_ridge.py
72.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
"""
Ridge regression
"""
# Author: Mathieu Blondel <mathieu@mblondel.org>
# Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
# Fabian Pedregosa <fabian@fseoane.net>
# Michael Eickenberg <michael.eickenberg@nsup.org>
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
import warnings
import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg
from ._base import LinearClassifierMixin, LinearModel, _rescale_data
from ._sag import sag_solver
from ..base import RegressorMixin, MultiOutputMixin, is_classifier
from ..utils.extmath import safe_sparse_dot
from ..utils.extmath import row_norms
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import compute_sample_weight
from ..utils import column_or_1d
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ..preprocessing import LabelBinarizer
from ..model_selection import GridSearchCV
from ..metrics import check_scoring
from ..exceptions import ConvergenceWarning
from ..utils.sparsefuncs import mean_variance_axis
def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0,
X_offset=None, X_scale=None):
def _get_rescaled_operator(X):
X_offset_scale = X_offset / X_scale
def matvec(b):
return X.dot(b) - b.dot(X_offset_scale)
def rmatvec(b):
return X.T.dot(b) - X_offset_scale * np.sum(b)
X1 = sparse.linalg.LinearOperator(shape=X.shape,
matvec=matvec,
rmatvec=rmatvec)
return X1
n_samples, n_features = X.shape
if X_offset is None or X_scale is None:
X1 = sp_linalg.aslinearoperator(X)
else:
X1 = _get_rescaled_operator(X)
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
if n_features > n_samples:
def create_mv(curr_alpha):
def _mv(x):
return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
return _mv
else:
def create_mv(curr_alpha):
def _mv(x):
return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
return _mv
for i in range(y.shape[1]):
y_column = y[:, i]
mv = create_mv(alpha[i])
if n_features > n_samples:
# kernel ridge
# w = X.T * inv(X X^t + alpha*Id) y
C = sp_linalg.LinearOperator(
(n_samples, n_samples), matvec=mv, dtype=X.dtype)
# FIXME atol
try:
coef, info = sp_linalg.cg(C, y_column, tol=tol, atol='legacy')
except TypeError:
# old scipy
coef, info = sp_linalg.cg(C, y_column, tol=tol)
coefs[i] = X1.rmatvec(coef)
else:
# linear ridge
# w = inv(X^t X + alpha*Id) * X.T y
y_column = X1.rmatvec(y_column)
C = sp_linalg.LinearOperator(
(n_features, n_features), matvec=mv, dtype=X.dtype)
# FIXME atol
try:
coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
tol=tol, atol='legacy')
except TypeError:
# old scipy
coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
tol=tol)
if info < 0:
raise ValueError("Failed with error code %d" % info)
if max_iter is None and info > 0 and verbose:
warnings.warn("sparse_cg did not converge after %d iterations." %
info, ConvergenceWarning)
return coefs
def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
n_samples, n_features = X.shape
coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
# According to the lsqr documentation, alpha = damp^2.
sqrt_alpha = np.sqrt(alpha)
for i in range(y.shape[1]):
y_column = y[:, i]
info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i],
atol=tol, btol=tol, iter_lim=max_iter)
coefs[i] = info[0]
n_iter[i] = info[2]
return coefs, n_iter
def _solve_cholesky(X, y, alpha):
# w = inv(X^t X + alpha*Id) * X.T y
n_features = X.shape[1]
n_targets = y.shape[1]
A = safe_sparse_dot(X.T, X, dense_output=True)
Xy = safe_sparse_dot(X.T, y, dense_output=True)
one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])
if one_alpha:
A.flat[::n_features + 1] += alpha[0]
return linalg.solve(A, Xy, sym_pos=True,
overwrite_a=True).T
else:
coefs = np.empty([n_targets, n_features], dtype=X.dtype)
for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
A.flat[::n_features + 1] += current_alpha
coef[:] = linalg.solve(A, target, sym_pos=True,
overwrite_a=False).ravel()
A.flat[::n_features + 1] -= current_alpha
return coefs
def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
# dual_coef = inv(X X^t + alpha*Id) y
n_samples = K.shape[0]
n_targets = y.shape[1]
if copy:
K = K.copy()
alpha = np.atleast_1d(alpha)
one_alpha = (alpha == alpha[0]).all()
has_sw = isinstance(sample_weight, np.ndarray) \
or sample_weight not in [1.0, None]
if has_sw:
# Unlike other solvers, we need to support sample_weight directly
# because K might be a pre-computed kernel.
sw = np.sqrt(np.atleast_1d(sample_weight))
y = y * sw[:, np.newaxis]
K *= np.outer(sw, sw)
if one_alpha:
# Only one penalty, we can solve multi-target problems in one time.
K.flat[::n_samples + 1] += alpha[0]
try:
# Note: we must use overwrite_a=False in order to be able to
# use the fall-back solution below in case a LinAlgError
# is raised
dual_coef = linalg.solve(K, y, sym_pos=True,
overwrite_a=False)
except np.linalg.LinAlgError:
warnings.warn("Singular matrix in solving dual problem. Using "
"least-squares solution instead.")
