_ridge.py 72.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
"""
Ridge regression
"""

# Author: Mathieu Blondel <mathieu@mblondel.org>
#         Reuben Fletcher-Costin <reuben.fletchercostin@gmail.com>
#         Fabian Pedregosa <fabian@fseoane.net>
#         Michael Eickenberg <michael.eickenberg@nsup.org>
# License: BSD 3 clause


from abc import ABCMeta, abstractmethod
import warnings

import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg

from ._base import LinearClassifierMixin, LinearModel, _rescale_data
from ._sag import sag_solver
from ..base import RegressorMixin, MultiOutputMixin, is_classifier
from ..utils.extmath import safe_sparse_dot
from ..utils.extmath import row_norms
from ..utils import check_array
from ..utils import check_consistent_length
from ..utils import compute_sample_weight
from ..utils import column_or_1d
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ..preprocessing import LabelBinarizer
from ..model_selection import GridSearchCV
from ..metrics import check_scoring
from ..exceptions import ConvergenceWarning
from ..utils.sparsefuncs import mean_variance_axis


def _solve_sparse_cg(X, y, alpha, max_iter=None, tol=1e-3, verbose=0,
                     X_offset=None, X_scale=None):

    def _get_rescaled_operator(X):

        X_offset_scale = X_offset / X_scale

        def matvec(b):
            return X.dot(b) - b.dot(X_offset_scale)

        def rmatvec(b):
            return X.T.dot(b) - X_offset_scale * np.sum(b)

        X1 = sparse.linalg.LinearOperator(shape=X.shape,
                                          matvec=matvec,
                                          rmatvec=rmatvec)
        return X1

    n_samples, n_features = X.shape

    if X_offset is None or X_scale is None:
        X1 = sp_linalg.aslinearoperator(X)
    else:
        X1 = _get_rescaled_operator(X)

    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)

    if n_features > n_samples:
        def create_mv(curr_alpha):
            def _mv(x):
                return X1.matvec(X1.rmatvec(x)) + curr_alpha * x
            return _mv
    else:
        def create_mv(curr_alpha):
            def _mv(x):
                return X1.rmatvec(X1.matvec(x)) + curr_alpha * x
            return _mv

    for i in range(y.shape[1]):
        y_column = y[:, i]

        mv = create_mv(alpha[i])
        if n_features > n_samples:
            # kernel ridge
            # w = X.T * inv(X X^t + alpha*Id) y
            C = sp_linalg.LinearOperator(
                (n_samples, n_samples), matvec=mv, dtype=X.dtype)
            # FIXME atol
            try:
                coef, info = sp_linalg.cg(C, y_column, tol=tol, atol='legacy')
            except TypeError:
                # old scipy
                coef, info = sp_linalg.cg(C, y_column, tol=tol)
            coefs[i] = X1.rmatvec(coef)
        else:
            # linear ridge
            # w = inv(X^t X + alpha*Id) * X.T y
            y_column = X1.rmatvec(y_column)
            C = sp_linalg.LinearOperator(
                (n_features, n_features), matvec=mv, dtype=X.dtype)
            # FIXME atol
            try:
                coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
                                              tol=tol, atol='legacy')
            except TypeError:
                # old scipy
                coefs[i], info = sp_linalg.cg(C, y_column, maxiter=max_iter,
                                              tol=tol)

        if info < 0:
            raise ValueError("Failed with error code %d" % info)

        if max_iter is None and info > 0 and verbose:
            warnings.warn("sparse_cg did not converge after %d iterations." %
                          info, ConvergenceWarning)

    return coefs


def _solve_lsqr(X, y, alpha, max_iter=None, tol=1e-3):
    n_samples, n_features = X.shape
    coefs = np.empty((y.shape[1], n_features), dtype=X.dtype)
    n_iter = np.empty(y.shape[1], dtype=np.int32)

    # According to the lsqr documentation, alpha = damp^2.
    sqrt_alpha = np.sqrt(alpha)

    for i in range(y.shape[1]):
        y_column = y[:, i]
        info = sp_linalg.lsqr(X, y_column, damp=sqrt_alpha[i],
                              atol=tol, btol=tol, iter_lim=max_iter)
        coefs[i] = info[0]
        n_iter[i] = info[2]

    return coefs, n_iter


def _solve_cholesky(X, y, alpha):
    # w = inv(X^t X + alpha*Id) * X.T y
    n_features = X.shape[1]
    n_targets = y.shape[1]

    A = safe_sparse_dot(X.T, X, dense_output=True)
    Xy = safe_sparse_dot(X.T, y, dense_output=True)

    one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]])

    if one_alpha:
        A.flat[::n_features + 1] += alpha[0]
        return linalg.solve(A, Xy, sym_pos=True,
                            overwrite_a=True).T
    else:
        coefs = np.empty([n_targets, n_features], dtype=X.dtype)
        for coef, target, current_alpha in zip(coefs, Xy.T, alpha):
            A.flat[::n_features + 1] += current_alpha
            coef[:] = linalg.solve(A, target, sym_pos=True,
                                   overwrite_a=False).ravel()
            A.flat[::n_features + 1] -= current_alpha
        return coefs


def _solve_cholesky_kernel(K, y, alpha, sample_weight=None, copy=False):
    # dual_coef = inv(X X^t + alpha*Id) y
    n_samples = K.shape[0]
    n_targets = y.shape[1]

    if copy:
        K = K.copy()

    alpha = np.atleast_1d(alpha)
    one_alpha = (alpha == alpha[0]).all()
    has_sw = isinstance(sample_weight, np.ndarray) \
        or sample_weight not in [1.0, None]

    if has_sw:
        # Unlike other solvers, we need to support sample_weight directly
        # because K might be a pre-computed kernel.
        sw = np.sqrt(np.atleast_1d(sample_weight))
        y = y * sw[:, np.newaxis]
        K *= np.outer(sw, sw)

    if one_alpha:
        # Only one penalty, we can solve multi-target problems in one time.
        K.flat[::n_samples + 1] += alpha[0]

        try:
            # Note: we must use overwrite_a=False in order to be able to
            #       use the fall-back solution below in case a LinAlgError
            #       is raised
            dual_coef = linalg.solve(K, y, sym_pos=True,
                                     overwrite_a=False)
        except np.linalg.LinAlgError:
            warnings.warn("Singular matrix in solving dual problem. Using "
                          "least-squares solution instead.")
            dual_coef = linalg.lstsq(K, y)[0]

