_classification.py
92.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
"""Metrics to assess performance on classification task given class prediction
Functions named as ``*_score`` return a scalar value to maximize: the higher
the better
Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better
"""
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Mathieu Blondel <mathieu@mblondel.org>
# Olivier Grisel <olivier.grisel@ensta.org>
# Arnaud Joly <a.joly@ulg.ac.be>
# Jochen Wersdorfer <jochen@wersdoerfer.de>
# Lars Buitinck
# Joel Nothman <joel.nothman@gmail.com>
# Noel Dawe <noel@dawe.me>
# Jatin Shah <jatindshah@gmail.com>
# Saurabh Jha <saurabh.jhaa@gmail.com>
# Bernardo Stein <bernardovstein@gmail.com>
# Shangwu Yao <shangwuyao@gmail.com>
# License: BSD 3 clause
import warnings
import numpy as np
from scipy.sparse import coo_matrix
from scipy.sparse import csr_matrix
from ..preprocessing import LabelBinarizer
from ..preprocessing import LabelEncoder
from ..utils import assert_all_finite
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import column_or_1d
from ..utils.multiclass import unique_labels
from ..utils.multiclass import type_of_target
from ..utils.validation import _num_samples
from ..utils.validation import _deprecate_positional_args
from ..utils.sparsefuncs import count_nonzero
from ..exceptions import UndefinedMetricWarning
def _check_zero_division(zero_division):
if isinstance(zero_division, str) and zero_division == "warn":
return
elif isinstance(zero_division, (int, float)) and zero_division in [0, 1]:
return
raise ValueError('Got zero_division={0}.'
' Must be one of ["warn", 0, 1]'.format(zero_division))
def _check_targets(y_true, y_pred):
"""Check that y_true and y_pred belong to the same classification task
This converts multiclass or binary types to a common shape, and raises a
ValueError for a mix of multilabel and multiclass targets, a mix of
multilabel formats, for the presence of continuous-valued or multioutput
targets, or for targets of different lengths.
Column vectors are squeezed to 1d, while multilabel formats are returned
as CSR sparse label indicators.
Parameters
----------
y_true : array-like
y_pred : array-like
Returns
-------
type_true : one of {'multilabel-indicator', 'multiclass', 'binary'}
The type of the true target data, as output by
``utils.multiclass.type_of_target``
y_true : array or indicator matrix
y_pred : array or indicator matrix
"""
check_consistent_length(y_true, y_pred)
type_true = type_of_target(y_true)
type_pred = type_of_target(y_pred)
y_type = {type_true, type_pred}
if y_type == {"binary", "multiclass"}:
y_type = {"multiclass"}
if len(y_type) > 1:
raise ValueError("Classification metrics can't handle a mix of {0} "
"and {1} targets".format(type_true, type_pred))
# We can't have more than one value on y_type => The set is no more needed
y_type = y_type.pop()
# No metrics support "multiclass-multioutput" format
if (y_type not in ["binary", "multiclass", "multilabel-indicator"]):
raise ValueError("{0} is not supported".format(y_type))
if y_type in ["binary", "multiclass"]:
y_true = column_or_1d(y_true)
y_pred = column_or_1d(y_pred)
if y_type == "binary":
unique_values = np.union1d(y_true, y_pred)
if len(unique_values) > 2:
y_type = "multiclass"
if y_type.startswith('multilabel'):
y_true = csr_matrix(y_true)
y_pred = csr_matrix(y_pred)
y_type = 'multilabel-indicator'
return y_type, y_true, y_pred
def _weighted_sum(sample_score, sample_weight, normalize=False):
if normalize:
return np.average(sample_score, weights=sample_weight)
elif sample_weight is not None:
return np.dot(sample_score, sample_weight)
else:
return sample_score.sum()
@_deprecate_positional_args
def accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None):
"""Accuracy classification score.
In multilabel classification, this function computes subset accuracy:
the set of labels predicted for a sample must *exactly* match the
corresponding set of labels in y_true.
Read more in the :ref:`User Guide <accuracy_score>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
normalize : bool, optional (default=True)
If ``False``, return the number of correctly classified samples.
Otherwise, return the fraction of correctly classified samples.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float
If ``normalize == True``, return the fraction of correctly
classified samples (float), else returns the number of correctly
classified samples (int).
The best performance is 1 with ``normalize == True`` and the number
of samples with ``normalize == False``.
See also
--------
jaccard_score, hamming_loss, zero_one_loss
Notes
-----
In binary and multiclass classification, this function is equal
to the ``jaccard_score`` function.
Examples
--------
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
In the multilabel case with binary label indicators:
>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
"""
# Compute accuracy for each possible representation
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
if y_type.startswith('multilabel'):
differing_labels = count_nonzero(y_true - y_pred, axis=1)
score = differing_labels == 0
else:
score = y_true == y_pred
return _weighted_sum(score, sample_weight, normalize)
@_deprecate_positional_args
def confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None,
normalize=None):
"""Compute confusion matrix to evaluate the accuracy of a classification.
By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`
is equal to the number of observations known to be in group :math:`i` and
predicted to be in group :math:`j`.
Thus in binary classification, the count of true negatives is
:math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is
:math:`C_{1,1}` and false positives is :math:`C_{0,1}`.
Read more in the :ref:`User Guide <confusion_matrix>`.
Parameters
----------
y_true : array-like of shape (n_samples,)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples,)
Estimated targets as returned by a classifier.
labels : array-like of shape (n_classes), default=None
List of labels to index the matrix. This may be used to reorder
or select a subset of labels.
If ``None`` is given, those that appear at least once
in ``y_true`` or ``y_pred`` are used in sorted order.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
.. versionadded:: 0.18
normalize : {'true', 'pred', 'all'}, default=None
Normalizes confusion matrix over the true (rows), predicted (columns)
conditions or all the population. If None, confusion matrix will not be
normalized.
Returns
-------
C : ndarray of shape (n_classes, n_classes)
Confusion matrix whose i-th row and j-th
column entry indicates the number of
samples with true label being i-th class
and prediced label being j-th class.
References
----------
.. [1] `Wikipedia entry for the Confusion matrix
<https://en.wikipedia.org/wiki/Confusion_matrix>`_
(Wikipedia and other references may use a different
convention for axes)
Examples
--------
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
In the binary case, we can extract true positives, etc as follows:
>>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
>>> (tn, fp, fn, tp)
(0, 2, 1, 1)
"""
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
if y_type not in ("binary", "multiclass"):
raise ValueError("%s is not supported" % y_type)
if labels is None:
labels = unique_labels(y_true, y_pred)
else:
labels = np.asarray(labels)
n_labels = labels.size
if n_labels == 0:
raise ValueError("'labels' should contains at least one label.")
elif y_true.size == 0:
return np.zeros((n_labels, n_labels), dtype=np.int)
elif np.all([l not in y_true for l in labels]):
raise ValueError("At least one label specified must be in y_true")
if sample_weight is None:
sample_weight = np.ones(y_true.shape[0], dtype=np.int64)
else:
sample_weight = np.asarray(sample_weight)
check_consistent_length(y_true, y_pred, sample_weight)
if normalize not in ['true', 'pred', 'all', None]:
raise ValueError("normalize must be one of {'true', 'pred', "
"'all', None}")
n_labels = labels.size
label_to_ind = {y: x for x, y in enumerate(labels)}
# convert yt, yp into index
y_pred = np.array([label_to_ind.get(x, n_labels + 1) for x in y_pred])
y_true = np.array([label_to_ind.get(x, n_labels + 1) for x in y_true])
# intersect y_pred, y_true with labels, eliminate items not in labels
ind = np.logical_and(y_pred < n_labels, y_true < n_labels)
y_pred = y_pred[ind]
y_true = y_true[ind]
# also eliminate weights of eliminated items
sample_weight = sample_weight[ind]
# Choose the accumulator dtype to always have high precision
if sample_weight.dtype.kind in {'i', 'u', 'b'}:
dtype = np.int64
else:
dtype = np.float64
cm = coo_matrix((sample_weight, (y_true, y_pred)),
shape=(n_labels, n_labels), dtype=dtype,
).toarray()
with np.errstate(all='ignore'):
if normalize == 'true':
cm = cm / cm.sum(axis=1, keepdims=True)
elif normalize == 'pred':
cm = cm / cm.sum(axis=0, keepdims=True)
elif normalize == 'all':
cm = cm / cm.sum()
cm = np.nan_to_num(cm)
return cm
@_deprecate_positional_args
def multilabel_confusion_matrix(y_true, y_pred, *, sample_weight=None,
labels=None, samplewise=False):
"""Compute a confusion matrix for each class or sample
.. versionadded:: 0.21
Compute class-wise (default) or sample-wise (samplewise=True) multilabel
confusion matrix to evaluate the accuracy of a classification, and output
confusion matrices for each class or sample.