dual_coef = linalg.lstsq(K, y)[0]
# K is expensive to compute and store in memory so change it back in
# case it was user-given.
K.flat[::n_samples + 1] -= alpha[0]
if has_sw:
dual_coef *= sw[:, np.newaxis]
return dual_coef
else:
# One penalty per target. We need to solve each target separately.
dual_coefs = np.empty([n_targets, n_samples], K.dtype)
for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
K.flat[::n_samples + 1] += current_alpha
dual_coef[:] = linalg.solve(K, target, sym_pos=True,
overwrite_a=False).ravel()
K.flat[::n_samples + 1] -= current_alpha
if has_sw:
dual_coefs *= sw[np.newaxis, :]
return dual_coefs.T
def _solve_svd(X, y, alpha):
U, s, Vt = linalg.svd(X, full_matrices=False)
idx = s > 1e-15 # same default value as scipy.linalg.pinv
s_nnz = s[idx][:, np.newaxis]
UTy = np.dot(U.T, y)
d = np.zeros((s.size, alpha.size), dtype=X.dtype)
d[idx] = s_nnz / (s_nnz ** 2 + alpha)
d_UT_y = d * UTy
return np.dot(Vt.T, d_UT_y).T
def _get_valid_accept_sparse(is_X_sparse, solver):
if is_X_sparse and solver in ['auto', 'sag', 'saga']:
return 'csr'
else:
return ['csr', 'csc', 'coo']
@_deprecate_positional_args
def ridge_regression(X, y, alpha, *, sample_weight=None, solver='auto',
max_iter=None, tol=1e-3, verbose=0, random_state=None,
return_n_iter=False, return_intercept=False,
check_input=True):
"""Solve the ridge equation by the method of normal equations.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
X : {ndarray, sparse matrix, LinearOperator} of shape \
(n_samples, n_features)
Training data
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values
alpha : float or array-like of shape (n_targets,)
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in
number.
sample_weight : float or array-like of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight. If sample_weight is not None and
solver='auto', the solver will be set to 'cholesky'.
.. versionadded:: 0.17
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. More stable for singular matrices than 'cholesky'.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution via a Cholesky decomposition of
dot(X.T, X)
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its improved, unbiased version named SAGA. Both methods also use an
iterative procedure, and are often faster than other solvers when
both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
All last five solvers support both dense and sparse data. However, only
'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
1000.
tol : float, default=1e-3
Precision of the solution.
verbose : int, default=0
Verbosity level. Setting verbose > 0 will display additional
information depending on the solver used.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
return_n_iter : bool, default=False
If True, the method also returns `n_iter`, the actual number of
iteration performed by the solver.
.. versionadded:: 0.17
return_intercept : bool, default=False
If True and if X is sparse, the method also returns the intercept,
and the solver is automatically changed to 'sag'. This is only a
temporary fix for fitting the intercept with sparse data. For dense
data, use sklearn.linear_model._preprocess_data before your regression.
.. versionadded:: 0.17
check_input : bool, default=True
If False, the input arrays X and y will not be checked.
.. versionadded:: 0.21
Returns
-------
coef : ndarray of shape (n_features,) or (n_targets, n_features)
Weight vector(s).
n_iter : int, optional
The actual number of iteration performed by the solver.
Only returned if `return_n_iter` is True.
intercept : float or ndarray of shape (n_targets,)
The intercept of the model. Only returned if `return_intercept`
is True and if X is a scipy sparse array.
Notes
-----
This function won't compute the intercept.
"""
return _ridge_regression(X, y, alpha,
sample_weight=sample_weight,
solver=solver,
max_iter=max_iter,
tol=tol,
verbose=verbose,
random_state=random_state,
return_n_iter=return_n_iter,
return_intercept=return_intercept,
X_scale=None,
X_offset=None,
check_input=check_input)
def _ridge_regression(X, y, alpha, sample_weight=None, solver='auto',
max_iter=None, tol=1e-3, verbose=0, random_state=None,
return_n_iter=False, return_intercept=False,
X_scale=None, X_offset=None, check_input=True):
has_sw = sample_weight is not None
if solver == 'auto':
if return_intercept:
# only sag supports fitting intercept directly
solver = "sag"
elif not sparse.issparse(X):
solver = "cholesky"
else:
solver = "sparse_cg"
if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag', 'saga'):
raise ValueError("Known solvers are 'sparse_cg', 'cholesky', 'svd'"
" 'lsqr', 'sag' or 'saga'. Got %s." % solver)
if return_intercept and solver != 'sag':
raise ValueError("In Ridge, only 'sag' solver can directly fit the "
"intercept. Please change solver to 'sag' or set "
"return_intercept=False.")
