_logistic.py 82.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
"""
Logistic Regression
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Fabian Pedregosa <f@bianp.net>
#         Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#         Manoj Kumar <manojkumarsivaraj334@gmail.com>
#         Lars Buitinck
#         Simon Wu <s8wu@uwaterloo.ca>
#         Arthur Mensch <arthur.mensch@m4x.org

import numbers
import warnings

import numpy as np
from scipy import optimize, sparse
from scipy.special import expit, logsumexp
from joblib import Parallel, delayed, effective_n_jobs

from ._base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator
from ._sag import sag_solver
from ..preprocessing import LabelEncoder, LabelBinarizer
from ..svm._base import _fit_liblinear
from ..utils import check_array, check_consistent_length, compute_class_weight
from ..utils import check_random_state
from ..utils.extmath import (log_logistic, safe_sparse_dot, softmax,
                             squared_norm)
from ..utils.extmath import row_norms
from ..utils.optimize import _newton_cg, _check_optimize_result
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils.validation import _deprecate_positional_args
from ..utils.multiclass import check_classification_targets
from ..utils.fixes import _joblib_parallel_args
from ..model_selection import check_cv
from ..metrics import get_scorer


_LOGISTIC_SOLVER_CONVERGENCE_MSG = (
    "Please also refer to the documentation for alternative solver options:\n"
    "    https://scikit-learn.org/stable/modules/linear_model.html"
    "#logistic-regression")


# .. some helper functions for logistic_regression_path ..
def _intercept_dot(w, X, y):
    """Computes y * np.dot(X, w).

    It takes into consideration if the intercept should be fit or not.

    Parameters
    ----------
    w : ndarray of shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : ndarray of shape (n_samples,)
        Array of labels.

    Returns
    -------
    w : ndarray of shape (n_features,)
        Coefficient vector without the intercept weight (w[-1]) if the
        intercept should be fit. Unchanged otherwise.

    c : float
        The intercept.

    yz : float
        y * np.dot(X, w).
    """
    c = 0.
    if w.size == X.shape[1] + 1:
        c = w[-1]
        w = w[:-1]

    z = safe_sparse_dot(X, w) + c
    yz = y * z
    return w, c, yz


def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None):
    """Computes the logistic loss and gradient.

    Parameters
    ----------
    w : ndarray of shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : ndarray of shape (n_samples,)
        Array of labels.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like of shape (n_samples,), default=None
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    out : float
        Logistic loss.

    grad : ndarray of shape (n_features,) or (n_features + 1,)
        Logistic gradient.
    """
    n_samples, n_features = X.shape
    grad = np.empty_like(w)

    w, c, yz = _intercept_dot(w, X, y)

    if sample_weight is None:
        sample_weight = np.ones(n_samples)

    # Logistic loss is the negative of the log of the logistic function.
    out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w)

    z = expit(yz)
    z0 = sample_weight * (z - 1) * y

    grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w

    # Case where we fit the intercept.
    if grad.shape[0] > n_features:
        grad[-1] = z0.sum()
    return out, grad


def _logistic_loss(w, X, y, alpha, sample_weight=None):
    """Computes the logistic loss.

    Parameters
    ----------
    w : ndarray of shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : ndarray of shape (n_samples,)
        Array of labels.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like of shape (n_samples,) default=None
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    out : float
        Logistic loss.
    """
    w, c, yz = _intercept_dot(w, X, y)

    if sample_weight is None:
        sample_weight = np.ones(y.shape[0])

    # Logistic loss is the negative of the log of the logistic function.
    out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w)
    return out


def _logistic_grad_hess(w, X, y, alpha, sample_weight=None):
    """Computes the gradient and the Hessian, in the case of a logistic loss.

    Parameters
    ----------
    w : ndarray of shape (n_features,) or (n_features + 1,)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : ndarray of shape (n_samples,)
        Array of labels.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like of shape (n_samples,) default=None
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    Returns
    -------
    grad : ndarray of shape (n_features,) or (n_features + 1,)
        Logistic gradient.

