lower_bound = self._compute_lower_bound(
                    log_resp, log_prob_norm)

                change = lower_bound - prev_lower_bound
                self._print_verbose_msg_iter_end(n_iter, change)

                if abs(change) < self.tol:
                    self.converged_ = True
                    break

            self._print_verbose_msg_init_end(lower_bound)

            if lower_bound > max_lower_bound:
                max_lower_bound = lower_bound
                best_params = self._get_parameters()
                best_n_iter = n_iter

        if not self.converged_:
            warnings.warn('Initialization %d did not converge. '
                          'Try different init parameters, '
                          'or increase max_iter, tol '
                          'or check for degenerate data.'
                          % (init + 1), ConvergenceWarning)

        self._set_parameters(best_params)
        self.n_iter_ = best_n_iter
        self.lower_bound_ = max_lower_bound

        # Always do a final e-step to guarantee that the labels returned by
        # fit_predict(X) are always consistent with fit(X).predict(X)
        # for any value of max_iter and tol (and any random_state).
        _, log_resp = self._e_step(X)

        return log_resp.argmax(axis=1)

    def _e_step(self, X):
        """E step.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        log_prob_norm : float
            Mean of the logarithms of the probabilities of each sample in X

        log_responsibility : array, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        log_prob_norm, log_resp = self._estimate_log_prob_resp(X)
        return np.mean(log_prob_norm), log_resp

    @abstractmethod
    def _m_step(self, X, log_resp):
        """M step.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        log_resp : array-like, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        pass

    @abstractmethod
    def _get_parameters(self):
        pass

    @abstractmethod
    def _set_parameters(self, params):
        pass

    def score_samples(self, X):
        """Compute the weighted log probabilities for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        log_prob : array, shape (n_samples,)
            Log probabilities of each data point in X.
        """
        check_is_fitted(self)
        X = _check_X(X, None, self.means_.shape[1])

        return logsumexp(self._estimate_weighted_log_prob(X), axis=1)

    def score(self, X, y=None):
        """Compute the per-sample average log-likelihood of the given data X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_dimensions)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        log_likelihood : float
            Log likelihood of the Gaussian mixture given X.
        """
        return self.score_samples(X).mean()

    def predict(self, X):
        """Predict the labels for the data samples in X using trained model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        labels : array, shape (n_samples,)
            Component labels.
        """
        check_is_fitted(self)
        X = _check_X(X, None, self.means_.shape[1])
        return self._estimate_weighted_log_prob(X).argmax(axis=1)

    def predict_proba(self, X):
        """Predict posterior probability of each component given the data.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            List of n_features-dimensional data points. Each row
            corresponds to a single data point.

        Returns
        -------
        resp : array, shape (n_samples, n_components)
            Returns the probability each Gaussian (state) in
            the model given each sample.
        """
        check_is_fitted(self)
        X = _check_X(X, None, self.means_.shape[1])
        _, log_resp = self._estimate_log_prob_resp(X)
        return np.exp(log_resp)

    def sample(self, n_samples=1):
        """Generate random samples from the fitted Gaussian distribution.

        Parameters
        ----------
        n_samples : int, optional
            Number of samples to generate. Defaults to 1.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Randomly generated sample

        y : array, shape (nsamples,)
            Component labels

        """
        check_is_fitted(self)

        if n_samples < 1:
            raise ValueError(
                "Invalid value for 'n_samples': %d . The sampling requires at "
                "least one sample." % (self.n_components))

        _, n_features = self.means_.shape
        rng = check_random_state(self.random_state)
        n_samples_comp = rng.multinomial(n_samples, self.weights_)

        if self.covariance_type == 'full':
            X = np.vstack([
                rng.multivariate_normal(mean, covariance, int(sample))
                for (mean, covariance, sample) in zip(
                    self.means_, self.covariances_, n_samples_comp)])
        elif self.covariance_type == "tied":
            X = np.vstack([
                rng.multivariate_normal(mean, self.covariances_, int(sample))
                for (mean, sample) in zip(
                    self.means_, n_samples_comp)])
        else:
            X = np.vstack([
                mean + rng.randn(sample, n_features) * np.sqrt(covariance)
                for (mean, covariance, sample) in zip(
                    self.means_, self.covariances_, n_samples_comp)])

        y = np.concatenate([np.full(sample, j, dtype=int)
                           for j, sample in enumerate(n_samples_comp)])

        return (X, y)

    def _estimate_weighted_log_prob(self, X):
        """Estimate the weighted log-probabilities, log P(X | Z) + log weights.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        weighted_log_prob : array, shape (n_samples, n_component)
        """
        return self._estimate_log_prob(X) + self._estimate_log_weights()

    @abstractmethod
    def _estimate_log_weights(self):
        """Estimate log-weights in EM algorithm, E[ log pi ] in VB algorithm.

        Returns
        -------
        log_weight : array, shape (n_components, )
        """
        pass

    @abstractmethod
    def _estimate_log_prob(self, X):
        """Estimate the log-probabilities log P(X | Z).

        Compute the log-probabilities per each component for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        log_prob : array, shape (n_samples, n_component)
        """
        pass

    def _estimate_log_prob_resp(self, X):
        """Estimate log probabilities and responsibilities for each sample.

        Compute the log probabilities, weighted log probabilities per
        component and responsibilities for each sample in X with respect to
        the current state of the model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        Returns
        -------
        log_prob_norm : array, shape (n_samples,)
            log p(X)

        log_responsibilities : array, shape (n_samples, n_components)
            logarithm of the responsibilities
        """
        weighted_log_prob = self._estimate_weighted_log_prob(X)
        log_prob_norm = logsumexp(weighted_log_prob, axis=1)
        with np.errstate(under='ignore'):
            # ignore underflow
            log_resp = weighted_log_prob - log_prob_norm[:, np.newaxis]
        return log_prob_norm, log_resp

    def _print_verbose_msg_init_beg(self, n_init):
        """Print verbose message on initialization."""
        if self.verbose == 1:
            print("Initialization %d" % n_init)
        elif self.verbose >= 2:
            print("Initialization %d" % n_init)
            self._init_prev_time = time()
            self._iter_prev_time = self._init_prev_time

    def _print_verbose_msg_iter_end(self, n_iter, diff_ll):
        """Print verbose message on initialization."""
        if n_iter % self.verbose_interval == 0:
            if self.verbose == 1:
                print("  Iteration %d" % n_iter)
            elif self.verbose >= 2:
                cur_time = time()
                print("  Iteration %d\t time lapse %.5fs\t ll change %.5f" % (
                    n_iter, cur_time - self._iter_prev_time, diff_ll))
                self._iter_prev_time = cur_time

    def _print_verbose_msg_init_end(self, ll):
        """Print verbose message on the end of iteration."""
        if self.verbose == 1:
            print("Initialization converged: %s" % self.converged_)
        elif self.verbose >= 2:
            print("Initialization converged: %s\t time lapse %.5fs\t ll %.5f" %
                  (self.converged_, time() - self._init_prev_time, ll))