        # K is expensive to compute and store in memory so change it back in
        # case it was user-given.
        K.flat[::n_samples + 1] -= alpha[0]

        if has_sw:
            dual_coef *= sw[:, np.newaxis]

        return dual_coef
    else:
        # One penalty per target. We need to solve each target separately.
        dual_coefs = np.empty([n_targets, n_samples], K.dtype)

        for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):
            K.flat[::n_samples + 1] += current_alpha

            dual_coef[:] = linalg.solve(K, target, sym_pos=True,
                                        overwrite_a=False).ravel()

            K.flat[::n_samples + 1] -= current_alpha

        if has_sw:
            dual_coefs *= sw[np.newaxis, :]

        return dual_coefs.T


def _solve_svd(X, y, alpha):
    U, s, Vt = linalg.svd(X, full_matrices=False)
    idx = s > 1e-15  # same default value as scipy.linalg.pinv
    s_nnz = s[idx][:, np.newaxis]
    UTy = np.dot(U.T, y)
    d = np.zeros((s.size, alpha.size), dtype=X.dtype)
    d[idx] = s_nnz / (s_nnz ** 2 + alpha)
    d_UT_y = d * UTy
    return np.dot(Vt.T, d_UT_y).T


def _get_valid_accept_sparse(is_X_sparse, solver):
    if is_X_sparse and solver in ['auto', 'sag', 'saga']:
        return 'csr'
    else:
        return ['csr', 'csc', 'coo']


@_deprecate_positional_args
def ridge_regression(X, y, alpha, *, sample_weight=None, solver='auto',
                     max_iter=None, tol=1e-3, verbose=0, random_state=None,
                     return_n_iter=False, return_intercept=False,
                     check_input=True):
    """Solve the ridge equation by the method of normal equations.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    X : {ndarray, sparse matrix, LinearOperator} of shape \
        (n_samples, n_features)
        Training data

    y : ndarray of shape (n_samples,) or (n_samples, n_targets)
        Target values

    alpha : float or array-like of shape (n_targets,)
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`sklearn.svm.LinearSVC`. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number.

    sample_weight : float or array-like of shape (n_samples,), default=None
        Individual weights for each sample. If given a float, every sample
        will have the same weight. If sample_weight is not None and
        solver='auto', the solver will be set to 'cholesky'.

        .. versionadded:: 0.17

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
        default='auto'
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than 'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution via a Cholesky decomposition of
          dot(X.T, X)

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.


        All last five solvers support both dense and sparse data. However, only
        'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
        True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    max_iter : int, default=None
        Maximum number of iterations for conjugate gradient solver.
        For the 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' and saga solver, the default value is
        1000.

    tol : float, default=1e-3
        Precision of the solution.

    verbose : int, default=0
        Verbosity level. Setting verbose > 0 will display additional
        information depending on the solver used.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
        See :term:`Glossary <random_state>` for details.

    return_n_iter : bool, default=False
        If True, the method also returns `n_iter`, the actual number of
        iteration performed by the solver.

        .. versionadded:: 0.17

    return_intercept : bool, default=False
        If True and if X is sparse, the method also returns the intercept,
        and the solver is automatically changed to 'sag'. This is only a
        temporary fix for fitting the intercept with sparse data. For dense
        data, use sklearn.linear_model._preprocess_data before your regression.

        .. versionadded:: 0.17

    check_input : bool, default=True
        If False, the input arrays X and y will not be checked.

        .. versionadded:: 0.21

    Returns
    -------
    coef : ndarray of shape (n_features,) or (n_targets, n_features)
        Weight vector(s).

    n_iter : int, optional
        The actual number of iteration performed by the solver.
        Only returned if `return_n_iter` is True.

    intercept : float or ndarray of shape (n_targets,)
        The intercept of the model. Only returned if `return_intercept`
        is True and if X is a scipy sparse array.

    Notes
    -----
    This function won't compute the intercept.
    """
    return _ridge_regression(X, y, alpha,
                             sample_weight=sample_weight,
                             solver=solver,
                             max_iter=max_iter,
                             tol=tol,
                             verbose=verbose,
                             random_state=random_state,
                             return_n_iter=return_n_iter,
                             return_intercept=return_intercept,
                             X_scale=None,
                             X_offset=None,
                             check_input=check_input)


def _ridge_regression(X, y, alpha, sample_weight=None, solver='auto',
                      max_iter=None, tol=1e-3, verbose=0, random_state=None,
                      return_n_iter=False, return_intercept=False,
                      X_scale=None, X_offset=None, check_input=True):

    has_sw = sample_weight is not None

    if solver == 'auto':
        if return_intercept:
            # only sag supports fitting intercept directly
            solver = "sag"
        elif not sparse.issparse(X):
            solver = "cholesky"
        else:
            solver = "sparse_cg"

    if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag', 'saga'):
        raise ValueError("Known solvers are 'sparse_cg', 'cholesky', 'svd'"
                         " 'lsqr', 'sag' or 'saga'. Got %s." % solver)

    if return_intercept and solver != 'sag':
        raise ValueError("In Ridge, only 'sag' solver can directly fit the "
                         "intercept. Please change solver to 'sag' or set "
                         "return_intercept=False.")

    if check_input:
        _dtype = [np.float64, np.float32]
        _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X), solver)
        X = check_array(X, accept_sparse=_accept_sparse, dtype=_dtype,
                        order="C")
        y = check_array(y, dtype=X.dtype, ensure_2d=False, order=None)
    check_consistent_length(X, y)

    n_samples, n_features = X.shape

    if y.ndim > 2:
        raise ValueError("Target y has the wrong shape %s" % str(y.shape))

    ravel = False
    if y.ndim == 1:
        y = y.reshape(-1, 1)
        ravel = True

    n_samples_, n_targets = y.shape

    if n_samples != n_samples_:
        raise ValueError("Number of samples in X and y does not correspond:"
                         " %d != %d" % (n_samples, n_samples_))

    if has_sw:
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        if solver not in ['sag', 'saga']:
            # SAG supports sample_weight directly. For other solvers,
            # we implement sample_weight via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