if check_input:
_dtype = [np.float64, np.float32]
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype,
order="C")
y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None)
check_consistent_length(X, y)
n_samples, n_features = X.shape
if y.ndim > 2:
raise ValueError("Target y has the wrong shape %s" % str(y.shape))
ravel = False
if y.ndim == 1:
y = y.reshape(-1, 1)
ravel = True
n_samples_, n_targets = y.shape
if n_samples != n_samples_:
raise ValueError("Number of samples in X and y does not correspond:"
" %d != %d" % (n_samples, n_samples_))
if has_sw:
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
if solver not in ['sag', 'saga']:
# SAG supports sample_weight directly. For other solvers,
# we implement sample_weight via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
# There should be either 1 or n_targets penalties
alpha = np.asarray(alpha, dtype=X.dtype).ravel()
if alpha.size not in [1, n_targets]:
raise ValueError("Number of targets and number of penalties "
"do not correspond: %d != %d"
% (alpha.size, n_targets))
if alpha.size == 1 and n_targets > 1:
alpha = np.repeat(alpha, n_targets)
n_iter = None
if solver == 'sparse_cg':
coef = _solve_sparse_cg(X, y, alpha,
max_iter=max_iter,
tol=tol,
verbose=verbose,
X_offset=X_offset,
X_scale=X_scale)
elif solver == 'lsqr':
coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)
elif solver == 'cholesky':
if n_features > n_samples:
K = safe_sparse_dot(X, X.T, dense_output=True)
try:
dual_coef = _solve_cholesky_kernel(K, y, alpha)
coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
except linalg.LinAlgError:
# use SVD solver if matrix is singular
solver = 'svd'
else:
try:
coef = _solve_cholesky(X, y, alpha)
except linalg.LinAlgError:
# use SVD solver if matrix is singular
solver = 'svd'
elif solver in ['sag', 'saga']:
# precompute max_squared_sum for all targets
max_squared_sum = row_norms(X, squared=True).max()
coef = np.empty((y.shape[1], n_features), dtype=X.dtype)
n_iter = np.empty(y.shape[1], dtype=np.int32)
intercept = np.zeros((y.shape[1], ), dtype=X.dtype)
for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
init = {'coef': np.zeros((n_features + int(return_intercept), 1),
dtype=X.dtype)}
coef_, n_iter_, _ = sag_solver(
X, target.ravel(), sample_weight, 'squared', alpha_i, 0,
max_iter, tol, verbose, random_state, False, max_squared_sum,
init, is_saga=solver == 'saga')
if return_intercept:
coef[i] = coef_[:-1]
intercept[i] = coef_[-1]
else:
coef[i] = coef_
n_iter[i] = n_iter_
if intercept.shape[0] == 1:
intercept = intercept[0]
coef = np.asarray(coef)
if solver == 'svd':
if sparse.issparse(X):
raise TypeError('SVD solver does not support sparse'
' inputs currently')
coef = _solve_svd(X, y, alpha)
if ravel:
# When y was passed as a 1d-array, we flatten the coefficients.
coef = coef.ravel()
if return_n_iter and return_intercept:
return coef, n_iter, intercept
elif return_intercept:
return coef, intercept
elif return_n_iter:
return coef, n_iter
else:
return coef
class _BaseRidge(LinearModel, metaclass=ABCMeta):
@abstractmethod
@_deprecate_positional_args
def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=1e-3, solver="auto",
random_state=None):
self.alpha = alpha
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.max_iter = max_iter
self.tol = tol
self.solver = solver
self.random_state = random_state
def fit(self, X, y, sample_weight=None):
# all other solvers work at both float precision levels
_dtype = [np.float64, np.float32]
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X),
self.solver)
X, y = self._validate_data(X, y,
accept_sparse=_accept_sparse,
dtype=_dtype,
multi_output=True, y_numeric=True)
if sparse.issparse(X) and self.fit_intercept:
if self.solver not in ['auto', 'sparse_cg', 'sag']:
raise ValueError(
"solver='{}' does not support fitting the intercept "
"on sparse data. Please set the solver to 'auto' or "
"'sparse_cg', 'sag', or set `fit_intercept=False`"
.format(self.solver))
if (self.solver == 'sag' and self.max_iter is None and
self.tol > 1e-4):
warnings.warn(
'"sag" solver requires many iterations to fit '
'an intercept with sparse inputs. Either set the '
'solver to "auto" or "sparse_cg", or set a low '
'"tol" and a high "max_iter" (especially if inputs are '
'not standardized).')
solver = 'sag'
else:
solver = 'sparse_cg'
else:
solver = self.solver
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
# when X is sparse we only remove offset from y
X, y, X_offset, y_offset, X_scale = self._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X,
sample_weight=sample_weight, return_mean=True)
if solver == 'sag' and sparse.issparse(X) and self.fit_intercept:
self.coef_, self.n_iter_, self.intercept_ = _ridge_regression(
X, y, alpha=self.alpha, sample_weight=sample_weight,
max_iter=self.max_iter, tol=self.tol, solver='sag',
random_state=self.random_state, return_n_iter=True,
return_intercept=True, check_input=False)
# add the offset which was subtracted by _preprocess_data
self.intercept_ += y_offset
else:
if sparse.issparse(X) and self.fit_intercept:
# required to fit intercept with sparse_cg solver
params = {'X_offset': X_offset, 'X_scale': X_scale}
else:
# for dense matrices or when intercept is set to 0
params = {}
self.coef_, self.n_iter_ = _ridge_regression(
X, y, alpha=self.alpha, sample_weight=sample_weight,
max_iter=self.max_iter, tol=self.tol, solver=solver,
random_state=self.random_state, return_n_iter=True,
return_intercept=False, check_input=False, **params)
self._set_intercept(X_offset, y_offset, X_scale)
return self
class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
"""Linear least squares with l2 regularization.
Minimizes the objective function::
||y - Xw||^2_2 + alpha * ||w||^2_2
This model solves a regression model where the loss function is
the linear least squares function and regularization is given by
the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
This estimator has built-in support for multi-variate regression
(i.e., when y is a 2d-array of shape (n_samples, n_targets)).
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in
number.
fit_intercept : bool, default=True
Whether to fit the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. ``X`` and ``y`` are expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
For 'sparse_cg' and 'lsqr' solvers, the default value is determined
by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.
tol : float, default=1e-3
Precision of the solution.
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. More stable for singular matrices than 'cholesky'.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution.
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its improved, unbiased version named SAGA. Both methods also use an
iterative procedure, and are often faster than other solvers when
both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
All last five solvers support both dense and sparse data. However, only
'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
True.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
.. versionadded:: 0.17
`random_state` to support Stochastic Average Gradient.
Attributes
----------
coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
Weight vector(s).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
n_iter_ : None or ndarray of shape (n_targets,)
Actual number of iterations for each target. Available only for
sag and lsqr solvers. Other solvers will return None.