    Hs : callable
        Function that takes the gradient as a parameter and returns the
        matrix product of the Hessian and gradient.
    """
    n_samples, n_features = X.shape
    grad = np.empty_like(w)
    fit_intercept = grad.shape[0] > n_features

    w, c, yz = _intercept_dot(w, X, y)

    if sample_weight is None:
        sample_weight = np.ones(y.shape[0])

    z = expit(yz)
    z0 = sample_weight * (z - 1) * y

    grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w

    # Case where we fit the intercept.
    if fit_intercept:
        grad[-1] = z0.sum()

    # The mat-vec product of the Hessian
    d = sample_weight * z * (1 - z)
    if sparse.issparse(X):
        dX = safe_sparse_dot(sparse.dia_matrix((d, 0),
                             shape=(n_samples, n_samples)), X)
    else:
        # Precompute as much as possible
        dX = d[:, np.newaxis] * X

    if fit_intercept:
        # Calculate the double derivative with respect to intercept
        # In the case of sparse matrices this returns a matrix object.
        dd_intercept = np.squeeze(np.array(dX.sum(axis=0)))

    def Hs(s):
        ret = np.empty_like(s)
        ret[:n_features] = X.T.dot(dX.dot(s[:n_features]))
        ret[:n_features] += alpha * s[:n_features]

        # For the fit intercept case.
        if fit_intercept:
            ret[:n_features] += s[-1] * dd_intercept
            ret[-1] = dd_intercept.dot(s[:n_features])
            ret[-1] += d.sum() * s[-1]
        return ret

    return grad, Hs


def _multinomial_loss(w, X, Y, alpha, sample_weight):
    """Computes multinomial loss and class probabilities.

    Parameters
    ----------
    w : ndarray of shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    Y : ndarray of shape (n_samples, n_classes)
        Transformed labels according to the output of LabelBinarizer.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like of shape (n_samples,)
        Array of weights that are assigned to individual samples.

    Returns
    -------
    loss : float
        Multinomial loss.

    p : ndarray of shape (n_samples, n_classes)
        Estimated class probabilities.

    w : ndarray of shape (n_classes, n_features)
        Reshaped param vector excluding intercept terms.

    Reference
    ---------
    Bishop, C. M. (2006). Pattern recognition and machine learning.
    Springer. (Chapter 4.3.4)
    """
    n_classes = Y.shape[1]
    n_features = X.shape[1]
    fit_intercept = w.size == (n_classes * (n_features + 1))
    w = w.reshape(n_classes, -1)
    sample_weight = sample_weight[:, np.newaxis]
    if fit_intercept:
        intercept = w[:, -1]
        w = w[:, :-1]
    else:
        intercept = 0
    p = safe_sparse_dot(X, w.T)
    p += intercept
    p -= logsumexp(p, axis=1)[:, np.newaxis]
    loss = -(sample_weight * Y * p).sum()
    loss += 0.5 * alpha * squared_norm(w)
    p = np.exp(p, p)
    return loss, p, w


def _multinomial_loss_grad(w, X, Y, alpha, sample_weight):
    """Computes the multinomial loss, gradient and class probabilities.

    Parameters
    ----------
    w : ndarray of shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    Y : ndarray of shape (n_samples, n_classes)
        Transformed labels according to the output of LabelBinarizer.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like of shape (n_samples,)
        Array of weights that are assigned to individual samples.

    Returns
    -------
    loss : float
        Multinomial loss.

    grad : ndarray of shape (n_classes * n_features,) or \
            (n_classes * (n_features + 1),)
        Ravelled gradient of the multinomial loss.

    p : ndarray of shape (n_samples, n_classes)
        Estimated class probabilities

    Reference
    ---------
    Bishop, C. M. (2006). Pattern recognition and machine learning.
    Springer. (Chapter 4.3.4)
    """
    n_classes = Y.shape[1]
    n_features = X.shape[1]
    fit_intercept = (w.size == n_classes * (n_features + 1))
    grad = np.zeros((n_classes, n_features + bool(fit_intercept)),
                    dtype=X.dtype)
    loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight)
    sample_weight = sample_weight[:, np.newaxis]
    diff = sample_weight * (p - Y)
    grad[:, :n_features] = safe_sparse_dot(diff.T, X)
    grad[:, :n_features] += alpha * w
    if fit_intercept:
        grad[:, -1] = diff.sum(axis=0)
    return loss, grad.ravel(), p


def _multinomial_grad_hess(w, X, Y, alpha, sample_weight):
    """
    Computes the gradient and the Hessian, in the case of a multinomial loss.