In multilabel confusion matrix :math:`MCM`, the count of true negatives
is :math:`MCM_{:,0,0}`, false negatives is :math:`MCM_{:,1,0}`,
true positives is :math:`MCM_{:,1,1}` and false positives is
:math:`MCM_{:,0,1}`.
Multiclass data will be treated as if binarized under a one-vs-rest
transformation. Returned confusion matrices will be in the order of
sorted unique labels in the union of (y_true, y_pred).
Read more in the :ref:`User Guide <multilabel_confusion_matrix>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
of shape (n_samples, n_outputs) or (n_samples,)
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
of shape (n_samples, n_outputs) or (n_samples,)
Estimated targets as returned by a classifier
sample_weight : array-like of shape (n_samples,), default=None
Sample weights
labels : array-like
A list of classes or column indices to select some (or to force
inclusion of classes absent from the data)
samplewise : bool, default=False
In the multilabel case, this calculates a confusion matrix per sample
Returns
-------
multi_confusion : array, shape (n_outputs, 2, 2)
A 2x2 confusion matrix corresponding to each output in the input.
When calculating class-wise multi_confusion (default), then
n_outputs = n_labels; when calculating sample-wise multi_confusion
(samplewise=True), n_outputs = n_samples. If ``labels`` is defined,
the results will be returned in the order specified in ``labels``,
otherwise the results will be returned in sorted order by default.
See also
--------
confusion_matrix
Notes
-----
The multilabel_confusion_matrix calculates class-wise or sample-wise
multilabel confusion matrices, and in multiclass tasks, labels are
binarized under a one-vs-rest way; while confusion_matrix calculates
one confusion matrix for confusion between every two classes.
Examples
--------
Multilabel-indicator case:
>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
... [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
... [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],
[0, 1]],
<BLANKLINE>
[[1, 0],
[0, 1]],
<BLANKLINE>
[[0, 1],
[1, 0]]])
Multiclass case:
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
... labels=["ant", "bird", "cat"])
array([[[3, 1],
[0, 2]],
<BLANKLINE>
[[5, 0],
[1, 0]],
<BLANKLINE>
[[2, 1],
[1, 2]]])
"""
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
if sample_weight is not None:
sample_weight = column_or_1d(sample_weight)
check_consistent_length(y_true, y_pred, sample_weight)
if y_type not in ("binary", "multiclass", "multilabel-indicator"):
raise ValueError("%s is not supported" % y_type)
present_labels = unique_labels(y_true, y_pred)
if labels is None:
labels = present_labels
n_labels = None
else:
n_labels = len(labels)
labels = np.hstack([labels, np.setdiff1d(present_labels, labels,
assume_unique=True)])
if y_true.ndim == 1:
if samplewise:
raise ValueError("Samplewise metrics are not available outside of "
"multilabel classification.")
le = LabelEncoder()
le.fit(labels)
y_true = le.transform(y_true)
y_pred = le.transform(y_pred)
sorted_labels = le.classes_
# labels are now from 0 to len(labels) - 1 -> use bincount
tp = y_true == y_pred
tp_bins = y_true[tp]
if sample_weight is not None:
tp_bins_weights = np.asarray(sample_weight)[tp]
else:
tp_bins_weights = None
if len(tp_bins):
tp_sum = np.bincount(tp_bins, weights=tp_bins_weights,
minlength=len(labels))
else:
# Pathological case
true_sum = pred_sum = tp_sum = np.zeros(len(labels))
if len(y_pred):
pred_sum = np.bincount(y_pred, weights=sample_weight,
minlength=len(labels))
if len(y_true):
true_sum = np.bincount(y_true, weights=sample_weight,
minlength=len(labels))
# Retain only selected labels
indices = np.searchsorted(sorted_labels, labels[:n_labels])
tp_sum = tp_sum[indices]
true_sum = true_sum[indices]
pred_sum = pred_sum[indices]
else:
sum_axis = 1 if samplewise else 0
# All labels are index integers for multilabel.
# Select labels:
if not np.array_equal(labels, present_labels):
if np.max(labels) > np.max(present_labels):
raise ValueError('All labels must be in [0, n labels) for '
'multilabel targets. '
'Got %d > %d' %
(np.max(labels), np.max(present_labels)))
if np.min(labels) < 0:
raise ValueError('All labels must be in [0, n labels) for '
'multilabel targets. '
'Got %d < 0' % np.min(labels))
if n_labels is not None:
y_true = y_true[:, labels[:n_labels]]
y_pred = y_pred[:, labels[:n_labels]]
# calculate weighted counts
true_and_pred = y_true.multiply(y_pred)
tp_sum = count_nonzero(true_and_pred, axis=sum_axis,
sample_weight=sample_weight)
pred_sum = count_nonzero(y_pred, axis=sum_axis,
sample_weight=sample_weight)
true_sum = count_nonzero(y_true, axis=sum_axis,
sample_weight=sample_weight)
fp = pred_sum - tp_sum
fn = true_sum - tp_sum
tp = tp_sum
if sample_weight is not None and samplewise:
sample_weight = np.array(sample_weight)
tp = np.array(tp)
fp = np.array(fp)
fn = np.array(fn)
tn = sample_weight * y_true.shape[1] - tp - fp - fn
elif sample_weight is not None:
tn = sum(sample_weight) - tp - fp - fn
elif samplewise:
tn = y_true.shape[1] - tp - fp - fn
else:
tn = y_true.shape[0] - tp - fp - fn
return np.array([tn, fp, fn, tp]).T.reshape(-1, 2, 2)
@_deprecate_positional_args
def cohen_kappa_score(y1, y2, *, labels=None, weights=None,
sample_weight=None):
r"""Cohen's kappa: a statistic that measures inter-annotator agreement.
This function computes Cohen's kappa [1]_, a score that expresses the level
of agreement between two annotators on a classification problem. It is
defined as
.. math::
\kappa = (p_o - p_e) / (1 - p_e)
where :math:`p_o` is the empirical probability of agreement on the label
assigned to any sample (the observed agreement ratio), and :math:`p_e` is
the expected agreement when both annotators assign labels randomly.
:math:`p_e` is estimated using a per-annotator empirical prior over the
class labels [2]_.
Read more in the :ref:`User Guide <cohen_kappa>`.