.. versionadded:: 0.17
See also
--------
RidgeClassifier : Ridge classifier
RidgeCV : Ridge regression with built-in cross validation
:class:`sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
combines ridge regression with the kernel trick
Examples
--------
>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge()
"""
@_deprecate_positional_args
def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=1e-3, solver="auto",
random_state=None):
super().__init__(
alpha=alpha, fit_intercept=fit_intercept,
normalize=normalize, copy_X=copy_X,
max_iter=max_iter, tol=tol, solver=solver,
random_state=random_state)
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : returns an instance of self.
"""
return super().fit(X, y, sample_weight=sample_weight)
class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
"""Classifier using Ridge regression.
This classifier first converts the target values into ``{-1, 1}`` and
then treats the problem as a regression task (multi-output regression in
the multiclass case).
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alpha : float, default=1.0
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to false, no
intercept will be used in calculations (e.g. data is expected to be
already centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
max_iter : int, default=None
Maximum number of iterations for conjugate gradient solver.
The default value is determined by scipy.sparse.linalg.
tol : float, default=1e-3
Precision of the solution.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``.
solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
default='auto'
Solver to use in the computational routines:
- 'auto' chooses the solver automatically based on the type of data.
- 'svd' uses a Singular Value Decomposition of X to compute the Ridge
coefficients. More stable for singular matrices than 'cholesky'.
- 'cholesky' uses the standard scipy.linalg.solve function to
obtain a closed-form solution.
- 'sparse_cg' uses the conjugate gradient solver as found in
scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
more appropriate than 'cholesky' for large-scale data
(possibility to set `tol` and `max_iter`).
- 'lsqr' uses the dedicated regularized least-squares routine
scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
procedure.
- 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
its unbiased and more flexible version named SAGA. Both methods
use an iterative procedure, and are often faster than other solvers
when both n_samples and n_features are large. Note that 'sag' and
'saga' fast convergence is only guaranteed on features with
approximately the same scale. You can preprocess the data with a
scaler from sklearn.preprocessing.
.. versionadded:: 0.17
Stochastic Average Gradient descent solver.
.. versionadded:: 0.19
SAGA solver.
random_state : int, RandomState instance, default=None
Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
See :term:`Glossary <random_state>` for details.
Attributes
----------
coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
Coefficient of the features in the decision function.
``coef_`` is of shape (1, n_features) when the given problem is binary.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
n_iter_ : None or ndarray of shape (n_targets,)
Actual number of iterations for each target. Available only for
sag and lsqr solvers. Other solvers will return None.
classes_ : ndarray of shape (n_classes,)
The classes labels.
See Also
--------
Ridge : Ridge regression.
RidgeClassifierCV : Ridge classifier with built-in cross validation.
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifier
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifier().fit(X, y)
>>> clf.score(X, y)
0.9595...
"""
@_deprecate_positional_args
def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=1e-3, class_weight=None,
solver="auto", random_state=None):
super().__init__(
alpha=alpha, fit_intercept=fit_intercept, normalize=normalize,
copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver,
random_state=random_state)
self.class_weight = class_weight
def fit(self, X, y, sample_weight=None):
"""Fit Ridge classifier model.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data.
y : ndarray of shape (n_samples,)
Target values.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
.. versionadded:: 0.17
*sample_weight* support to Classifier.
Returns
-------
self : object
Instance of the estimator.
"""
_accept_sparse = _get_valid_accept_sparse(sparse.issparse(X),
self.solver)
X, y = self._validate_data(X, y, accept_sparse=_accept_sparse,
multi_output=True, y_numeric=False)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
Y = self._label_binarizer.fit_transform(y)
if not self._label_binarizer.y_type_.startswith('multilabel'):
y = column_or_1d(y, warn=True)
else:
# we don't (yet) support multi-label classification in Ridge
raise ValueError(
"%s doesn't support multi-label classification" % (
self.__class__.__name__))
if self.class_weight:
# modify the sample weights with the corresponding class weight
sample_weight = (sample_weight *
compute_sample_weight(self.class_weight, y))
super().fit(X, Y, sample_weight=sample_weight)
return self
@property
def classes_(self):
return self._label_binarizer.classes_
def _check_gcv_mode(X, gcv_mode):
possible_gcv_modes = [None, 'auto', 'svd', 'eigen']
if gcv_mode not in possible_gcv_modes:
raise ValueError(
"Unknown value for 'gcv_mode'. "
"Got {} instead of one of {}" .format(
gcv_mode, possible_gcv_modes))
if gcv_mode in ['eigen', 'svd']:
return gcv_mode
# if X has more rows than columns, use decomposition of X^T.X,
# otherwise X.X^T
if X.shape[0] > X.shape[1]:
return 'svd'
return 'eigen'
def _find_smallest_angle(query, vectors):
"""Find the column of vectors that is most aligned with the query.
Both query and the columns of vectors must have their l2 norm equal to 1.
Parameters
----------
query : ndarray of shape (n_samples,)
Normalized query vector.
vectors : ndarray of shape (n_samples, n_features)
Vectors to which we compare query, as columns. Must be normalized.
"""
abs_cosine = np.abs(query.dot(vectors))
index = np.argmax(abs_cosine)
return index
class _X_CenterStackOp(sparse.linalg.LinearOperator):
"""Behaves as centered and scaled X with an added intercept column.
This operator behaves as
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]])
"""
def __init__(self, X, X_mean, sqrt_sw):
n_samples, n_features = X.shape
super().__init__(X.dtype, (n_samples, n_features + 1))
self.X = X
self.X_mean = X_mean
self.sqrt_sw = sqrt_sw
def _matvec(self, v):
v = v.ravel()
return safe_sparse_dot(
self.X, v[:-1], dense_output=True
) - self.sqrt_sw * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw
def _matmat(self, v):
return (
safe_sparse_dot(self.X, v[:-1], dense_output=True) -
self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1]) + v[-1] *
self.sqrt_sw[:, None])
def _transpose(self):
return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw)
class _XT_CenterStackOp(sparse.linalg.LinearOperator):
"""Behaves as transposed centered and scaled X with an intercept column.