    Parameters
    ----------
    w : ndarray of shape (n_classes * n_features,) or
        (n_classes * (n_features + 1),)
        Coefficient vector.

    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    Y : ndarray of shape (n_samples, n_classes)
        Transformed labels according to the output of LabelBinarizer.

    alpha : float
        Regularization parameter. alpha is equal to 1 / C.

    sample_weight : array-like of shape (n_samples,)
        Array of weights that are assigned to individual samples.

    Returns
    -------
    grad : ndarray of shape (n_classes * n_features,) or \
            (n_classes * (n_features + 1),)
        Ravelled gradient of the multinomial loss.

    hessp : callable
        Function that takes in a vector input of shape (n_classes * n_features)
        or (n_classes * (n_features + 1)) and returns matrix-vector product
        with hessian.

    References
    ----------
    Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian.
        http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf
    """
    n_features = X.shape[1]
    n_classes = Y.shape[1]
    fit_intercept = w.size == (n_classes * (n_features + 1))

    # `loss` is unused. Refactoring to avoid computing it does not
    # significantly speed up the computation and decreases readability
    loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight)
    sample_weight = sample_weight[:, np.newaxis]

    # Hessian-vector product derived by applying the R-operator on the gradient
    # of the multinomial loss function.
    def hessp(v):
        v = v.reshape(n_classes, -1)
        if fit_intercept:
            inter_terms = v[:, -1]
            v = v[:, :-1]
        else:
            inter_terms = 0
        # r_yhat holds the result of applying the R-operator on the multinomial
        # estimator.
        r_yhat = safe_sparse_dot(X, v.T)
        r_yhat += inter_terms
        r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis]
        r_yhat *= p
        r_yhat *= sample_weight
        hessProd = np.zeros((n_classes, n_features + bool(fit_intercept)))
        hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X)
        hessProd[:, :n_features] += v * alpha
        if fit_intercept:
            hessProd[:, -1] = r_yhat.sum(axis=0)
        return hessProd.ravel()

    return grad, hessp


def _check_solver(solver, penalty, dual):
    all_solvers = ['liblinear', 'newton-cg', 'lbfgs', 'sag', 'saga']
    if solver not in all_solvers:
        raise ValueError("Logistic Regression supports only solvers in %s, got"
                         " %s." % (all_solvers, solver))

    all_penalties = ['l1', 'l2', 'elasticnet', 'none']
    if penalty not in all_penalties:
        raise ValueError("Logistic Regression supports only penalties in %s,"
                         " got %s." % (all_penalties, penalty))

    if solver not in ['liblinear', 'saga'] and penalty not in ('l2', 'none'):
        raise ValueError("Solver %s supports only 'l2' or 'none' penalties, "
                         "got %s penalty." % (solver, penalty))
    if solver != 'liblinear' and dual:
        raise ValueError("Solver %s supports only "
                         "dual=False, got dual=%s" % (solver, dual))

    if penalty == 'elasticnet' and solver != 'saga':
        raise ValueError("Only 'saga' solver supports elasticnet penalty,"
                         " got solver={}.".format(solver))

    if solver == 'liblinear' and penalty == 'none':
        raise ValueError(
            "penalty='none' is not supported for the liblinear solver"
        )