Parameters
----------
y1 : array, shape = [n_samples]
Labels assigned by the first annotator.
y2 : array, shape = [n_samples]
Labels assigned by the second annotator. The kappa statistic is
symmetric, so swapping ``y1`` and ``y2`` doesn't change the value.
labels : array, shape = [n_classes], optional
List of labels to index the matrix. This may be used to select a
subset of labels. If None, all labels that appear at least once in
``y1`` or ``y2`` are used.
weights : str, optional
Weighting type to calculate the score. None means no weighted;
"linear" means linear weighted; "quadratic" means quadratic weighted.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
kappa : float
The kappa statistic, which is a number between -1 and 1. The maximum
value means complete agreement; zero or lower means chance agreement.
References
----------
.. [1] J. Cohen (1960). "A coefficient of agreement for nominal scales".
Educational and Psychological Measurement 20(1):37-46.
doi:10.1177/001316446002000104.
.. [2] `R. Artstein and M. Poesio (2008). "Inter-coder agreement for
computational linguistics". Computational Linguistics 34(4):555-596.
<https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2>`_
.. [3] `Wikipedia entry for the Cohen's kappa.
<https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_
"""
confusion = confusion_matrix(y1, y2, labels=labels,
sample_weight=sample_weight)
n_classes = confusion.shape[0]
sum0 = np.sum(confusion, axis=0)
sum1 = np.sum(confusion, axis=1)
expected = np.outer(sum0, sum1) / np.sum(sum0)
if weights is None:
w_mat = np.ones([n_classes, n_classes], dtype=np.int)
w_mat.flat[:: n_classes + 1] = 0
elif weights == "linear" or weights == "quadratic":
w_mat = np.zeros([n_classes, n_classes], dtype=np.int)
w_mat += np.arange(n_classes)
if weights == "linear":
w_mat = np.abs(w_mat - w_mat.T)
else:
w_mat = (w_mat - w_mat.T) ** 2
else:
raise ValueError("Unknown kappa weighting type.")
k = np.sum(w_mat * confusion) / np.sum(w_mat * expected)
return 1 - k
@_deprecate_positional_args
def jaccard_score(y_true, y_pred, *, labels=None, pos_label=1,
average='binary', sample_weight=None):
"""Jaccard similarity coefficient score
The Jaccard index [1], or Jaccard similarity coefficient, defined as
the size of the intersection divided by the size of the union of two label
sets, is used to compare set of predicted labels for a sample to the
corresponding set of labels in ``y_true``.
Read more in the :ref:`User Guide <jaccard_similarity_score>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
labels : list, optional
The set of labels to include when ``average != 'binary'``, and their
order if ``average is None``. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in ``y_true`` and
``y_pred`` are used in sorted order.
pos_label : str or int, 1 by default
The class to report if ``average='binary'`` and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
scores for that label only.
average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
'weighted']
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'binary'``:
Only report results for the class specified by ``pos_label``.
This is applicable only if targets (``y_{true,pred}``) are binary.
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average, weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance.
``'samples'``:
Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
score : float (if average is not None) or array of floats, shape =\
[n_unique_labels]
See also
--------
accuracy_score, f_score, multilabel_confusion_matrix
Notes
-----
:func:`jaccard_score` may be a poor metric if there are no
positives for some samples or classes. Jaccard is undefined if there are
no true or predicted labels, and our implementation will return a score
of 0 with a warning.
References
----------
.. [1] `Wikipedia entry for the Jaccard index
<https://en.wikipedia.org/wiki/Jaccard_index>`_
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])
In the binary case:
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...
In the multilabel case:
>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])
In the multiclass case:
>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
"""
labels = _check_set_wise_labels(y_true, y_pred, average, labels,
pos_label)
samplewise = average == 'samples'
MCM = multilabel_confusion_matrix(y_true, y_pred,
sample_weight=sample_weight,
labels=labels, samplewise=samplewise)
numerator = MCM[:, 1, 1]
denominator = MCM[:, 1, 1] + MCM[:, 0, 1] + MCM[:, 1, 0]
if average == 'micro':
numerator = np.array([numerator.sum()])
denominator = np.array([denominator.sum()])
jaccard = _prf_divide(numerator, denominator, 'jaccard',
'true or predicted', average, ('jaccard',))
if average is None:
return jaccard
if average == 'weighted':
weights = MCM[:, 1, 0] + MCM[:, 1, 1]
if not np.any(weights):
# numerator is 0, and warning should have already been issued
weights = None
elif average == 'samples' and sample_weight is not None:
weights = sample_weight
else:
weights = None
return np.average(jaccard, weights=weights)
@_deprecate_positional_args
def matthews_corrcoef(y_true, y_pred, *, sample_weight=None):
"""Compute the Matthews correlation coefficient (MCC)
The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of
very different sizes. The MCC is in essence a correlation coefficient value
between -1 and +1. A coefficient of +1 represents a perfect prediction, 0
an average random prediction and -1 an inverse prediction. The statistic
is also known as the phi coefficient. [source: Wikipedia]
Binary and multiclass labels are supported. Only in the binary case does
this relate to information about true and false positives and negatives.
See references below.
Read more in the :ref:`User Guide <matthews_corrcoef>`.
Parameters
----------
y_true : array, shape = [n_samples]
Ground truth (correct) target values.
y_pred : array, shape = [n_samples]
Estimated targets as returned by a classifier.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
.. versionadded:: 0.18
Returns
-------
mcc : float
The Matthews correlation coefficient (+1 represents a perfect
prediction, 0 an average random prediction and -1 and inverse
prediction).
References
----------
.. [1] `Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the
accuracy of prediction algorithms for classification: an overview
<https://doi.org/10.1093/bioinformatics/16.5.412>`_
.. [2] `Wikipedia entry for the Matthews Correlation Coefficient
<https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_
.. [3] `Gorodkin, (2004). Comparing two K-category assignments by a
K-category correlation coefficient
<https://www.sciencedirect.com/science/article/pii/S1476927104000799>`_
.. [4] `Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN
Error Measures in MultiClass Prediction
<https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882>`_
Examples
--------
>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
"""
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
if y_type not in {"binary", "multiclass"}:
raise ValueError("%s is not supported" % y_type)
lb = LabelEncoder()
lb.fit(np.hstack([y_true, y_pred]))
y_true = lb.transform(y_true)
y_pred = lb.transform(y_pred)
C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight)
t_sum = C.sum(axis=1, dtype=np.float64)
p_sum = C.sum(axis=0, dtype=np.float64)
n_correct = np.trace(C, dtype=np.float64)
n_samples = p_sum.sum()
cov_ytyp = n_correct * n_samples - np.dot(t_sum, p_sum)
cov_ypyp = n_samples ** 2 - np.dot(p_sum, p_sum)
cov_ytyt = n_samples ** 2 - np.dot(t_sum, t_sum)
mcc = cov_ytyp / np.sqrt(cov_ytyt * cov_ypyp)
if np.isnan(mcc):
return 0.
else:
return mcc
@_deprecate_positional_args
def zero_one_loss(y_true, y_pred, *, normalize=True, sample_weight=None):
"""Zero-one classification loss.
If normalize is ``True``, return the fraction of misclassifications
(float), else it returns the number of misclassifications (int). The best
performance is 0.
Read more in the :ref:`User Guide <zero_one_loss>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
normalize : bool, optional (default=True)
If ``False``, return the number of misclassifications.
Otherwise, return the fraction of misclassifications.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
loss : float or int,
If ``normalize == True``, return the fraction of misclassifications
(float), else it returns the number of misclassifications (int).
Notes
-----
In multilabel classification, the zero_one_loss function corresponds to
the subset zero-one loss: for each sample, the entire set of labels must be
correctly predicted, otherwise the loss for that sample is equal to one.