This operator behaves as
np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T
"""
def __init__(self, X, X_mean, sqrt_sw):
n_samples, n_features = X.shape
super().__init__(X.dtype, (n_features + 1, n_samples))
self.X = X
self.X_mean = X_mean
self.sqrt_sw = sqrt_sw
def _matvec(self, v):
v = v.ravel()
n_features = self.shape[0]
res = np.empty(n_features, dtype=self.X.dtype)
res[:-1] = (
safe_sparse_dot(self.X.T, v, dense_output=True) -
(self.X_mean * self.sqrt_sw.dot(v))
)
res[-1] = np.dot(v, self.sqrt_sw)
return res
def _matmat(self, v):
n_features = self.shape[0]
res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype)
res[:-1] = (
safe_sparse_dot(self.X.T, v, dense_output=True) -
self.X_mean[:, None] * self.sqrt_sw.dot(v)
)
res[-1] = np.dot(self.sqrt_sw, v)
return res
class _IdentityRegressor:
"""Fake regressor which will directly output the prediction."""
def decision_function(self, y_predict):
return y_predict
def predict(self, y_predict):
return y_predict
class _IdentityClassifier(LinearClassifierMixin):
"""Fake classifier which will directly output the prediction.
We inherit from LinearClassifierMixin to get the proper shape for the
output `y`.
"""
def __init__(self, classes):
self.classes_ = classes
def decision_function(self, y_predict):
return y_predict
class _RidgeGCV(LinearModel):
"""Ridge regression with built-in Generalized Cross-Validation.
It allows efficient Leave-One-Out cross-validation.
This class is not intended to be used directly. Use RidgeCV instead.
Notes
-----
We want to solve (K + alpha*Id)c = y,
where K = X X^T is the kernel matrix.
Let G = (K + alpha*Id).
Dual solution: c = G^-1y
Primal solution: w = X^T c
Compute eigendecomposition K = Q V Q^T.
Then G^-1 = Q (V + alpha*Id)^-1 Q^T,
where (V + alpha*Id) is diagonal.
It is thus inexpensive to inverse for many alphas.
Let loov be the vector of prediction values for each example
when the model was fitted with all examples but this example.
loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1)
Let looe be the vector of prediction errors for each example
when the model was fitted with all examples but this example.
looe = y - loov = c / diag(G^-1)
The best score (negative mean squared error or user-provided scoring) is
stored in the `best_score_` attribute, and the selected hyperparameter in
`alpha_`.
References
----------
http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
"""
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False,
scoring=None, copy_X=True,
gcv_mode=None, store_cv_values=False,
is_clf=False):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
self.scoring = scoring
self.copy_X = copy_X
self.gcv_mode = gcv_mode
self.store_cv_values = store_cv_values
self.is_clf = is_clf
@staticmethod
def _decomp_diag(v_prime, Q):
# compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
return (v_prime * Q ** 2).sum(axis=-1)
@staticmethod
def _diag_dot(D, B):
# compute dot(diag(D), B)
if len(B.shape) > 1:
# handle case where B is > 1-d
D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)]
return D * B
def _compute_gram(self, X, sqrt_sw):
"""Computes the Gram matrix XX^T with possible centering.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The preprocessed design matrix.
sqrt_sw : ndarray of shape (n_samples,)
square roots of sample weights
Returns
-------
gram : ndarray of shape (n_samples, n_samples)
The Gram matrix.
X_mean : ndarray of shape (n_feature,)
The weighted mean of ``X`` for each feature.
Notes
-----
When X is dense the centering has been done in preprocessing
so the mean is 0 and we just compute XX^T.
When X is sparse it has not been centered in preprocessing, but it has
been scaled by sqrt(sample weights).
When self.fit_intercept is False no centering is done.
The centered X is never actually computed because centering would break
the sparsity of X.
"""
center = self.fit_intercept and sparse.issparse(X)
if not center:
# in this case centering has been done in preprocessing
# or we are not fitting an intercept.
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
return safe_sparse_dot(X, X.T, dense_output=True), X_mean
# X is sparse
n_samples = X.shape[0]
sample_weight_matrix = sparse.dia_matrix(
(sqrt_sw, 0), shape=(n_samples, n_samples))
X_weighted = sample_weight_matrix.dot(X)
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)
X_mX = sqrt_sw[:, None] * safe_sparse_dot(
X_mean, X.T, dense_output=True)
X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)
return (safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m
- X_mX - X_mX.T, X_mean)
def _compute_covariance(self, X, sqrt_sw):
"""Computes covariance matrix X^TX with possible centering.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
The preprocessed design matrix.
sqrt_sw : ndarray of shape (n_samples,)
square roots of sample weights
Returns
-------
covariance : ndarray of shape (n_features, n_features)
The covariance matrix.
X_mean : ndarray of shape (n_feature,)
The weighted mean of ``X`` for each feature.
Notes
-----
Since X is sparse it has not been centered in preprocessing, but it has
been scaled by sqrt(sample weights).
When self.fit_intercept is False no centering is done.
The centered X is never actually computed because centering would break
the sparsity of X.