    # There should be either 1 or n_targets penalties
    alpha = np.asarray(alpha, dtype=X.dtype).ravel()
    if alpha.size not in [1, n_targets]:
        raise ValueError("Number of targets and number of penalties "
                         "do not correspond: %d != %d"
                         % (alpha.size, n_targets))

    if alpha.size == 1 and n_targets > 1:
        alpha = np.repeat(alpha, n_targets)

    n_iter = None
    if solver == 'sparse_cg':
        coef = _solve_sparse_cg(X, y, alpha,
                                max_iter=max_iter,
                                tol=tol,
                                verbose=verbose,
                                X_offset=X_offset,
                                X_scale=X_scale)

    elif solver == 'lsqr':
        coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol)

    elif solver == 'cholesky':
        if n_features > n_samples:
            K = safe_sparse_dot(X, X.T, dense_output=True)
            try:
                dual_coef = _solve_cholesky_kernel(K, y, alpha)

                coef = safe_sparse_dot(X.T, dual_coef, dense_output=True).T
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = 'svd'
        else:
            try:
                coef = _solve_cholesky(X, y, alpha)
            except linalg.LinAlgError:
                # use SVD solver if matrix is singular
                solver = 'svd'

    elif solver in ['sag', 'saga']:
        # precompute max_squared_sum for all targets
        max_squared_sum = row_norms(X, squared=True).max()

        coef = np.empty((y.shape[1], n_features), dtype=X.dtype)
        n_iter = np.empty(y.shape[1], dtype=np.int32)
        intercept = np.zeros((y.shape[1], ), dtype=X.dtype)
        for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):
            init = {'coef': np.zeros((n_features + int(return_intercept), 1),
                                     dtype=X.dtype)}
            coef_, n_iter_, _ = sag_solver(
                X, target.ravel(), sample_weight, 'squared', alpha_i, 0,
                max_iter, tol, verbose, random_state, False, max_squared_sum,
                init, is_saga=solver == 'saga')
            if return_intercept:
                coef[i] = coef_[:-1]
                intercept[i] = coef_[-1]
            else:
                coef[i] = coef_
            n_iter[i] = n_iter_

        if intercept.shape[0] == 1:
            intercept = intercept[0]
        coef = np.asarray(coef)

    if solver == 'svd':
        if sparse.issparse(X):
            raise TypeError('SVD solver does not support sparse'
                            ' inputs currently')
        coef = _solve_svd(X, y, alpha)

    if ravel:
        # When y was passed as a 1d-array, we flatten the coefficients.
        coef = coef.ravel()

    if return_n_iter and return_intercept:
        return coef, n_iter, intercept
    elif return_intercept:
        return coef, intercept
    elif return_n_iter:
        return coef, n_iter
    else:
        return coef


class _BaseRidge(LinearModel, metaclass=ABCMeta):
    @abstractmethod
    @_deprecate_positional_args
    def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, solver="auto",
                 random_state=None):
        self.alpha = alpha
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.copy_X = copy_X
        self.max_iter = max_iter
        self.tol = tol
        self.solver = solver
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):

        # all other solvers work at both float precision levels
        _dtype = [np.float64, np.float32]
        _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X),
                                                  self.solver)
        X, y = self._validate_data(X, y,
                                   accept_sparse=_accept_sparse,
                                   dtype=_dtype,
                                   multi_output=True, y_numeric=True)
        if sparse.issparse(X) and self.fit_intercept:
            if self.solver not in ['auto', 'sparse_cg', 'sag']:
                raise ValueError(
                    "solver='{}' does not support fitting the intercept "
                    "on sparse data. Please set the solver to 'auto' or "
                    "'sparse_cg', 'sag', or set `fit_intercept=False`"
                    .format(self.solver))
            if (self.solver == 'sag' and self.max_iter is None and
                    self.tol > 1e-4):
                warnings.warn(
                    '"sag" solver requires many iterations to fit '
                    'an intercept with sparse inputs. Either set the '
                    'solver to "auto" or "sparse_cg", or set a low '
                    '"tol" and a high "max_iter" (especially if inputs are '
                    'not standardized).')
                solver = 'sag'
            else:
                solver = 'sparse_cg'
        else:
            solver = self.solver

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X,
                                                 dtype=X.dtype)

        # when X is sparse we only remove offset from y
        X, y, X_offset, y_offset, X_scale = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight, return_mean=True)

        if solver == 'sag' and sparse.issparse(X) and self.fit_intercept:
            self.coef_, self.n_iter_, self.intercept_ = _ridge_regression(
                X, y, alpha=self.alpha, sample_weight=sample_weight,
                max_iter=self.max_iter, tol=self.tol, solver='sag',
                random_state=self.random_state, return_n_iter=True,
                return_intercept=True, check_input=False)
            # add the offset which was subtracted by _preprocess_data
            self.intercept_ += y_offset

        else:
            if sparse.issparse(X) and self.fit_intercept:
                # required to fit intercept with sparse_cg solver
                params = {'X_offset': X_offset, 'X_scale': X_scale}
            else:
                # for dense matrices or when intercept is set to 0
                params = {}

            self.coef_, self.n_iter_ = _ridge_regression(
                X, y, alpha=self.alpha, sample_weight=sample_weight,
                max_iter=self.max_iter, tol=self.tol, solver=solver,
                random_state=self.random_state, return_n_iter=True,
                return_intercept=False, check_input=False, **params)
            self._set_intercept(X_offset, y_offset, X_scale)

        return self


class Ridge(MultiOutputMixin, RegressorMixin, _BaseRidge):
    """Linear least squares with l2 regularization.

    Minimizes the objective function::

    ||y - Xw||^2_2 + alpha * ||w||^2_2

    This model solves a regression model where the loss function is
    the linear least squares function and regularization is given by
    the l2-norm. Also known as Ridge Regression or Tikhonov regularization.
    This estimator has built-in support for multi-variate regression
    (i.e., when y is a 2d-array of shape (n_samples, n_targets)).

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : {float, ndarray of shape (n_targets,)}, default=1.0
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`sklearn.svm.LinearSVC`. If an array is passed, penalties are
        assumed to be specific to the targets. Hence they must correspond in
        number.

    fit_intercept : bool, default=True
        Whether to fit the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. ``X`` and ``y`` are expected to be centered).

    normalize : bool, default=False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : bool, default=True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, default=None
        Maximum number of iterations for conjugate gradient solver.
        For 'sparse_cg' and 'lsqr' solvers, the default value is determined
        by scipy.sparse.linalg. For 'sag' solver, the default value is 1000.

    tol : float, default=1e-3
        Precision of the solution.

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
        default='auto'
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than 'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its improved, unbiased version named SAGA. Both methods also use an
          iterative procedure, and are often faster than other solvers when
          both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

        All last five solvers support both dense and sparse data. However, only
        'sag' and 'sparse_cg' supports sparse input when `fit_intercept` is
        True.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
        See :term:`Glossary <random_state>` for details.

        .. versionadded:: 0.17
           `random_state` to support Stochastic Average Gradient.

    Attributes
    ----------
    coef_ : ndarray of shape (n_features,) or (n_targets, n_features)
        Weight vector(s).