See also
--------
accuracy_score, hamming_loss, jaccard_score
Examples
--------
>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1
In the multilabel case with binary label indicators:
>>> import numpy as np
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
"""
score = accuracy_score(y_true, y_pred,
normalize=normalize,
sample_weight=sample_weight)
if normalize:
return 1 - score
else:
if sample_weight is not None:
n_samples = np.sum(sample_weight)
else:
n_samples = _num_samples(y_true)
return n_samples - score
@_deprecate_positional_args
def f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary',
sample_weight=None, zero_division="warn"):
"""Compute the F1 score, also known as balanced F-score or F-measure
The F1 score can be interpreted as a weighted average of the precision and
recall, where an F1 score reaches its best value at 1 and worst score at 0.
The relative contribution of precision and recall to the F1 score are
equal. The formula for the F1 score is::
F1 = 2 * (precision * recall) / (precision + recall)
In the multi-class and multi-label case, this is the average of
the F1 score of each class with weighting depending on the ``average``
parameter.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
labels : list, optional
The set of labels to include when ``average != 'binary'``, and their
order if ``average is None``. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in ``y_true`` and
``y_pred`` are used in sorted order.
.. versionchanged:: 0.17
parameter *labels* improved for multiclass problem.
pos_label : str or int, 1 by default
The class to report if ``average='binary'`` and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
scores for that label only.
average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
'weighted']
This parameter is required for multiclass/multilabel targets.
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'binary'``:
Only report results for the class specified by ``pos_label``.
This is applicable only if targets (``y_{true,pred}``) are binary.
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
``'samples'``:
Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
:func:`accuracy_score`).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division, i.e. when all
predictions and labels are negative. If set to "warn", this acts as 0,
but warnings are also raised.
Returns
-------
f1_score : float or array of float, shape = [n_unique_labels]
F1 score of the positive class in binary classification or weighted
average of the F1 scores of each class for the multiclass task.
See also
--------
fbeta_score, precision_recall_fscore_support, jaccard_score,
multilabel_confusion_matrix
References
----------
.. [1] `Wikipedia entry for the F1-score
<https://en.wikipedia.org/wiki/F1_score>`_
Examples
--------
>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0. ])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true, y_pred, zero_division=1)
1.0...
Notes
-----
When ``true positive + false positive == 0``, precision is undefined;
When ``true positive + false negative == 0``, recall is undefined.
In such cases, by default the metric will be set to 0, as will f-score,
and ``UndefinedMetricWarning`` will be raised. This behavior can be
modified with ``zero_division``.
"""
return fbeta_score(y_true, y_pred, beta=1, labels=labels,
pos_label=pos_label, average=average,
sample_weight=sample_weight,
zero_division=zero_division)
@_deprecate_positional_args
def fbeta_score(y_true, y_pred, *, beta, labels=None, pos_label=1,
average='binary', sample_weight=None, zero_division="warn"):
"""Compute the F-beta score
The F-beta score is the weighted harmonic mean of precision and recall,
reaching its optimal value at 1 and its worst value at 0.
The `beta` parameter determines the weight of recall in the combined
score. ``beta < 1`` lends more weight to precision, while ``beta > 1``
favors recall (``beta -> 0`` considers only precision, ``beta -> +inf``
only recall).
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
beta : float
Determines the weight of recall in the combined score.
labels : list, optional
The set of labels to include when ``average != 'binary'``, and their
order if ``average is None``. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in ``y_true`` and
``y_pred`` are used in sorted order.
.. versionchanged:: 0.17
parameter *labels* improved for multiclass problem.
pos_label : str or int, 1 by default
The class to report if ``average='binary'`` and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
scores for that label only.
average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
'weighted']
This parameter is required for multiclass/multilabel targets.
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'binary'``:
Only report results for the class specified by ``pos_label``.
This is applicable only if targets (``y_{true,pred}``) are binary.
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
``'samples'``:
Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
:func:`accuracy_score`).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division, i.e. when all
predictions and labels are negative. If set to "warn", this acts as 0,
but warnings are also raised.
Returns
-------
fbeta_score : float (if average is not None) or array of float, shape =\
[n_unique_labels]
F-beta score of the positive class in binary classification or weighted
average of the F-beta score of each class for the multiclass task.
See also
--------
precision_recall_fscore_support, multilabel_confusion_matrix
References
----------
.. [1] R. Baeza-Yates and B. Ribeiro-Neto (2011).
Modern Information Retrieval. Addison Wesley, pp. 327-328.
.. [2] `Wikipedia entry for the F1-score
<https://en.wikipedia.org/wiki/F1_score>`_
Examples
--------
>>> from sklearn.metrics import fbeta_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> fbeta_score(y_true, y_pred, average='micro', beta=0.5)
0.33...
>>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5)
0.23...
>>> fbeta_score(y_true, y_pred, average=None, beta=0.5)
array([0.71..., 0. , 0. ])
Notes
-----
When ``true positive + false positive == 0`` or
``true positive + false negative == 0``, f-score returns 0 and raises
``UndefinedMetricWarning``. This behavior can be
modified with ``zero_division``.
"""
_, _, f, _ = precision_recall_fscore_support(y_true, y_pred,
beta=beta,
labels=labels,
pos_label=pos_label,
average=average,
warn_for=('f-score',),
sample_weight=sample_weight,
zero_division=zero_division)
return f
def _prf_divide(numerator, denominator, metric,
modifier, average, warn_for, zero_division="warn"):
"""Performs division and handles divide-by-zero.
On zero-division, sets the corresponding result elements equal to
0 or 1 (according to ``zero_division``). Plus, if
``zero_division != "warn"`` raises a warning.
The metric, modifier and average arguments are used only for determining
an appropriate warning.
"""
mask = denominator == 0.0
denominator = denominator.copy()
denominator[mask] = 1 # avoid infs/nans
result = numerator / denominator
if not np.any(mask):
return result
# if ``zero_division=1``, set those with denominator == 0 equal to 1
result[mask] = 0.0 if zero_division in ["warn", 0] else 1.0
# the user will be removing warnings if zero_division is set to something
# different than its default value. If we are computing only f-score
# the warning will be raised only if precision and recall are ill-defined
if zero_division != "warn" or metric not in warn_for:
return result
# build appropriate warning
# E.g. "Precision and F-score are ill-defined and being set to 0.0 in
# labels with no predicted samples. Use ``zero_division`` parameter to
# control this behavior."
if metric in warn_for and 'f-score' in warn_for:
msg_start = '{0} and F-score are'.format(metric.title())
elif metric in warn_for:
msg_start = '{0} is'.format(metric.title())
elif 'f-score' in warn_for:
msg_start = 'F-score is'
else:
return result
_warn_prf(average, modifier, msg_start, len(result))
return result
def _warn_prf(average, modifier, msg_start, result_size):
axis0, axis1 = 'sample', 'label'
if average == 'samples':
axis0, axis1 = axis1, axis0
msg = ('{0} ill-defined and being set to 0.0 {{0}} '
'no {1} {2}s. Use `zero_division` parameter to control'
' this behavior.'.format(msg_start, modifier, axis0))
if result_size == 1:
msg = msg.format('due to')
else:
msg = msg.format('in {0}s with'.format(axis1))
warnings.warn(msg, UndefinedMetricWarning, stacklevel=2)
def _check_set_wise_labels(y_true, y_pred, average, labels, pos_label):
"""Validation associated with set-wise metrics
Returns identified labels
"""
average_options = (None, 'micro', 'macro', 'weighted', 'samples')
if average not in average_options and average != 'binary':
raise ValueError('average has to be one of ' +
str(average_options))
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
present_labels = unique_labels(y_true, y_pred)
if average == 'binary':
if y_type == 'binary':
if pos_label not in present_labels:
if len(present_labels) >= 2:
raise ValueError("pos_label=%r is not a valid label: "
"%r" % (pos_label, present_labels))
labels = [pos_label]
else:
average_options = list(average_options)
if y_type == 'multiclass':
average_options.remove('samples')
raise ValueError("Target is %s but average='binary'. Please "
"choose another average setting, one of %r."