"""
if not self.fit_intercept:
# in this case centering has been done in preprocessing
# or we are not fitting an intercept.
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
return safe_sparse_dot(X.T, X, dense_output=True), X_mean
# this function only gets called for sparse X
n_samples = X.shape[0]
sample_weight_matrix = sparse.dia_matrix(
(sqrt_sw, 0), shape=(n_samples, n_samples))
X_weighted = sample_weight_matrix.dot(X)
X_mean, _ = mean_variance_axis(X_weighted, axis=0)
X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)
weight_sum = sqrt_sw.dot(sqrt_sw)
return (safe_sparse_dot(X.T, X, dense_output=True) -
weight_sum * np.outer(X_mean, X_mean),
X_mean)
def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):
"""Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)
without explicitely centering X nor computing X.dot(A)
when X is sparse.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
A : ndarray of shape (n_features, n_features)
X_mean : ndarray of shape (n_features,)
sqrt_sw : ndarray of shape (n_features,)
square roots of sample weights
Returns
-------
diag : np.ndarray, shape (n_samples,)
The computed diagonal.
"""
intercept_col = scale = sqrt_sw
batch_size = X.shape[1]
diag = np.empty(X.shape[0], dtype=X.dtype)
for start in range(0, X.shape[0], batch_size):
batch = slice(start, min(X.shape[0], start + batch_size), 1)
X_batch = np.empty(
(X[batch].shape[0], X.shape[1] + self.fit_intercept),
dtype=X.dtype
)
if self.fit_intercept:
X_batch[:, :-1] = X[batch].A - X_mean * scale[batch][:, None]
X_batch[:, -1] = intercept_col[batch]
else:
X_batch = X[batch].A
diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1)
return diag
def _eigen_decompose_gram(self, X, y, sqrt_sw):
"""Eigendecomposition of X.X^T, used when n_samples <= n_features."""
# if X is dense it has already been centered in preprocessing
K, X_mean = self._compute_gram(X, sqrt_sw)
if self.fit_intercept:
# to emulate centering X with sample weights,
# ie removing the weighted average, we add a column
# containing the square roots of the sample weights.
# by centering, it is orthogonal to the other columns
K += np.outer(sqrt_sw, sqrt_sw)
eigvals, Q = linalg.eigh(K)
QT_y = np.dot(Q.T, y)
return X_mean, eigvals, Q, QT_y
def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X.X^T (n_samples <= n_features).
"""
w = 1. / (eigvals + alpha)
if self.fit_intercept:
# the vector containing the square roots of the sample weights (1
# when no sample weights) is the eigenvector of XX^T which
# corresponds to the intercept; we cancel the regularization on
# this dimension. the corresponding eigenvalue is
# sum(sample_weight).
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, Q)
w[intercept_dim] = 0 # cancel regularization for the intercept
c = np.dot(Q, self._diag_dot(w, QT_y))
G_inverse_diag = self._decomp_diag(w, Q)
# handle case where y is 2-d
if len(y.shape) != 1:
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
def _eigen_decompose_covariance(self, X, y, sqrt_sw):
"""Eigendecomposition of X^T.X, used when n_samples > n_features
and X is sparse.
"""
n_samples, n_features = X.shape
cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
if not self.fit_intercept:
cov = cov[:-1, :-1]
# to emulate centering X with sample weights,
# ie removing the weighted average, we add a column
# containing the square roots of the sample weights.
# by centering, it is orthogonal to the other columns
# when all samples have the same weight we add a column of 1
else:
cov[-1] = 0
cov[:, -1] = 0
cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
nullspace_dim = max(0, n_features - n_samples)
eigvals, V = linalg.eigh(cov)
# remove eigenvalues and vectors in the null space of X^T.X
eigvals = eigvals[nullspace_dim:]
V = V[:, nullspace_dim:]
return X_mean, eigvals, V, X
def _solve_eigen_covariance_no_intercept(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse), and not fitting an intercept.
"""
w = 1 / (eigvals + alpha)
A = (V * w).dot(V.T)
AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True))
y_hat = safe_sparse_dot(X, AXy, dense_output=True)
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
if len(y.shape) != 1:
# handle case where y is 2-d
hat_diag = hat_diag[:, np.newaxis]
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
def _solve_eigen_covariance_intercept(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse),
and we are fitting an intercept.
"""
# the vector [0, 0, ..., 0, 1]
# is the eigenvector of X^TX which
# corresponds to the intercept; we cancel the regularization on
# this dimension. the corresponding eigenvalue is
# sum(sample_weight), e.g. n when uniform sample weights.
intercept_sv = np.zeros(V.shape[0])
intercept_sv[-1] = 1
intercept_dim = _find_smallest_angle(intercept_sv, V)
w = 1 / (eigvals + alpha)
w[intercept_dim] = 1 / eigvals[intercept_dim]
A = (V * w).dot(V.T)
# add a column to X containing the square roots of sample weights
X_op = _X_CenterStackOp(X, X_mean, sqrt_sw)
AXy = A.dot(X_op.T.dot(y))
y_hat = X_op.dot(AXy)
hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
# return (1 - hat_diag), (y - y_hat)
if len(y.shape) != 1:
# handle case where y is 2-d
hat_diag = hat_diag[:, np.newaxis]
return (1 - hat_diag) / alpha, (y - y_hat) / alpha
def _solve_eigen_covariance(
self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have a decomposition of X^T.X
(n_samples > n_features and X is sparse).