    return solver


def _check_multi_class(multi_class, solver, n_classes):
    if multi_class == 'auto':
        if solver == 'liblinear':
            multi_class = 'ovr'
        elif n_classes > 2:
            multi_class = 'multinomial'
        else:
            multi_class = 'ovr'
    if multi_class not in ('multinomial', 'ovr'):
        raise ValueError("multi_class should be 'multinomial', 'ovr' or "
                         "'auto'. Got %s." % multi_class)
    if multi_class == 'multinomial' and solver == 'liblinear':
        raise ValueError("Solver %s does not support "
                         "a multinomial backend." % solver)
    return multi_class


def _logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True,
                              max_iter=100, tol=1e-4, verbose=0,
                              solver='lbfgs', coef=None,
                              class_weight=None, dual=False, penalty='l2',
                              intercept_scaling=1., multi_class='auto',
                              random_state=None, check_input=True,
                              max_squared_sum=None, sample_weight=None,
                              l1_ratio=None):
    """Compute a Logistic Regression model for a list of regularization
    parameters.

    This is an implementation that uses the result of the previous model
    to speed up computations along the set of solutions, making it faster
    than sequentially calling LogisticRegression for the different parameters.
    Note that there will be no speedup with liblinear solver, since it does
    not handle warm-starting.

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Input data.

    y : array-like of shape (n_samples,) or (n_samples, n_targets)
        Input data, target values.

    pos_class : int, default=None
        The class with respect to which we perform a one-vs-all fit.
        If None, then it is assumed that the given problem is binary.

    Cs : int or array-like of shape (n_cs,), default=10
        List of values for the regularization parameter or integer specifying
        the number of regularization parameters that should be used. In this
        case, the parameters will be chosen in a logarithmic scale between
        1e-4 and 1e4.

    fit_intercept : bool, default=True
        Whether to fit an intercept for the model. In this case the shape of
        the returned array is (n_cs, n_features + 1).

    max_iter : int, default=100
        Maximum number of iterations for the solver.

    tol : float, default=1e-4
        Stopping criterion. For the newton-cg and lbfgs solvers, the iteration
        will stop when ``max{|g_i | i = 1, ..., n} <= tol``
        where ``g_i`` is the i-th component of the gradient.

    verbose : int, default=0
        For the liblinear and lbfgs solvers set verbose to any positive
        number for verbosity.

    solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'}, \
            default='lbfgs'
        Numerical solver to use.

    coef : array-like of shape (n_features,), default=None
        Initialization value for coefficients of logistic regression.
        Useless for liblinear solver.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    dual : bool, default=False
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    penalty : {'l1', 'l2', 'elasticnet'}, default='l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is
        only supported by the 'saga' solver.

    intercept_scaling : float, default=1.
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equal to
        intercept_scaling is appended to the instance vector.
        The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    multi_class : {'ovr', 'multinomial', 'auto'}, default='auto'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.
        'auto' selects 'ovr' if the data is binary, or if solver='liblinear',
        and otherwise selects 'multinomial'.

        .. versionadded:: 0.18
           Stochastic Average Gradient descent solver for 'multinomial' case.
        .. versionchanged:: 0.22
            Default changed from 'ovr' to 'auto' in 0.22.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the
        data. See :term:`Glossary <random_state>` for details.

    check_input : bool, default=True
        If False, the input arrays X and y will not be checked.

    max_squared_sum : float, default=None
        Maximum squared sum of X over samples. Used only in SAG solver.
        If None, it will be computed, going through all the samples.
        The value should be precomputed to speed up cross validation.

    sample_weight : array-like of shape(n_samples,), default=None
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    l1_ratio : float, default=None
        The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only
        used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent
        to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
        to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
        combination of L1 and L2.

    Returns
    -------
    coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1)
        List of coefficients for the Logistic Regression model. If
        fit_intercept is set to True then the second dimension will be
        n_features + 1, where the last item represents the intercept. For
        ``multiclass='multinomial'``, the shape is (n_classes, n_cs,
        n_features) or (n_classes, n_cs, n_features + 1).

    Cs : ndarray
        Grid of Cs used for cross-validation.

    n_iter : array of shape (n_cs,)
        Actual number of iteration for each Cs.