% (y_type, average_options))
elif pos_label not in (None, 1):
warnings.warn("Note that pos_label (set to %r) is ignored when "
"average != 'binary' (got %r). You may use "
"labels=[pos_label] to specify a single positive class."
% (pos_label, average), UserWarning)
return labels
@_deprecate_positional_args
def precision_recall_fscore_support(y_true, y_pred, *, beta=1.0, labels=None,
pos_label=1, average=None,
warn_for=('precision', 'recall',
'f-score'),
sample_weight=None,
zero_division="warn"):
"""Compute precision, recall, F-measure and support for each class
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
true positives and ``fp`` the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample
that is negative.
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
true positives and ``fn`` the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.
The F-beta score can be interpreted as a weighted harmonic mean of
the precision and recall, where an F-beta score reaches its best
value at 1 and worst score at 0.
The F-beta score weights recall more than precision by a factor of
``beta``. ``beta == 1.0`` means recall and precision are equally important.
The support is the number of occurrences of each class in ``y_true``.
If ``pos_label is None`` and in binary classification, this function
returns the average precision, recall and F-measure if ``average``
is one of ``'micro'``, ``'macro'``, ``'weighted'`` or ``'samples'``.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
beta : float, 1.0 by default
The strength of recall versus precision in the F-score.
labels : list, optional
The set of labels to include when ``average != 'binary'``, and their
order if ``average is None``. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in ``y_true`` and
``y_pred`` are used in sorted order.
pos_label : str or int, 1 by default
The class to report if ``average='binary'`` and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
scores for that label only.
average : string, [None (default), 'binary', 'micro', 'macro', 'samples', \
'weighted']
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'binary'``:
Only report results for the class specified by ``pos_label``.
This is applicable only if targets (``y_{true,pred}``) are binary.
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
``'samples'``:
Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
:func:`accuracy_score`).
warn_for : tuple or set, for internal use
This determines which warnings will be made in the case that this
function is being used to return only one of its metrics.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division:
- recall: when there are no positive labels
- precision: when there are no positive predictions
- f-score: both
If set to "warn", this acts as 0, but warnings are also raised.
Returns
-------
precision : float (if average is not None) or array of float, shape =\
[n_unique_labels]
recall : float (if average is not None) or array of float, , shape =\
[n_unique_labels]
fbeta_score : float (if average is not None) or array of float, shape =\
[n_unique_labels]
support : None (if average is not None) or array of int, shape =\
[n_unique_labels]
The number of occurrences of each label in ``y_true``.
References
----------
.. [1] `Wikipedia entry for the Precision and recall
<https://en.wikipedia.org/wiki/Precision_and_recall>`_
.. [2] `Wikipedia entry for the F1-score
<https://en.wikipedia.org/wiki/F1_score>`_
.. [3] `Discriminative Methods for Multi-labeled Classification Advances
in Knowledge Discovery and Data Mining (2004), pp. 22-30 by Shantanu
Godbole, Sunita Sarawagi
<http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf>`_
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_fscore_support
>>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
>>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
>>> precision_recall_fscore_support(y_true, y_pred, average='macro')
(0.22..., 0.33..., 0.26..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='micro')
(0.33..., 0.33..., 0.33..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
(0.22..., 0.33..., 0.26..., None)
It is possible to compute per-label precisions, recalls, F1-scores and
supports instead of averaging:
>>> precision_recall_fscore_support(y_true, y_pred, average=None,
... labels=['pig', 'dog', 'cat'])
(array([0. , 0. , 0.66...]),
array([0., 0., 1.]), array([0. , 0. , 0.8]),
array([2, 2, 2]))
Notes
-----
When ``true positive + false positive == 0``, precision is undefined;
When ``true positive + false negative == 0``, recall is undefined.
In such cases, by default the metric will be set to 0, as will f-score,
and ``UndefinedMetricWarning`` will be raised. This behavior can be
modified with ``zero_division``.
"""
_check_zero_division(zero_division)
if beta < 0:
raise ValueError("beta should be >=0 in the F-beta score")
labels = _check_set_wise_labels(y_true, y_pred, average, labels,
pos_label)
# Calculate tp_sum, pred_sum, true_sum ###
samplewise = average == 'samples'
MCM = multilabel_confusion_matrix(y_true, y_pred,
sample_weight=sample_weight,
labels=labels, samplewise=samplewise)
tp_sum = MCM[:, 1, 1]
pred_sum = tp_sum + MCM[:, 0, 1]
true_sum = tp_sum + MCM[:, 1, 0]
if average == 'micro':
tp_sum = np.array([tp_sum.sum()])
pred_sum = np.array([pred_sum.sum()])
true_sum = np.array([true_sum.sum()])
# Finally, we have all our sufficient statistics. Divide! #
beta2 = beta ** 2
# Divide, and on zero-division, set scores and/or warn according to
# zero_division:
precision = _prf_divide(tp_sum, pred_sum, 'precision',
'predicted', average, warn_for, zero_division)
recall = _prf_divide(tp_sum, true_sum, 'recall',
'true', average, warn_for, zero_division)
# warn for f-score only if zero_division is warn, it is in warn_for
# and BOTH prec and rec are ill-defined
if zero_division == "warn" and ("f-score",) == warn_for:
if (pred_sum[true_sum == 0] == 0).any():
_warn_prf(
average, "true nor predicted", 'F-score is', len(true_sum)
)
# if tp == 0 F will be 1 only if all predictions are zero, all labels are
# zero, and zero_division=1. In all other case, 0
if np.isposinf(beta):
f_score = recall
else:
denom = beta2 * precision + recall
denom[denom == 0.] = 1 # avoid division by 0
f_score = (1 + beta2) * precision * recall / denom
# Average the results
if average == 'weighted':
weights = true_sum
if weights.sum() == 0:
zero_division_value = 0.0 if zero_division in ["warn", 0] else 1.0
# precision is zero_division if there are no positive predictions
# recall is zero_division if there are no positive labels
# fscore is zero_division if all labels AND predictions are
# negative
return (zero_division_value if pred_sum.sum() == 0 else 0,
zero_division_value,
zero_division_value if pred_sum.sum() == 0 else 0,
None)
elif average == 'samples':
weights = sample_weight
else:
weights = None
if average is not None:
assert average != 'binary' or len(precision) == 1
precision = np.average(precision, weights=weights)
recall = np.average(recall, weights=weights)
f_score = np.average(f_score, weights=weights)
true_sum = None # return no support
return precision, recall, f_score, true_sum
@_deprecate_positional_args
def precision_score(y_true, y_pred, *, labels=None, pos_label=1,
average='binary', sample_weight=None,
zero_division="warn"):
"""Compute the precision
The precision is the ratio ``tp / (tp + fp)`` where ``tp`` is the number of
true positives and ``fp`` the number of false positives. The precision is
intuitively the ability of the classifier not to label as positive a sample
that is negative.
The best value is 1 and the worst value is 0.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
labels : list, optional
The set of labels to include when ``average != 'binary'``, and their
order if ``average is None``. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in ``y_true`` and
``y_pred`` are used in sorted order.
.. versionchanged:: 0.17
parameter *labels* improved for multiclass problem.
pos_label : str or int, 1 by default
The class to report if ``average='binary'`` and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
scores for that label only.
average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
'weighted']
This parameter is required for multiclass/multilabel targets.
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'binary'``:
Only report results for the class specified by ``pos_label``.
This is applicable only if targets (``y_{true,pred}``) are binary.
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
``'samples'``:
Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
:func:`accuracy_score`).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division. If set to
"warn", this acts as 0, but warnings are also raised.