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : None or ndarray of shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

        .. versionadded:: 0.17

    See also
    --------
    RidgeClassifier : Ridge classifier
    RidgeCV : Ridge regression with built-in cross validation
    :class:`sklearn.kernel_ridge.KernelRidge` : Kernel ridge regression
        combines ridge regression with the kernel trick

    Examples
    --------
    >>> from sklearn.linear_model import Ridge
    >>> import numpy as np
    >>> n_samples, n_features = 10, 5
    >>> rng = np.random.RandomState(0)
    >>> y = rng.randn(n_samples)
    >>> X = rng.randn(n_samples, n_features)
    >>> clf = Ridge(alpha=1.0)
    >>> clf.fit(X, y)
    Ridge()
    """
    @_deprecate_positional_args
    def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, solver="auto",
                 random_state=None):
        super().__init__(
            alpha=alpha, fit_intercept=fit_intercept,
            normalize=normalize, copy_X=copy_X,
            max_iter=max_iter, tol=tol, solver=solver,
            random_state=random_state)

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        Returns
        -------
        self : returns an instance of self.
        """
        return super().fit(X, y, sample_weight=sample_weight)


class RidgeClassifier(LinearClassifierMixin, _BaseRidge):
    """Classifier using Ridge regression.

    This classifier first converts the target values into ``{-1, 1}`` and
    then treats the problem as a regression task (multi-output regression in
    the multiclass case).

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alpha : float, default=1.0
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`sklearn.svm.LinearSVC`.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set to false, no
        intercept will be used in calculations (e.g. data is expected to be
        already centered).

    normalize : bool, default=False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : bool, default=True
        If True, X will be copied; else, it may be overwritten.

    max_iter : int, default=None
        Maximum number of iterations for conjugate gradient solver.
        The default value is determined by scipy.sparse.linalg.

    tol : float, default=1e-3
        Precision of the solution.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

    solver : {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}, \
        default='auto'
        Solver to use in the computational routines:

        - 'auto' chooses the solver automatically based on the type of data.

        - 'svd' uses a Singular Value Decomposition of X to compute the Ridge
          coefficients. More stable for singular matrices than 'cholesky'.

        - 'cholesky' uses the standard scipy.linalg.solve function to
          obtain a closed-form solution.

        - 'sparse_cg' uses the conjugate gradient solver as found in
          scipy.sparse.linalg.cg. As an iterative algorithm, this solver is
          more appropriate than 'cholesky' for large-scale data
          (possibility to set `tol` and `max_iter`).

        - 'lsqr' uses the dedicated regularized least-squares routine
          scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative
          procedure.

        - 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses
          its unbiased and more flexible version named SAGA. Both methods
          use an iterative procedure, and are often faster than other solvers
          when both n_samples and n_features are large. Note that 'sag' and
          'saga' fast convergence is only guaranteed on features with
          approximately the same scale. You can preprocess the data with a
          scaler from sklearn.preprocessing.

          .. versionadded:: 0.17
             Stochastic Average Gradient descent solver.
          .. versionadded:: 0.19
           SAGA solver.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag' or 'saga' to shuffle the data.
        See :term:`Glossary <random_state>` for details.

    Attributes
    ----------
    coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function.

        ``coef_`` is of shape (1, n_features) when the given problem is binary.

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    n_iter_ : None or ndarray of shape (n_targets,)
        Actual number of iterations for each target. Available only for
        sag and lsqr solvers. Other solvers will return None.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    See Also
    --------
    Ridge : Ridge regression.
    RidgeClassifierCV :  Ridge classifier with built-in cross validation.

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifier
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifier().fit(X, y)
    >>> clf.score(X, y)
    0.9595...
    """
    @_deprecate_positional_args
    def __init__(self, alpha=1.0, *, fit_intercept=True, normalize=False,
                 copy_X=True, max_iter=None, tol=1e-3, class_weight=None,
                 solver="auto", random_state=None):
        super().__init__(
            alpha=alpha, fit_intercept=fit_intercept, normalize=normalize,
            copy_X=copy_X, max_iter=max_iter, tol=tol, solver=solver,
            random_state=random_state)
        self.class_weight = class_weight

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge classifier model.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data.

        y : ndarray of shape (n_samples,)
            Target values.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

            .. versionadded:: 0.17
               *sample_weight* support to Classifier.

        Returns
        -------
        self : object
            Instance of the estimator.
        """
        _accept_sparse = _get_valid_accept_sparse(sparse.issparse(X),
                                                  self.solver)
        X, y = self._validate_data(X, y, accept_sparse=_accept_sparse,
                                   multi_output=True, y_numeric=False)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith('multilabel'):
            y = column_or_1d(y, warn=True)
        else:
            # we don't (yet) support multi-label classification in Ridge
            raise ValueError(
                "%s doesn't support multi-label classification" % (
                    self.__class__.__name__))

        if self.class_weight:
            # modify the sample weights with the corresponding class weight
            sample_weight = (sample_weight *
                             compute_sample_weight(self.class_weight, y))

        super().fit(X, Y, sample_weight=sample_weight)
        return self

    @property
    def classes_(self):
        return self._label_binarizer.classes_


def _check_gcv_mode(X, gcv_mode):
    possible_gcv_modes = [None, 'auto', 'svd', 'eigen']
    if gcv_mode not in possible_gcv_modes:
        raise ValueError(
            "Unknown value for 'gcv_mode'. "
            "Got {} instead of one of {}" .format(
                gcv_mode, possible_gcv_modes))
    if gcv_mode in ['eigen', 'svd']:
        return gcv_mode
    # if X has more rows than columns, use decomposition of X^T.X,
    # otherwise X.X^T
    if X.shape[0] > X.shape[1]:
        return 'svd'
    return 'eigen'


def _find_smallest_angle(query, vectors):
    """Find the column of vectors that is most aligned with the query.

    Both query and the columns of vectors must have their l2 norm equal to 1.

    Parameters
    ----------
    query : ndarray of shape (n_samples,)
        Normalized query vector.

    vectors : ndarray of shape (n_samples, n_features)
        Vectors to which we compare query, as columns. Must be normalized.
    """
    abs_cosine = np.abs(query.dot(vectors))
    index = np.argmax(abs_cosine)
    return index


class _X_CenterStackOp(sparse.linalg.LinearOperator):
    """Behaves as centered and scaled X with an added intercept column.

    This operator behaves as
    np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]])
    """

    def __init__(self, X, X_mean, sqrt_sw):
        n_samples, n_features = X.shape
        super().__init__(X.dtype, (n_samples, n_features + 1))
        self.X = X
        self.X_mean = X_mean
        self.sqrt_sw = sqrt_sw

    def _matvec(self, v):
        v = v.ravel()
        return safe_sparse_dot(
            self.X, v[:-1], dense_output=True
        ) - self.sqrt_sw * self.X_mean.dot(v[:-1]) + v[-1] * self.sqrt_sw

    def _matmat(self, v):
        return (
            safe_sparse_dot(self.X, v[:-1], dense_output=True) -
            self.sqrt_sw[:, None] * self.X_mean.dot(v[:-1]) + v[-1] *
            self.sqrt_sw[:, None])

    def _transpose(self):
        return _XT_CenterStackOp(self.X, self.X_mean, self.sqrt_sw)


class _XT_CenterStackOp(sparse.linalg.LinearOperator):
    """Behaves as transposed centered and scaled X with an intercept column.