"""
if self.fit_intercept:
return self._solve_eigen_covariance_intercept(
alpha, y, sqrt_sw, X_mean, eigvals, V, X)
return self._solve_eigen_covariance_no_intercept(
alpha, y, sqrt_sw, X_mean, eigvals, V, X)
def _svd_decompose_design_matrix(self, X, y, sqrt_sw):
# X already centered
X_mean = np.zeros(X.shape[1], dtype=X.dtype)
if self.fit_intercept:
# to emulate fit_intercept=True situation, add a column
# containing the square roots of the sample weights
# by centering, the other columns are orthogonal to that one
intercept_column = sqrt_sw[:, None]
X = np.hstack((X, intercept_column))
U, singvals, _ = linalg.svd(X, full_matrices=0)
singvals_sq = singvals ** 2
UT_y = np.dot(U.T, y)
return X_mean, singvals_sq, U, UT_y
def _solve_svd_design_matrix(
self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
"""Compute dual coefficients and diagonal of G^-1.
Used when we have an SVD decomposition of X
(n_samples > n_features and X is dense).
"""
w = ((singvals_sq + alpha) ** -1) - (alpha ** -1)
if self.fit_intercept:
# detect intercept column
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, U)
# cancel the regularization for the intercept
w[intercept_dim] = - (alpha ** -1)
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
G_inverse_diag = self._decomp_diag(w, U) + (alpha ** -1)
if len(y.shape) != 1:
# handle case where y is 2-d
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model with gcv.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training data. Will be cast to float64 if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to float64 if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
"""
X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
dtype=[np.float64],
multi_output=True, y_numeric=True)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
if np.any(self.alphas <= 0):
raise ValueError(
"alphas must be positive. Got {} containing some "
"negative or null value instead.".format(self.alphas))
X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X,
sample_weight=sample_weight)
gcv_mode = _check_gcv_mode(X, self.gcv_mode)
if gcv_mode == 'eigen':
decompose = self._eigen_decompose_gram
solve = self._solve_eigen_gram
elif gcv_mode == 'svd':
if sparse.issparse(X):
decompose = self._eigen_decompose_covariance
solve = self._solve_eigen_covariance
else:
decompose = self._svd_decompose_design_matrix
solve = self._solve_svd_design_matrix
n_samples = X.shape[0]
if sample_weight is not None:
X, y = _rescale_data(X, y, sample_weight)
sqrt_sw = np.sqrt(sample_weight)
else:
sqrt_sw = np.ones(n_samples, dtype=X.dtype)
X_mean, *decomposition = decompose(X, y, sqrt_sw)
scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
error = scorer is None
n_y = 1 if len(y.shape) == 1 else y.shape[1]
if self.store_cv_values:
self.cv_values_ = np.empty(
(n_samples * n_y, len(self.alphas)), dtype=X.dtype)
best_coef, best_score, best_alpha = None, None, None
for i, alpha in enumerate(self.alphas):
G_inverse_diag, c = solve(
float(alpha), y, sqrt_sw, X_mean, *decomposition)
if error:
squared_errors = (c / G_inverse_diag) ** 2
alpha_score = -squared_errors.mean()
if self.store_cv_values:
self.cv_values_[:, i] = squared_errors.ravel()
else:
predictions = y - (c / G_inverse_diag)
if self.store_cv_values:
self.cv_values_[:, i] = predictions.ravel()
if self.is_clf:
identity_estimator = _IdentityClassifier(
classes=np.arange(n_y)
)
predictions_, y_ = predictions, y.argmax(axis=1)
else:
identity_estimator = _IdentityRegressor()
predictions_, y_ = predictions.ravel(), y.ravel()
alpha_score = scorer(identity_estimator, predictions_, y_)
if (best_score is None) or (alpha_score > best_score):
best_coef, best_score, best_alpha = c, alpha_score, alpha
self.alpha_ = best_alpha
self.best_score_ = best_score
self.dual_coef_ = best_coef
self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)
X_offset += X_mean * X_scale
self._set_intercept(X_offset, y_offset, X_scale)
if self.store_cv_values:
if len(y.shape) == 1:
cv_values_shape = n_samples, len(self.alphas)
else:
cv_values_shape = n_samples, n_y, len(self.alphas)
self.cv_values_ = self.cv_values_.reshape(cv_values_shape)
return self
class _BaseRidgeCV(LinearModel):
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False, scoring=None,
cv=None, gcv_mode=None,
store_cv_values=False):
self.alphas = np.asarray(alphas)
self.fit_intercept = fit_intercept
self.normalize = normalize
self.scoring = scoring
self.cv = cv
self.gcv_mode = gcv_mode
self.store_cv_values = store_cv_values
def fit(self, X, y, sample_weight=None):
"""Fit Ridge regression model with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data. If using GCV, will be cast to float64
if necessary.
y : ndarray of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
Notes
-----
When sample_weight is provided, the selected hyperparameter may depend
on whether we use generalized cross-validation (cv=None or cv='auto')
or another form of cross-validation, because only generalized
cross-validation takes the sample weights into account when computing
the validation score.
"""
cv = self.cv
if cv is None:
estimator = _RidgeGCV(self.alphas,
fit_intercept=self.fit_intercept,
normalize=self.normalize,
scoring=self.scoring,
gcv_mode=self.gcv_mode,
store_cv_values=self.store_cv_values,
is_clf=is_classifier(self))
estimator.fit(X, y, sample_weight=sample_weight)
self.alpha_ = estimator.alpha_
self.best_score_ = estimator.best_score_
if self.store_cv_values:
self.cv_values_ = estimator.cv_values_
else:
if self.store_cv_values:
raise ValueError("cv!=None and store_cv_values=True "
" are incompatible")
parameters = {'alpha': self.alphas}
solver = 'sparse_cg' if sparse.issparse(X) else 'auto'
model = RidgeClassifier if is_classifier(self) else Ridge
gs = GridSearchCV(model(fit_intercept=self.fit_intercept,
normalize=self.normalize,
solver=solver),
parameters, cv=cv, scoring=self.scoring)
gs.fit(X, y, sample_weight=sample_weight)
estimator = gs.best_estimator_
self.alpha_ = gs.best_estimator_.alpha
self.best_score_ = gs.best_score_
self.coef_ = estimator.coef_
self.intercept_ = estimator.intercept_
self.n_features_in_ = estimator.n_features_in_
return self
class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
"""Ridge regression with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
By default, it performs Generalized Cross-Validation, which is a form of
efficient Leave-One-Out cross-validation.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try.