Returns
-------
precision : float (if average is not None) or array of float, shape =\
[n_unique_labels]
Precision of the positive class in binary classification or weighted
average of the precision of each class for the multiclass task.
See also
--------
precision_recall_fscore_support, multilabel_confusion_matrix
Examples
--------
>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0. , 0. ])
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0. , 0. ])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1. , 1. ])
Notes
-----
When ``true positive + false positive == 0``, precision returns 0 and
raises ``UndefinedMetricWarning``. This behavior can be
modified with ``zero_division``.
"""
p, _, _, _ = precision_recall_fscore_support(y_true, y_pred,
labels=labels,
pos_label=pos_label,
average=average,
warn_for=('precision',),
sample_weight=sample_weight,
zero_division=zero_division)
return p
@_deprecate_positional_args
def recall_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary',
sample_weight=None, zero_division="warn"):
"""Compute the recall
The recall is the ratio ``tp / (tp + fn)`` where ``tp`` is the number of
true positives and ``fn`` the number of false negatives. The recall is
intuitively the ability of the classifier to find all the positive samples.
The best value is 1 and the worst value is 0.
Read more in the :ref:`User Guide <precision_recall_f_measure_metrics>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
labels : list, optional
The set of labels to include when ``average != 'binary'``, and their
order if ``average is None``. Labels present in the data can be
excluded, for example to calculate a multiclass average ignoring a
majority negative class, while labels not present in the data will
result in 0 components in a macro average. For multilabel targets,
labels are column indices. By default, all labels in ``y_true`` and
``y_pred`` are used in sorted order.
.. versionchanged:: 0.17
parameter *labels* improved for multiclass problem.
pos_label : str or int, 1 by default
The class to report if ``average='binary'`` and the data is binary.
If the data are multiclass or multilabel, this will be ignored;
setting ``labels=[pos_label]`` and ``average != 'binary'`` will report
scores for that label only.
average : string, [None, 'binary' (default), 'micro', 'macro', 'samples', \
'weighted']
This parameter is required for multiclass/multilabel targets.
If ``None``, the scores for each class are returned. Otherwise, this
determines the type of averaging performed on the data:
``'binary'``:
Only report results for the class specified by ``pos_label``.
This is applicable only if targets (``y_{true,pred}``) are binary.
``'micro'``:
Calculate metrics globally by counting the total true positives,
false negatives and false positives.
``'macro'``:
Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.
``'weighted'``:
Calculate metrics for each label, and find their average weighted
by support (the number of true instances for each label). This
alters 'macro' to account for label imbalance; it can result in an
F-score that is not between precision and recall.
``'samples'``:
Calculate metrics for each instance, and find their average (only
meaningful for multilabel classification where this differs from
:func:`accuracy_score`).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division. If set to
"warn", this acts as 0, but warnings are also raised.
Returns
-------
recall : float (if average is not None) or array of float, shape =\
[n_unique_labels]
Recall of the positive class in binary classification or weighted
average of the recall of each class for the multiclass task.
See also
--------
precision_recall_fscore_support, balanced_accuracy_score,
multilabel_confusion_matrix
Examples
--------
>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0. ])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1. ])
Notes
-----
When ``true positive + false negative == 0``, recall returns 0 and raises
``UndefinedMetricWarning``. This behavior can be modified with
``zero_division``.
"""
_, r, _, _ = precision_recall_fscore_support(y_true, y_pred,
labels=labels,
pos_label=pos_label,
average=average,
warn_for=('recall',),
sample_weight=sample_weight,
zero_division=zero_division)
return r
@_deprecate_positional_args
def balanced_accuracy_score(y_true, y_pred, *, sample_weight=None,
adjusted=False):
"""Compute the balanced accuracy
The balanced accuracy in binary and multiclass classification problems to
deal with imbalanced datasets. It is defined as the average of recall
obtained on each class.
The best value is 1 and the worst value is 0 when ``adjusted=False``.
Read more in the :ref:`User Guide <balanced_accuracy_score>`.
.. versionadded:: 0.20
Parameters
----------
y_true : 1d array-like
Ground truth (correct) target values.
y_pred : 1d array-like
Estimated targets as returned by a classifier.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
adjusted : bool, default=False
When true, the result is adjusted for chance, so that random
performance would score 0, and perfect performance scores 1.
Returns
-------
balanced_accuracy : float
See also
--------
recall_score, roc_auc_score
Notes
-----
Some literature promotes alternative definitions of balanced accuracy. Our
definition is equivalent to :func:`accuracy_score` with class-balanced
sample weights, and shares desirable properties with the binary case.
See the :ref:`User Guide <balanced_accuracy_score>`.
References
----------
.. [1] Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010).
The balanced accuracy and its posterior distribution.
Proceedings of the 20th International Conference on Pattern
Recognition, 3121-24.
.. [2] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, (2015).
`Fundamentals of Machine Learning for Predictive Data Analytics:
Algorithms, Worked Examples, and Case Studies
<https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics>`_.
Examples
--------
>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625
"""
C = confusion_matrix(y_true, y_pred, sample_weight=sample_weight)
with np.errstate(divide='ignore', invalid='ignore'):
per_class = np.diag(C) / C.sum(axis=1)
if np.any(np.isnan(per_class)):
warnings.warn('y_pred contains classes not in y_true')
per_class = per_class[~np.isnan(per_class)]
score = np.mean(per_class)
if adjusted:
n_classes = len(per_class)
chance = 1 / n_classes
score -= chance
score /= 1 - chance
return score
@_deprecate_positional_args
def classification_report(y_true, y_pred, *, labels=None, target_names=None,
sample_weight=None, digits=2, output_dict=False,
zero_division="warn"):
"""Build a text report showing the main classification metrics.
Read more in the :ref:`User Guide <classification_report>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
y_pred : 1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
labels : array, shape = [n_labels]
Optional list of label indices to include in the report.
target_names : list of strings
Optional display names matching the labels (same order).
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
digits : int
Number of digits for formatting output floating point values.
When ``output_dict`` is ``True``, this will be ignored and the
returned values will not be rounded.
output_dict : bool (default = False)
If True, return output as dict
.. versionadded:: 0.20
zero_division : "warn", 0 or 1, default="warn"
Sets the value to return when there is a zero division. If set to
"warn", this acts as 0, but warnings are also raised.
Returns
-------
report : string / dict
Text summary of the precision, recall, F1 score for each class.
Dictionary returned if output_dict is True. Dictionary has the
following structure::
{'label 1': {'precision':0.5,
'recall':1.0,
'f1-score':0.67,
'support':1},
'label 2': { ... },
...
}
The reported averages include macro average (averaging the unweighted
mean per label), weighted average (averaging the support-weighted mean
per label), and sample average (only for multilabel classification).
Micro average (averaging the total true positives, false negatives and
false positives) is only shown for multi-label or multi-class
with a subset of classes, because it corresponds to accuracy otherwise.
See also :func:`precision_recall_fscore_support` for more details
on averages.
Note that in binary classification, recall of the positive class
is also known as "sensitivity"; recall of the negative class is
"specificity".