    This operator behaves as
    np.hstack([X - sqrt_sw[:, None] * X_mean, sqrt_sw[:, None]]).T
    """

    def __init__(self, X, X_mean, sqrt_sw):
        n_samples, n_features = X.shape
        super().__init__(X.dtype, (n_features + 1, n_samples))
        self.X = X
        self.X_mean = X_mean
        self.sqrt_sw = sqrt_sw

    def _matvec(self, v):
        v = v.ravel()
        n_features = self.shape[0]
        res = np.empty(n_features, dtype=self.X.dtype)
        res[:-1] = (
            safe_sparse_dot(self.X.T, v, dense_output=True) -
            (self.X_mean * self.sqrt_sw.dot(v))
        )
        res[-1] = np.dot(v, self.sqrt_sw)
        return res

    def _matmat(self, v):
        n_features = self.shape[0]
        res = np.empty((n_features, v.shape[1]), dtype=self.X.dtype)
        res[:-1] = (
            safe_sparse_dot(self.X.T, v, dense_output=True) -
            self.X_mean[:, None] * self.sqrt_sw.dot(v)
        )
        res[-1] = np.dot(self.sqrt_sw, v)
        return res


class _IdentityRegressor:
    """Fake regressor which will directly output the prediction."""

    def decision_function(self, y_predict):
        return y_predict

    def predict(self, y_predict):
        return y_predict


class _IdentityClassifier(LinearClassifierMixin):
    """Fake classifier which will directly output the prediction.

    We inherit from LinearClassifierMixin to get the proper shape for the
    output `y`.
    """
    def __init__(self, classes):
        self.classes_ = classes

    def decision_function(self, y_predict):
        return y_predict


class _RidgeGCV(LinearModel):
    """Ridge regression with built-in Generalized Cross-Validation.

    It allows efficient Leave-One-Out cross-validation.

    This class is not intended to be used directly. Use RidgeCV instead.

    Notes
    -----

    We want to solve (K + alpha*Id)c = y,
    where K = X X^T is the kernel matrix.

    Let G = (K + alpha*Id).

    Dual solution: c = G^-1y
    Primal solution: w = X^T c

    Compute eigendecomposition K = Q V Q^T.
    Then G^-1 = Q (V + alpha*Id)^-1 Q^T,
    where (V + alpha*Id) is diagonal.
    It is thus inexpensive to inverse for many alphas.

    Let loov be the vector of prediction values for each example
    when the model was fitted with all examples but this example.

    loov = (KG^-1Y - diag(KG^-1)Y) / diag(I-KG^-1)

    Let looe be the vector of prediction errors for each example
    when the model was fitted with all examples but this example.

    looe = y - loov = c / diag(G^-1)

    The best score (negative mean squared error or user-provided scoring) is
    stored in the `best_score_` attribute, and the selected hyperparameter in
    `alpha_`.

    References
    ----------
    http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
    https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf
    """
    @_deprecate_positional_args
    def __init__(self, alphas=(0.1, 1.0, 10.0), *,
                 fit_intercept=True, normalize=False,
                 scoring=None, copy_X=True,
                 gcv_mode=None, store_cv_values=False,
                 is_clf=False):
        self.alphas = np.asarray(alphas)
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.scoring = scoring
        self.copy_X = copy_X
        self.gcv_mode = gcv_mode
        self.store_cv_values = store_cv_values
        self.is_clf = is_clf

    @staticmethod
    def _decomp_diag(v_prime, Q):
        # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T))
        return (v_prime * Q ** 2).sum(axis=-1)

    @staticmethod
    def _diag_dot(D, B):
        # compute dot(diag(D), B)
        if len(B.shape) > 1:
            # handle case where B is > 1-d
            D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)]
        return D * B

    def _compute_gram(self, X, sqrt_sw):
        """Computes the Gram matrix XX^T with possible centering.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            The preprocessed design matrix.

        sqrt_sw : ndarray of shape (n_samples,)
            square roots of sample weights

        Returns
        -------
        gram : ndarray of shape (n_samples, n_samples)
            The Gram matrix.
        X_mean : ndarray of shape (n_feature,)
            The weighted mean of ``X`` for each feature.

        Notes
        -----
        When X is dense the centering has been done in preprocessing
        so the mean is 0 and we just compute XX^T.

        When X is sparse it has not been centered in preprocessing, but it has
        been scaled by sqrt(sample weights).

        When self.fit_intercept is False no centering is done.

        The centered X is never actually computed because centering would break
        the sparsity of X.
        """
        center = self.fit_intercept and sparse.issparse(X)
        if not center:
            # in this case centering has been done in preprocessing
            # or we are not fitting an intercept.
            X_mean = np.zeros(X.shape[1], dtype=X.dtype)
            return safe_sparse_dot(X, X.T, dense_output=True), X_mean
        # X is sparse
        n_samples = X.shape[0]
        sample_weight_matrix = sparse.dia_matrix(
            (sqrt_sw, 0), shape=(n_samples, n_samples))
        X_weighted = sample_weight_matrix.dot(X)
        X_mean, _ = mean_variance_axis(X_weighted, axis=0)
        X_mean *= n_samples / sqrt_sw.dot(sqrt_sw)
        X_mX = sqrt_sw[:, None] * safe_sparse_dot(
            X_mean, X.T, dense_output=True)
        X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean)
        return (safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m
                - X_mX - X_mX.T, X_mean)

    def _compute_covariance(self, X, sqrt_sw):
        """Computes covariance matrix X^TX with possible centering.

        Parameters
        ----------
        X : sparse matrix of shape (n_samples, n_features)
            The preprocessed design matrix.

        sqrt_sw : ndarray of shape (n_samples,)
            square roots of sample weights

        Returns
        -------
        covariance : ndarray of shape (n_features, n_features)
            The covariance matrix.
        X_mean : ndarray of shape (n_feature,)
            The weighted mean of ``X`` for each feature.

        Notes
        -----
        Since X is sparse it has not been centered in preprocessing, but it has
        been scaled by sqrt(sample weights).

        When self.fit_intercept is False no centering is done.