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`.
If using generalized cross-validation, alphas must be positive.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
scoring : string, callable, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
If None, the negative mean squared error if cv is 'auto' or None
(i.e. when using generalized cross-validation), and r2 score otherwise.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
(also known as Generalized Cross-Validation).
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used, else,
:class:`sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
gcv_mode : {'auto', 'svd', eigen'}, default='auto'
Flag indicating which strategy to use when performing
Generalized Cross-Validation. Options are::
'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
'svd' : force use of singular value decomposition of X when X is
dense, eigenvalue decomposition of X^T.X when X is sparse.
'eigen' : force computation via eigendecomposition of X.X^T
The 'auto' mode is the default and is intended to pick the cheaper
option of the two depending on the shape of the training data.
store_cv_values : bool, default=False
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_values_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Generalized Cross-Validation).
Attributes
----------
cv_values_ : ndarray of shape (n_samples, n_alphas) or \
shape (n_samples, n_targets, n_alphas), optional
Cross-validation values for each alpha (only available if \
``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been \
called, this attribute will contain the mean squared errors \
(by default) or the values of the ``{loss,score}_func`` function \
(if provided in the constructor).
coef_ : ndarray of shape (n_features) or (n_targets, n_features)
Weight vector(s).
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated regularization parameter.
best_score_ : float
Score of base estimator with best alpha.
Examples
--------
>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import RidgeCV
>>> X, y = load_diabetes(return_X_y=True)
>>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.5166...
See also
--------
Ridge : Ridge regression
RidgeClassifier : Ridge classifier
RidgeClassifierCV : Ridge classifier with built-in cross validation
"""
class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
"""Ridge classifier with built-in cross-validation.
See glossary entry for :term:`cross-validation estimator`.
By default, it performs Generalized Cross-Validation, which is a form of
efficient Leave-One-Out cross-validation. Currently, only the n_features >
n_samples case is handled efficiently.
Read more in the :ref:`User Guide <ridge_regression>`.
Parameters
----------
alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
Array of alpha values to try.
Regularization strength; must be a positive float. Regularization
improves the conditioning of the problem and reduces the variance of
the estimates. Larger values specify stronger regularization.
Alpha corresponds to ``1 / (2C)`` in other linear models such as
:class:`~sklearn.linear_model.LogisticRegression` or
:class:`sklearn.svm.LinearSVC`.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
scoring : string, callable, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
store_cv_values : bool, default=False
Flag indicating if the cross-validation values corresponding to
each alpha should be stored in the ``cv_values_`` attribute (see
below). This flag is only compatible with ``cv=None`` (i.e. using
Generalized Cross-Validation).
Attributes
----------
cv_values_ : ndarray of shape (n_samples, n_targets, n_alphas), optional
Cross-validation values for each alpha (if ``store_cv_values=True`` and
``cv=None``). After ``fit()`` has been called, this attribute will
contain the mean squared errors (by default) or the values of the
``{loss,score}_func`` function (if provided in the constructor). This
attribute exists only when ``store_cv_values`` is True.
coef_ : ndarray of shape (1, n_features) or (n_targets, n_features)
Coefficient of the features in the decision function.
``coef_`` is of shape (1, n_features) when the given problem is binary.
intercept_ : float or ndarray of shape (n_targets,)
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated regularization parameter.
best_score_ : float
Score of base estimator with best alpha.
classes_ : ndarray of shape (n_classes,)
The classes labels.
Examples
--------
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifierCV
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.9630...
See also
--------
Ridge : Ridge regression
RidgeClassifier : Ridge classifier
RidgeCV : Ridge regression with built-in cross validation
Notes
-----
For multi-class classification, n_class classifiers are trained in
a one-versus-all approach. Concretely, this is implemented by taking
advantage of the multi-variate response support in Ridge.
"""
@_deprecate_positional_args
def __init__(self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True,
normalize=False, scoring=None, cv=None, class_weight=None,
store_cv_values=False):
super().__init__(
alphas=alphas, fit_intercept=fit_intercept, normalize=normalize,
scoring=scoring, cv=cv, store_cv_values=store_cv_values)
self.class_weight = class_weight
def fit(self, X, y, sample_weight=None):
"""Fit Ridge classifier with cv.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples
and n_features is the number of features. When using GCV,
will be cast to float64 if necessary.
y : ndarray of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary.
sample_weight : float or ndarray of shape (n_samples,), default=None
Individual weights for each sample. If given a float, every sample
will have the same weight.
Returns
-------
self : object
"""
X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
multi_output=True, y_numeric=False)
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
Y = self._label_binarizer.fit_transform(y)
if not self._label_binarizer.y_type_.startswith('multilabel'):
y = column_or_1d(y, warn=True)
if self.class_weight:
# modify the sample weights with the corresponding class weight
sample_weight = (sample_weight *
compute_sample_weight(self.class_weight, y))
target = Y if self.cv is None else y
_BaseRidgeCV.fit(self, X, target, sample_weight=sample_weight)
return self
@property
def classes_(self):
return self._label_binarizer.classes_