    Notes
    -----
    You might get slightly different results with the solver liblinear than
    with the others since this uses LIBLINEAR which penalizes the intercept.

    .. versionchanged:: 0.19
        The "copy" parameter was removed.
    """
    if isinstance(Cs, numbers.Integral):
        Cs = np.logspace(-4, 4, Cs)

    solver = _check_solver(solver, penalty, dual)

    # Preprocessing.
    if check_input:
        X = check_array(X, accept_sparse='csr', dtype=np.float64,
                        accept_large_sparse=solver != 'liblinear')
        y = check_array(y, ensure_2d=False, dtype=None)
        check_consistent_length(X, y)
    _, n_features = X.shape

    classes = np.unique(y)
    random_state = check_random_state(random_state)

    multi_class = _check_multi_class(multi_class, solver, len(classes))
    if pos_class is None and multi_class != 'multinomial':
        if (classes.size > 2):
            raise ValueError('To fit OvR, use the pos_class argument')
        # np.unique(y) gives labels in sorted order.
        pos_class = classes[1]

    # If sample weights exist, convert them to array (support for lists)
    # and check length
    # Otherwise set them to 1 for all examples
    sample_weight = _check_sample_weight(sample_weight, X,
                                         dtype=X.dtype)

    # If class_weights is a dict (provided by the user), the weights
    # are assigned to the original labels. If it is "balanced", then
    # the class_weights are assigned after masking the labels with a OvR.
    le = LabelEncoder()
    if isinstance(class_weight, dict) or multi_class == 'multinomial':
        class_weight_ = compute_class_weight(class_weight,
                                             classes=classes, y=y)
        sample_weight *= class_weight_[le.fit_transform(y)]

    # For doing a ovr, we need to mask the labels first. for the
    # multinomial case this is not necessary.
    if multi_class == 'ovr':
        w0 = np.zeros(n_features + int(fit_intercept), dtype=X.dtype)
        mask_classes = np.array([-1, 1])
        mask = (y == pos_class)
        y_bin = np.ones(y.shape, dtype=X.dtype)
        y_bin[~mask] = -1.
        # for compute_class_weight

        if class_weight == "balanced":
            class_weight_ = compute_class_weight(class_weight,
                                                 classes=mask_classes,
                                                 y=y_bin)
            sample_weight *= class_weight_[le.fit_transform(y_bin)]

    else:
        if solver not in ['sag', 'saga']:
            lbin = LabelBinarizer()
            Y_multi = lbin.fit_transform(y)
            if Y_multi.shape[1] == 1:
                Y_multi = np.hstack([1 - Y_multi, Y_multi])
        else:
            # SAG multinomial solver needs LabelEncoder, not LabelBinarizer
            le = LabelEncoder()
            Y_multi = le.fit_transform(y).astype(X.dtype, copy=False)

        w0 = np.zeros((classes.size, n_features + int(fit_intercept)),
                      order='F', dtype=X.dtype)

    if coef is not None:
        # it must work both giving the bias term and not
        if multi_class == 'ovr':
            if coef.size not in (n_features, w0.size):
                raise ValueError(
                    'Initialization coef is of shape %d, expected shape '
                    '%d or %d' % (coef.size, n_features, w0.size))
            w0[:coef.size] = coef
        else:
            # For binary problems coef.shape[0] should be 1, otherwise it
            # should be classes.size.
            n_classes = classes.size
            if n_classes == 2:
                n_classes = 1

            if (coef.shape[0] != n_classes or
                    coef.shape[1] not in (n_features, n_features + 1)):
                raise ValueError(
                    'Initialization coef is of shape (%d, %d), expected '
                    'shape (%d, %d) or (%d, %d)' % (
                        coef.shape[0], coef.shape[1], classes.size,
                        n_features, classes.size, n_features + 1))

            if n_classes == 1:
                w0[0, :coef.shape[1]] = -coef
                w0[1, :coef.shape[1]] = coef
            else:
                w0[:, :coef.shape[1]] = coef