        The centered X is never actually computed because centering would break
        the sparsity of X.
        """
        if not self.fit_intercept:
            # in this case centering has been done in preprocessing
            # or we are not fitting an intercept.
            X_mean = np.zeros(X.shape[1], dtype=X.dtype)
            return safe_sparse_dot(X.T, X, dense_output=True), X_mean
        # this function only gets called for sparse X
        n_samples = X.shape[0]
        sample_weight_matrix = sparse.dia_matrix(
            (sqrt_sw, 0), shape=(n_samples, n_samples))
        X_weighted = sample_weight_matrix.dot(X)
        X_mean, _ = mean_variance_axis(X_weighted, axis=0)
        X_mean = X_mean * n_samples / sqrt_sw.dot(sqrt_sw)
        weight_sum = sqrt_sw.dot(sqrt_sw)
        return (safe_sparse_dot(X.T, X, dense_output=True) -
                weight_sum * np.outer(X_mean, X_mean),
                X_mean)

    def _sparse_multidot_diag(self, X, A, X_mean, sqrt_sw):
        """Compute the diagonal of (X - X_mean).dot(A).dot((X - X_mean).T)
        without explicitely centering X nor computing X.dot(A)
        when X is sparse.

        Parameters
        ----------
        X : sparse matrix of shape (n_samples, n_features)

        A : ndarray of shape (n_features, n_features)

        X_mean : ndarray of shape (n_features,)

        sqrt_sw : ndarray of shape (n_features,)
            square roots of sample weights

        Returns
        -------
        diag : np.ndarray, shape (n_samples,)
            The computed diagonal.
        """
        intercept_col = scale = sqrt_sw
        batch_size = X.shape[1]
        diag = np.empty(X.shape[0], dtype=X.dtype)
        for start in range(0, X.shape[0], batch_size):
            batch = slice(start, min(X.shape[0], start + batch_size), 1)
            X_batch = np.empty(
                (X[batch].shape[0], X.shape[1] + self.fit_intercept),
                dtype=X.dtype
            )
            if self.fit_intercept:
                X_batch[:, :-1] = X[batch].A - X_mean * scale[batch][:, None]
                X_batch[:, -1] = intercept_col[batch]
            else:
                X_batch = X[batch].A
            diag[batch] = (X_batch.dot(A) * X_batch).sum(axis=1)
        return diag

    def _eigen_decompose_gram(self, X, y, sqrt_sw):
        """Eigendecomposition of X.X^T, used when n_samples <= n_features."""
        # if X is dense it has already been centered in preprocessing
        K, X_mean = self._compute_gram(X, sqrt_sw)
        if self.fit_intercept:
            # to emulate centering X with sample weights,
            # ie removing the weighted average, we add a column
            # containing the square roots of the sample weights.
            # by centering, it is orthogonal to the other columns
            K += np.outer(sqrt_sw, sqrt_sw)
        eigvals, Q = linalg.eigh(K)
        QT_y = np.dot(Q.T, y)
        return X_mean, eigvals, Q, QT_y

    def _solve_eigen_gram(self, alpha, y, sqrt_sw, X_mean, eigvals, Q, QT_y):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X.X^T (n_samples <= n_features).
        """
        w = 1. / (eigvals + alpha)
        if self.fit_intercept:
            # the vector containing the square roots of the sample weights (1
            # when no sample weights) is the eigenvector of XX^T which
            # corresponds to the intercept; we cancel the regularization on
            # this dimension. the corresponding eigenvalue is
            # sum(sample_weight).
            normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
            intercept_dim = _find_smallest_angle(normalized_sw, Q)
            w[intercept_dim] = 0  # cancel regularization for the intercept

        c = np.dot(Q, self._diag_dot(w, QT_y))
        G_inverse_diag = self._decomp_diag(w, Q)
        # handle case where y is 2-d
        if len(y.shape) != 1:
            G_inverse_diag = G_inverse_diag[:, np.newaxis]
        return G_inverse_diag, c

    def _eigen_decompose_covariance(self, X, y, sqrt_sw):
        """Eigendecomposition of X^T.X, used when n_samples > n_features
        and X is sparse.
        """
        n_samples, n_features = X.shape
        cov = np.empty((n_features + 1, n_features + 1), dtype=X.dtype)
        cov[:-1, :-1], X_mean = self._compute_covariance(X, sqrt_sw)
        if not self.fit_intercept:
            cov = cov[:-1, :-1]
        # to emulate centering X with sample weights,
        # ie removing the weighted average, we add a column
        # containing the square roots of the sample weights.
        # by centering, it is orthogonal to the other columns
        # when all samples have the same weight we add a column of 1
        else:
            cov[-1] = 0
            cov[:, -1] = 0
            cov[-1, -1] = sqrt_sw.dot(sqrt_sw)
        nullspace_dim = max(0, n_features - n_samples)
        eigvals, V = linalg.eigh(cov)
        # remove eigenvalues and vectors in the null space of X^T.X
        eigvals = eigvals[nullspace_dim:]
        V = V[:, nullspace_dim:]
        return X_mean, eigvals, V, X

    def _solve_eigen_covariance_no_intercept(
            self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X^T.X
        (n_samples > n_features and X is sparse), and not fitting an intercept.
        """
        w = 1 / (eigvals + alpha)
        A = (V * w).dot(V.T)
        AXy = A.dot(safe_sparse_dot(X.T, y, dense_output=True))
        y_hat = safe_sparse_dot(X, AXy, dense_output=True)
        hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            hat_diag = hat_diag[:, np.newaxis]
        return (1 - hat_diag) / alpha, (y - y_hat) / alpha

    def _solve_eigen_covariance_intercept(
            self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X^T.X
        (n_samples > n_features and X is sparse),
        and we are fitting an intercept.
        """
        # the vector [0, 0, ..., 0, 1]
        # is the eigenvector of X^TX which
        # corresponds to the intercept; we cancel the regularization on
        # this dimension. the corresponding eigenvalue is
        # sum(sample_weight), e.g. n when uniform sample weights.
        intercept_sv = np.zeros(V.shape[0])
        intercept_sv[-1] = 1
        intercept_dim = _find_smallest_angle(intercept_sv, V)
        w = 1 / (eigvals + alpha)
        w[intercept_dim] = 1 / eigvals[intercept_dim]
        A = (V * w).dot(V.T)
        # add a column to X containing the square roots of sample weights
        X_op = _X_CenterStackOp(X, X_mean, sqrt_sw)
        AXy = A.dot(X_op.T.dot(y))
        y_hat = X_op.dot(AXy)
        hat_diag = self._sparse_multidot_diag(X, A, X_mean, sqrt_sw)
        # return (1 - hat_diag), (y - y_hat)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            hat_diag = hat_diag[:, np.newaxis]
        return (1 - hat_diag) / alpha, (y - y_hat) / alpha