See also
--------
precision_recall_fscore_support, confusion_matrix,
multilabel_confusion_matrix
Examples
--------
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
<BLANKLINE>
class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3
<BLANKLINE>
accuracy 0.60 5
macro avg 0.50 0.56 0.49 5
weighted avg 0.70 0.60 0.61 5
<BLANKLINE>
>>> y_pred = [1, 1, 0]
>>> y_true = [1, 1, 1]
>>> print(classification_report(y_true, y_pred, labels=[1, 2, 3]))
precision recall f1-score support
<BLANKLINE>
1 1.00 0.67 0.80 3
2 0.00 0.00 0.00 0
3 0.00 0.00 0.00 0
<BLANKLINE>
micro avg 1.00 0.67 0.80 3
macro avg 0.33 0.22 0.27 3
weighted avg 1.00 0.67 0.80 3
<BLANKLINE>
"""
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
labels_given = True
if labels is None:
labels = unique_labels(y_true, y_pred)
labels_given = False
else:
labels = np.asarray(labels)
# labelled micro average
micro_is_accuracy = ((y_type == 'multiclass' or y_type == 'binary') and
(not labels_given or
(set(labels) == set(unique_labels(y_true, y_pred)))))
if target_names is not None and len(labels) != len(target_names):
if labels_given:
warnings.warn(
"labels size, {0}, does not match size of target_names, {1}"
.format(len(labels), len(target_names))
)
else:
raise ValueError(
"Number of classes, {0}, does not match size of "
"target_names, {1}. Try specifying the labels "
"parameter".format(len(labels), len(target_names))
)
if target_names is None:
target_names = ['%s' % l for l in labels]
headers = ["precision", "recall", "f1-score", "support"]
# compute per-class results without averaging
p, r, f1, s = precision_recall_fscore_support(y_true, y_pred,
labels=labels,
average=None,
sample_weight=sample_weight,
zero_division=zero_division)
rows = zip(target_names, p, r, f1, s)
if y_type.startswith('multilabel'):
average_options = ('micro', 'macro', 'weighted', 'samples')
else:
average_options = ('micro', 'macro', 'weighted')
if output_dict:
report_dict = {label[0]: label[1:] for label in rows}
for label, scores in report_dict.items():
report_dict[label] = dict(zip(headers,
[i.item() for i in scores]))
else:
longest_last_line_heading = 'weighted avg'
name_width = max(len(cn) for cn in target_names)
width = max(name_width, len(longest_last_line_heading), digits)
head_fmt = '{:>{width}s} ' + ' {:>9}' * len(headers)
report = head_fmt.format('', *headers, width=width)
report += '\n\n'
row_fmt = '{:>{width}s} ' + ' {:>9.{digits}f}' * 3 + ' {:>9}\n'
for row in rows:
report += row_fmt.format(*row, width=width, digits=digits)
report += '\n'
# compute all applicable averages
for average in average_options:
if average.startswith('micro') and micro_is_accuracy:
line_heading = 'accuracy'
else:
line_heading = average + ' avg'
# compute averages with specified averaging method
avg_p, avg_r, avg_f1, _ = precision_recall_fscore_support(
y_true, y_pred, labels=labels,
average=average, sample_weight=sample_weight,
zero_division=zero_division)
avg = [avg_p, avg_r, avg_f1, np.sum(s)]
if output_dict:
report_dict[line_heading] = dict(
zip(headers, [i.item() for i in avg]))
else:
if line_heading == 'accuracy':
row_fmt_accuracy = '{:>{width}s} ' + \
' {:>9.{digits}}' * 2 + ' {:>9.{digits}f}' + \
' {:>9}\n'
report += row_fmt_accuracy.format(line_heading, '', '',
*avg[2:], width=width,
digits=digits)
else:
report += row_fmt.format(line_heading, *avg,
width=width, digits=digits)
if output_dict:
if 'accuracy' in report_dict.keys():
report_dict['accuracy'] = report_dict['accuracy']['precision']
return report_dict
else:
return report
@_deprecate_positional_args
def hamming_loss(y_true, y_pred, *, sample_weight=None):
"""Compute the average Hamming loss.
The Hamming loss is the fraction of labels that are incorrectly predicted.
Read more in the :ref:`User Guide <hamming_loss>`.
Parameters
----------
y_true : 1d array-like, or label indicator array / sparse matrix
Ground truth (correct) labels.
y_pred : 1d array-like, or label indicator array / sparse matrix
Predicted labels, as returned by a classifier.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
.. versionadded:: 0.18
Returns
-------
loss : float or int,
Return the average Hamming loss between element of ``y_true`` and
``y_pred``.
See Also
--------
accuracy_score, jaccard_score, zero_one_loss
Notes
-----
In multiclass classification, the Hamming loss corresponds to the Hamming
distance between ``y_true`` and ``y_pred`` which is equivalent to the
subset ``zero_one_loss`` function, when `normalize` parameter is set to
True.
In multilabel classification, the Hamming loss is different from the
subset zero-one loss. The zero-one loss considers the entire set of labels
for a given sample incorrect if it does not entirely match the true set of
labels. Hamming loss is more forgiving in that it penalizes only the
individual labels.
The Hamming loss is upperbounded by the subset zero-one loss, when
`normalize` parameter is set to True. It is always between 0 and 1,
lower being better.
References
----------
.. [1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification:
An Overview. International Journal of Data Warehousing & Mining,
3(3), 1-13, July-September 2007.
.. [2] `Wikipedia entry on the Hamming distance
<https://en.wikipedia.org/wiki/Hamming_distance>`_
Examples
--------
>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25
In the multilabel case with binary label indicators:
>>> import numpy as np
>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75
"""
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
check_consistent_length(y_true, y_pred, sample_weight)
if sample_weight is None:
weight_average = 1.
else:
weight_average = np.mean(sample_weight)
if y_type.startswith('multilabel'):
n_differences = count_nonzero(y_true - y_pred,
sample_weight=sample_weight)
return (n_differences /
(y_true.shape[0] * y_true.shape[1] * weight_average))
elif y_type in ["binary", "multiclass"]:
return _weighted_sum(y_true != y_pred, sample_weight, normalize=True)
else:
raise ValueError("{0} is not supported".format(y_type))
@_deprecate_positional_args
def log_loss(y_true, y_pred, *, eps=1e-15, normalize=True, sample_weight=None,
labels=None):
"""Log loss, aka logistic loss or cross-entropy loss.
This is the loss function used in (multinomial) logistic regression
and extensions of it such as neural networks, defined as the negative
log-likelihood of a logistic model that returns ``y_pred`` probabilities
for its training data ``y_true``.
The log loss is only defined for two or more labels.
For a single sample with true label yt in {0,1} and
estimated probability yp that yt = 1, the log loss is
-log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp))
Read more in the :ref:`User Guide <log_loss>`.
Parameters
----------
y_true : array-like or label indicator matrix
Ground truth (correct) labels for n_samples samples.
y_pred : array-like of float, shape = (n_samples, n_classes) or (n_samples,)
Predicted probabilities, as returned by a classifier's
predict_proba method. If ``y_pred.shape = (n_samples,)``
the probabilities provided are assumed to be that of the
positive class. The labels in ``y_pred`` are assumed to be
ordered alphabetically, as done by
:class:`preprocessing.LabelBinarizer`.
eps : float
Log loss is undefined for p=0 or p=1, so probabilities are
clipped to max(eps, min(1 - eps, p)).
normalize : bool, optional (default=True)
If true, return the mean loss per sample.
Otherwise, return the sum of the per-sample losses.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
labels : array-like, optional (default=None)
If not provided, labels will be inferred from y_true. If ``labels``
is ``None`` and ``y_pred`` has shape (n_samples,) the labels are
assumed to be binary and are inferred from ``y_true``.
.. versionadded:: 0.18
Returns
-------
loss : float
Examples
--------
>>> from sklearn.metrics import log_loss
>>> log_loss(["spam", "ham", "ham", "spam"],
... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
0.21616...
References
----------
C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer,
p. 209.
Notes
-----
The logarithm used is the natural logarithm (base-e).