    if multi_class == 'multinomial':
        # scipy.optimize.minimize and newton-cg accepts only
        # ravelled parameters.
        if solver in ['lbfgs', 'newton-cg']:
            w0 = w0.ravel()
        target = Y_multi
        if solver == 'lbfgs':
            def func(x, *args): return _multinomial_loss_grad(x, *args)[0:2]
        elif solver == 'newton-cg':
            def func(x, *args): return _multinomial_loss(x, *args)[0]
            def grad(x, *args): return _multinomial_loss_grad(x, *args)[1]
            hess = _multinomial_grad_hess
        warm_start_sag = {'coef': w0.T}
    else:
        target = y_bin
        if solver == 'lbfgs':
            func = _logistic_loss_and_grad
        elif solver == 'newton-cg':
            func = _logistic_loss
            def grad(x, *args): return _logistic_loss_and_grad(x, *args)[1]
            hess = _logistic_grad_hess
        warm_start_sag = {'coef': np.expand_dims(w0, axis=1)}

    coefs = list()
    n_iter = np.zeros(len(Cs), dtype=np.int32)
    for i, C in enumerate(Cs):
        if solver == 'lbfgs':
            iprint = [-1, 50, 1, 100, 101][
                np.searchsorted(np.array([0, 1, 2, 3]), verbose)]
            opt_res = optimize.minimize(
                func, w0, method="L-BFGS-B", jac=True,
                args=(X, target, 1. / C, sample_weight),
                options={"iprint": iprint, "gtol": tol, "maxiter": max_iter}
            )
            n_iter_i = _check_optimize_result(
                solver, opt_res, max_iter,
                extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)
            w0, loss = opt_res.x, opt_res.fun
        elif solver == 'newton-cg':
            args = (X, target, 1. / C, sample_weight)
            w0, n_iter_i = _newton_cg(hess, func, grad, w0, args=args,
                                      maxiter=max_iter, tol=tol)
        elif solver == 'liblinear':
            coef_, intercept_, n_iter_i, = _fit_liblinear(
                X, target, C, fit_intercept, intercept_scaling, None,
                penalty, dual, verbose, max_iter, tol, random_state,
                sample_weight=sample_weight)
            if fit_intercept:
                w0 = np.concatenate([coef_.ravel(), intercept_])
            else:
                w0 = coef_.ravel()

        elif solver in ['sag', 'saga']:
            if multi_class == 'multinomial':
                target = target.astype(X.dtype, copy=False)
                loss = 'multinomial'
            else:
                loss = 'log'
            # alpha is for L2-norm, beta is for L1-norm
            if penalty == 'l1':
                alpha = 0.
                beta = 1. / C
            elif penalty == 'l2':
                alpha = 1. / C
                beta = 0.
            else:  # Elastic-Net penalty
                alpha = (1. / C) * (1 - l1_ratio)
                beta = (1. / C) * l1_ratio

            w0, n_iter_i, warm_start_sag = sag_solver(
                X, target, sample_weight, loss, alpha,
                beta, max_iter, tol,
                verbose, random_state, False, max_squared_sum, warm_start_sag,
                is_saga=(solver == 'saga'))

        else:
            raise ValueError("solver must be one of {'liblinear', 'lbfgs', "
                             "'newton-cg', 'sag'}, got '%s' instead" % solver)

        if multi_class == 'multinomial':
            n_classes = max(2, classes.size)
            multi_w0 = np.reshape(w0, (n_classes, -1))
            if n_classes == 2:
                multi_w0 = multi_w0[1][np.newaxis, :]
            coefs.append(multi_w0.copy())
        else:
            coefs.append(w0.copy())

        n_iter[i] = n_iter_i

    return np.array(coefs), np.array(Cs), n_iter


# helper function for LogisticCV
def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10,
                          scoring=None, fit_intercept=False,
                          max_iter=100, tol=1e-4, class_weight=None,
                          verbose=0, solver='lbfgs', penalty='l2',
                          dual=False, intercept_scaling=1.,
                          multi_class='auto', random_state=None,
                          max_squared_sum=None, sample_weight=None,
                          l1_ratio=None):
    """Computes scores across logistic_regression_path

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Training data.

    y : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target labels.

    train : list of indices
        The indices of the train set.

    test : list of indices
        The indices of the test set.

    pos_class : int, default=None
        The class with respect to which we perform a one-vs-all fit.
        If None, then it is assumed that the given problem is binary.