    def _solve_eigen_covariance(
            self, alpha, y, sqrt_sw, X_mean, eigvals, V, X):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have a decomposition of X^T.X
        (n_samples > n_features and X is sparse).
        """
        if self.fit_intercept:
            return self._solve_eigen_covariance_intercept(
                alpha, y, sqrt_sw, X_mean, eigvals, V, X)
        return self._solve_eigen_covariance_no_intercept(
            alpha, y, sqrt_sw, X_mean, eigvals, V, X)

    def _svd_decompose_design_matrix(self, X, y, sqrt_sw):
        # X already centered
        X_mean = np.zeros(X.shape[1], dtype=X.dtype)
        if self.fit_intercept:
            # to emulate fit_intercept=True situation, add a column
            # containing the square roots of the sample weights
            # by centering, the other columns are orthogonal to that one
            intercept_column = sqrt_sw[:, None]
            X = np.hstack((X, intercept_column))
        U, singvals, _ = linalg.svd(X, full_matrices=0)
        singvals_sq = singvals ** 2
        UT_y = np.dot(U.T, y)
        return X_mean, singvals_sq, U, UT_y

    def _solve_svd_design_matrix(
            self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
        """Compute dual coefficients and diagonal of G^-1.

        Used when we have an SVD decomposition of X
        (n_samples > n_features and X is dense).
        """
        w = ((singvals_sq + alpha) ** -1) - (alpha ** -1)
        if self.fit_intercept:
            # detect intercept column
            normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
            intercept_dim = _find_smallest_angle(normalized_sw, U)
            # cancel the regularization for the intercept
            w[intercept_dim] = - (alpha ** -1)
        c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y
        G_inverse_diag = self._decomp_diag(w, U) + (alpha ** -1)
        if len(y.shape) != 1:
            # handle case where y is 2-d
            G_inverse_diag = G_inverse_diag[:, np.newaxis]
        return G_inverse_diag, c

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model with gcv.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            Training data. Will be cast to float64 if necessary.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to float64 if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        Returns
        -------
        self : object
        """
        X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
                                   dtype=[np.float64],
                                   multi_output=True, y_numeric=True)

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X,
                                                 dtype=X.dtype)

        if np.any(self.alphas <= 0):
            raise ValueError(
                "alphas must be positive. Got {} containing some "
                "negative or null value instead.".format(self.alphas))

        X, y, X_offset, y_offset, X_scale = LinearModel._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        gcv_mode = _check_gcv_mode(X, self.gcv_mode)

        if gcv_mode == 'eigen':
            decompose = self._eigen_decompose_gram
            solve = self._solve_eigen_gram
        elif gcv_mode == 'svd':
            if sparse.issparse(X):
                decompose = self._eigen_decompose_covariance
                solve = self._solve_eigen_covariance
            else:
                decompose = self._svd_decompose_design_matrix
                solve = self._solve_svd_design_matrix

        n_samples = X.shape[0]

        if sample_weight is not None:
            X, y = _rescale_data(X, y, sample_weight)
            sqrt_sw = np.sqrt(sample_weight)
        else:
            sqrt_sw = np.ones(n_samples, dtype=X.dtype)

        X_mean, *decomposition = decompose(X, y, sqrt_sw)

        scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
        error = scorer is None

        n_y = 1 if len(y.shape) == 1 else y.shape[1]

        if self.store_cv_values:
            self.cv_values_ = np.empty(
                (n_samples * n_y, len(self.alphas)), dtype=X.dtype)

        best_coef, best_score, best_alpha = None, None, None

        for i, alpha in enumerate(self.alphas):
            G_inverse_diag, c = solve(
                float(alpha), y, sqrt_sw, X_mean, *decomposition)
            if error:
                squared_errors = (c / G_inverse_diag) ** 2
                alpha_score = -squared_errors.mean()
                if self.store_cv_values:
                    self.cv_values_[:, i] = squared_errors.ravel()
            else:
                predictions = y - (c / G_inverse_diag)
                if self.store_cv_values:
                    self.cv_values_[:, i] = predictions.ravel()

                if self.is_clf:
                    identity_estimator = _IdentityClassifier(
                        classes=np.arange(n_y)
                    )
                    predictions_, y_ = predictions, y.argmax(axis=1)
                else:
                    identity_estimator = _IdentityRegressor()
                    predictions_, y_ = predictions.ravel(), y.ravel()

                alpha_score = scorer(identity_estimator, predictions_, y_)

            if (best_score is None) or (alpha_score > best_score):
                best_coef, best_score, best_alpha = c, alpha_score, alpha

        self.alpha_ = best_alpha
        self.best_score_ = best_score
        self.dual_coef_ = best_coef
        self.coef_ = safe_sparse_dot(self.dual_coef_.T, X)

        X_offset += X_mean * X_scale
        self._set_intercept(X_offset, y_offset, X_scale)

        if self.store_cv_values:
            if len(y.shape) == 1:
                cv_values_shape = n_samples, len(self.alphas)
            else:
                cv_values_shape = n_samples, n_y, len(self.alphas)
            self.cv_values_ = self.cv_values_.reshape(cv_values_shape)

        return self


class _BaseRidgeCV(LinearModel):
    @_deprecate_positional_args
    def __init__(self, alphas=(0.1, 1.0, 10.0), *,
                 fit_intercept=True, normalize=False, scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):
        self.alphas = np.asarray(alphas)
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.scoring = scoring
        self.cv = cv
        self.gcv_mode = gcv_mode
        self.store_cv_values = store_cv_values

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge regression model with cv.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training data. If using GCV, will be cast to float64
            if necessary.

        y : ndarray of shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        Returns
        -------
        self : object