"""
y_pred = check_array(y_pred, ensure_2d=False)
check_consistent_length(y_pred, y_true, sample_weight)
lb = LabelBinarizer()
if labels is not None:
lb.fit(labels)
else:
lb.fit(y_true)
if len(lb.classes_) == 1:
if labels is None:
raise ValueError('y_true contains only one label ({0}). Please '
'provide the true labels explicitly through the '
'labels argument.'.format(lb.classes_[0]))
else:
raise ValueError('The labels array needs to contain at least two '
'labels for log_loss, '
'got {0}.'.format(lb.classes_))
transformed_labels = lb.transform(y_true)
if transformed_labels.shape[1] == 1:
transformed_labels = np.append(1 - transformed_labels,
transformed_labels, axis=1)
# Clipping
y_pred = np.clip(y_pred, eps, 1 - eps)
# If y_pred is of single dimension, assume y_true to be binary
# and then check.
if y_pred.ndim == 1:
y_pred = y_pred[:, np.newaxis]
if y_pred.shape[1] == 1:
y_pred = np.append(1 - y_pred, y_pred, axis=1)
# Check if dimensions are consistent.
transformed_labels = check_array(transformed_labels)
if len(lb.classes_) != y_pred.shape[1]:
if labels is None:
raise ValueError("y_true and y_pred contain different number of "
"classes {0}, {1}. Please provide the true "
"labels explicitly through the labels argument. "
"Classes found in "
"y_true: {2}".format(transformed_labels.shape[1],
y_pred.shape[1],
lb.classes_))
else:
raise ValueError('The number of classes in labels is different '
'from that in y_pred. Classes found in '
'labels: {0}'.format(lb.classes_))
# Renormalize
y_pred /= y_pred.sum(axis=1)[:, np.newaxis]
loss = -(transformed_labels * np.log(y_pred)).sum(axis=1)
return _weighted_sum(loss, sample_weight, normalize)
@_deprecate_positional_args
def hinge_loss(y_true, pred_decision, *, labels=None, sample_weight=None):
"""Average hinge loss (non-regularized)
In binary class case, assuming labels in y_true are encoded with +1 and -1,
when a prediction mistake is made, ``margin = y_true * pred_decision`` is
always negative (since the signs disagree), implying ``1 - margin`` is
always greater than 1. The cumulated hinge loss is therefore an upper
bound of the number of mistakes made by the classifier.
In multiclass case, the function expects that either all the labels are
included in y_true or an optional labels argument is provided which
contains all the labels. The multilabel margin is calculated according
to Crammer-Singer's method. As in the binary case, the cumulated hinge loss
is an upper bound of the number of mistakes made by the classifier.
Read more in the :ref:`User Guide <hinge_loss>`.
Parameters
----------
y_true : array, shape = [n_samples]
True target, consisting of integers of two values. The positive label
must be greater than the negative label.
pred_decision : array, shape = [n_samples] or [n_samples, n_classes]
Predicted decisions, as output by decision_function (floats).
labels : array, optional, default None
Contains all the labels for the problem. Used in multiclass hinge loss.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Returns
-------
loss : float
References
----------
.. [1] `Wikipedia entry on the Hinge loss
<https://en.wikipedia.org/wiki/Hinge_loss>`_
.. [2] Koby Crammer, Yoram Singer. On the Algorithmic
Implementation of Multiclass Kernel-based Vector
Machines. Journal of Machine Learning Research 2,
(2001), 265-292
.. [3] `L1 AND L2 Regularization for Multiclass Hinge Loss Models
by Robert C. Moore, John DeNero.
<http://www.ttic.edu/sigml/symposium2011/papers/
Moore+DeNero_Regularization.pdf>`_
Examples
--------
>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.30...
In the multiclass case:
>>> import numpy as np
>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels=labels)
0.56...
"""
check_consistent_length(y_true, pred_decision, sample_weight)
pred_decision = check_array(pred_decision, ensure_2d=False)
y_true = column_or_1d(y_true)
y_true_unique = np.unique(y_true)
if y_true_unique.size > 2:
if (labels is None and pred_decision.ndim > 1 and
(np.size(y_true_unique) != pred_decision.shape[1])):
raise ValueError("Please include all labels in y_true "
"or pass labels as third argument")
if labels is None:
labels = y_true_unique
le = LabelEncoder()
le.fit(labels)
y_true = le.transform(y_true)
mask = np.ones_like(pred_decision, dtype=bool)
mask[np.arange(y_true.shape[0]), y_true] = False
margin = pred_decision[~mask]
margin -= np.max(pred_decision[mask].reshape(y_true.shape[0], -1),
axis=1)
else:
# Handles binary class case
# this code assumes that positive and negative labels
# are encoded as +1 and -1 respectively
pred_decision = column_or_1d(pred_decision)
pred_decision = np.ravel(pred_decision)
lbin = LabelBinarizer(neg_label=-1)
y_true = lbin.fit_transform(y_true)[:, 0]
try:
margin = y_true * pred_decision
except TypeError:
raise TypeError("pred_decision should be an array of floats.")
losses = 1 - margin
# The hinge_loss doesn't penalize good enough predictions.
np.clip(losses, 0, None, out=losses)
return np.average(losses, weights=sample_weight)
@_deprecate_positional_args
def brier_score_loss(y_true, y_prob, *, sample_weight=None, pos_label=None):
"""Compute the Brier score.
The smaller the Brier score, the better, hence the naming with "loss".
Across all items in a set N predictions, the Brier score measures the
mean squared difference between (1) the predicted probability assigned
to the possible outcomes for item i, and (2) the actual outcome.
Therefore, the lower the Brier score is for a set of predictions, the
better the predictions are calibrated. Note that the Brier score always
takes on a value between zero and one, since this is the largest
possible difference between a predicted probability (which must be
between zero and one) and the actual outcome (which can take on values
of only 0 and 1). The Brier loss is composed of refinement loss and
calibration loss.
The Brier score is appropriate for binary and categorical outcomes that
can be structured as true or false, but is inappropriate for ordinal
variables which can take on three or more values (this is because the
Brier score assumes that all possible outcomes are equivalently
"distant" from one another). Which label is considered to be the positive
label is controlled via the parameter pos_label, which defaults to 1.
Read more in the :ref:`User Guide <calibration>`.
Parameters
----------
y_true : array, shape (n_samples,)
True targets.
y_prob : array, shape (n_samples,)
Probabilities of the positive class.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
pos_label : int or str, default=None
Label of the positive class.
Defaults to the greater label unless y_true is all 0 or all -1
in which case pos_label defaults to 1.
Returns
-------
score : float
Brier score
Examples
--------
>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
>>> brier_score_loss(y_true, y_prob)
0.037...
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.037...
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.037...
>>> brier_score_loss(y_true, np.array(y_prob) > 0.5)
0.0
References
----------
.. [1] `Wikipedia entry for the Brier score.
<https://en.wikipedia.org/wiki/Brier_score>`_
"""
y_true = column_or_1d(y_true)
y_prob = column_or_1d(y_prob)
assert_all_finite(y_true)
assert_all_finite(y_prob)
check_consistent_length(y_true, y_prob, sample_weight)
labels = np.unique(y_true)
if len(labels) > 2:
raise ValueError("Only binary classification is supported. "
"Labels in y_true: %s." % labels)
if y_prob.max() > 1:
raise ValueError("y_prob contains values greater than 1.")
if y_prob.min() < 0:
raise ValueError("y_prob contains values less than 0.")
# if pos_label=None, when y_true is in {-1, 1} or {0, 1},
# pos_label is set to 1 (consistent with precision_recall_curve/roc_curve),
# otherwise pos_label is set to the greater label
# (different from precision_recall_curve/roc_curve,
# the purpose is to keep backward compatibility).
if pos_label is None:
if (np.array_equal(labels, [0]) or
np.array_equal(labels, [-1])):
pos_label = 1
else:
pos_label = y_true.max()
y_true = np.array(y_true == pos_label, int)
return np.average((y_true - y_prob) ** 2, weights=sample_weight)