        Notes
        -----
        When sample_weight is provided, the selected hyperparameter may depend
        on whether we use generalized cross-validation (cv=None or cv='auto')
        or another form of cross-validation, because only generalized
        cross-validation takes the sample weights into account when computing
        the validation score.
        """
        cv = self.cv
        if cv is None:
            estimator = _RidgeGCV(self.alphas,
                                  fit_intercept=self.fit_intercept,
                                  normalize=self.normalize,
                                  scoring=self.scoring,
                                  gcv_mode=self.gcv_mode,
                                  store_cv_values=self.store_cv_values,
                                  is_clf=is_classifier(self))
            estimator.fit(X, y, sample_weight=sample_weight)
            self.alpha_ = estimator.alpha_
            self.best_score_ = estimator.best_score_
            if self.store_cv_values:
                self.cv_values_ = estimator.cv_values_
        else:
            if self.store_cv_values:
                raise ValueError("cv!=None and store_cv_values=True "
                                 " are incompatible")
            parameters = {'alpha': self.alphas}
            solver = 'sparse_cg' if sparse.issparse(X) else 'auto'
            model = RidgeClassifier if is_classifier(self) else Ridge
            gs = GridSearchCV(model(fit_intercept=self.fit_intercept,
                                    normalize=self.normalize,
                                    solver=solver),
                              parameters, cv=cv, scoring=self.scoring)
            gs.fit(X, y, sample_weight=sample_weight)
            estimator = gs.best_estimator_
            self.alpha_ = gs.best_estimator_.alpha
            self.best_score_ = gs.best_score_

        self.coef_ = estimator.coef_
        self.intercept_ = estimator.intercept_
        self.n_features_in_ = estimator.n_features_in_

        return self


class RidgeCV(MultiOutputMixin, RegressorMixin, _BaseRidgeCV):
    """Ridge regression with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Generalized Cross-Validation, which is a form of
    efficient Leave-One-Out cross-validation.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`sklearn.svm.LinearSVC`.
        If using generalized cross-validation, alphas must be positive.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    scoring : string, callable, default=None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.
        If None, the negative mean squared error if cv is 'auto' or None
        (i.e. when using generalized cross-validation), and r2 score otherwise.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
          (also known as Generalized Cross-Validation).
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, if ``y`` is binary or multiclass,
        :class:`sklearn.model_selection.StratifiedKFold` is used, else,
        :class:`sklearn.model_selection.KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    gcv_mode : {'auto', 'svd', eigen'}, default='auto'
        Flag indicating which strategy to use when performing
        Generalized Cross-Validation. Options are::

            'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
            'svd' : force use of singular value decomposition of X when X is
                dense, eigenvalue decomposition of X^T.X when X is sparse.
            'eigen' : force computation via eigendecomposition of X.X^T

        The 'auto' mode is the default and is intended to pick the cheaper
        option of the two depending on the shape of the training data.

    store_cv_values : bool, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Generalized Cross-Validation).

    Attributes
    ----------
    cv_values_ : ndarray of shape (n_samples, n_alphas) or \
        shape (n_samples, n_targets, n_alphas), optional
        Cross-validation values for each alpha (only available if \
        ``store_cv_values=True`` and ``cv=None``). After ``fit()`` has been \
        called, this attribute will contain the mean squared errors \
        (by default) or the values of the ``{loss,score}_func`` function \
        (if provided in the constructor).

    coef_ : ndarray of shape (n_features) or (n_targets, n_features)
        Weight vector(s).

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter.

    best_score_ : float
        Score of base estimator with best alpha.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.linear_model import RidgeCV
    >>> X, y = load_diabetes(return_X_y=True)
    >>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y)
    0.5166...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifier : Ridge classifier
    RidgeClassifierCV : Ridge classifier with built-in cross validation
    """


class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
    """Ridge classifier with built-in cross-validation.

    See glossary entry for :term:`cross-validation estimator`.

    By default, it performs Generalized Cross-Validation, which is a form of
    efficient Leave-One-Out cross-validation. Currently, only the n_features >
    n_samples case is handled efficiently.

    Read more in the :ref:`User Guide <ridge_regression>`.

    Parameters
    ----------
    alphas : ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)
        Array of alpha values to try.
        Regularization strength; must be a positive float. Regularization
        improves the conditioning of the problem and reduces the variance of
        the estimates. Larger values specify stronger regularization.
        Alpha corresponds to ``1 / (2C)`` in other linear models such as
        :class:`~sklearn.linear_model.LogisticRegression` or
        :class:`sklearn.svm.LinearSVC`.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    scoring : string, callable, default=None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the efficient Leave-One-Out cross-validation
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    store_cv_values : bool, default=False
        Flag indicating if the cross-validation values corresponding to
        each alpha should be stored in the ``cv_values_`` attribute (see
        below). This flag is only compatible with ``cv=None`` (i.e. using
        Generalized Cross-Validation).

    Attributes
    ----------
    cv_values_ : ndarray of shape (n_samples, n_targets, n_alphas), optional
        Cross-validation values for each alpha (if ``store_cv_values=True`` and
        ``cv=None``). After ``fit()`` has been called, this attribute will
        contain the mean squared errors (by default) or the values of the
        ``{loss,score}_func`` function (if provided in the constructor). This
        attribute exists only when ``store_cv_values`` is True.

    coef_ : ndarray of shape (1, n_features) or (n_targets, n_features)
        Coefficient of the features in the decision function.

        ``coef_`` is of shape (1, n_features) when the given problem is binary.

    intercept_ : float or ndarray of shape (n_targets,)
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
        Estimated regularization parameter.

    best_score_ : float
        Score of base estimator with best alpha.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.linear_model import RidgeClassifierCV
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
    >>> clf.score(X, y)
    0.9630...

    See also
    --------
    Ridge : Ridge regression
    RidgeClassifier : Ridge classifier
    RidgeCV : Ridge regression with built-in cross validation

    Notes
    -----
    For multi-class classification, n_class classifiers are trained in
    a one-versus-all approach. Concretely, this is implemented by taking
    advantage of the multi-variate response support in Ridge.
    """
    @_deprecate_positional_args
    def __init__(self, alphas=(0.1, 1.0, 10.0), *, fit_intercept=True,
                 normalize=False, scoring=None, cv=None, class_weight=None,
                 store_cv_values=False):
        super().__init__(
            alphas=alphas, fit_intercept=fit_intercept, normalize=normalize,
            scoring=scoring, cv=cv, store_cv_values=store_cv_values)
        self.class_weight = class_weight

    def fit(self, X, y, sample_weight=None):
        """Fit Ridge classifier with cv.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples
            and n_features is the number of features. When using GCV,
            will be cast to float64 if necessary.

        y : ndarray of shape (n_samples,)
            Target values. Will be cast to X's dtype if necessary.

        sample_weight : float or ndarray of shape (n_samples,), default=None
            Individual weights for each sample. If given a float, every sample
            will have the same weight.

        Returns
        -------
        self : object
        """
        X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
                                   multi_output=True, y_numeric=False)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        self._label_binarizer = LabelBinarizer(pos_label=1, neg_label=-1)
        Y = self._label_binarizer.fit_transform(y)
        if not self._label_binarizer.y_type_.startswith('multilabel'):
            y = column_or_1d(y, warn=True)

        if self.class_weight:
            # modify the sample weights with the corresponding class weight
            sample_weight = (sample_weight *
                             compute_sample_weight(self.class_weight, y))

        target = Y if self.cv is None else y
        _BaseRidgeCV.fit(self, X, target, sample_weight=sample_weight)
        return self

    @property
    def classes_(self):
        return self._label_binarizer.classes_