    Cs : int or list of floats, default=10
        Each of the values in Cs describes the inverse of
        regularization strength. If Cs is as an int, then a grid of Cs
        values are chosen in a logarithmic scale between 1e-4 and 1e4.
        If not provided, then a fixed set of values for Cs are used.

    scoring : callable, default=None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``. For a list of scoring functions
        that can be used, look at :mod:`sklearn.metrics`. The
        default scoring option used is accuracy_score.

    fit_intercept : bool, default=False
        If False, then the bias term is set to zero. Else the last
        term of each coef_ gives us the intercept.

    max_iter : int, default=100
        Maximum number of iterations for the solver.

    tol : float, default=1e-4
        Tolerance for stopping criteria.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    verbose : int, default=0
        For the liblinear and lbfgs solvers set verbose to any positive
        number for verbosity.

    solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'}, \
            default='lbfgs'
        Decides which solver to use.

    penalty : {'l1', 'l2', 'elasticnet'}, default='l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is
        only supported by the 'saga' solver.

    dual : bool, default=False
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    intercept_scaling : float, default=1.
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equals to
        intercept_scaling is appended to the instance vector.
        The intercept becomes intercept_scaling * synthetic feature weight
        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    multi_class : {'auto', 'ovr', 'multinomial'}, default='auto'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the
        data. See :term:`Glossary <random_state>` for details.

    max_squared_sum : float, default=None
        Maximum squared sum of X over samples. Used only in SAG solver.
        If None, it will be computed, going through all the samples.
        The value should be precomputed to speed up cross validation.

    sample_weight : array-like of shape(n_samples,), default=None
        Array of weights that are assigned to individual samples.
        If not provided, then each sample is given unit weight.

    l1_ratio : float, default=None
        The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only
        used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent
        to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
        to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
        combination of L1 and L2.

    Returns
    -------
    coefs : ndarray of shape (n_cs, n_features) or (n_cs, n_features + 1)
        List of coefficients for the Logistic Regression model. If
        fit_intercept is set to True then the second dimension will be
        n_features + 1, where the last item represents the intercept.

    Cs : ndarray
        Grid of Cs used for cross-validation.

    scores : ndarray of shape (n_cs,)
        Scores obtained for each Cs.

    n_iter : ndarray of shape(n_cs,)
        Actual number of iteration for each Cs.
    """
    X_train = X[train]
    X_test = X[test]
    y_train = y[train]
    y_test = y[test]

    if sample_weight is not None:
        sample_weight = _check_sample_weight(sample_weight, X)
        sample_weight = sample_weight[train]

    coefs, Cs, n_iter = _logistic_regression_path(
        X_train, y_train, Cs=Cs, l1_ratio=l1_ratio,
        fit_intercept=fit_intercept, solver=solver, max_iter=max_iter,
        class_weight=class_weight, pos_class=pos_class,
        multi_class=multi_class, tol=tol, verbose=verbose, dual=dual,
        penalty=penalty, intercept_scaling=intercept_scaling,
        random_state=random_state, check_input=False,
        max_squared_sum=max_squared_sum, sample_weight=sample_weight)

    log_reg = LogisticRegression(solver=solver, multi_class=multi_class)

    # The score method of Logistic Regression has a classes_ attribute.
    if multi_class == 'ovr':
        log_reg.classes_ = np.array([-1, 1])
    elif multi_class == 'multinomial':
        log_reg.classes_ = np.unique(y_train)
    else:
        raise ValueError("multi_class should be either multinomial or ovr, "
                         "got %d" % multi_class)

    if pos_class is not None:
        mask = (y_test == pos_class)
        y_test = np.ones(y_test.shape, dtype=np.float64)
        y_test[~mask] = -1.

    scores = list()

    scoring = get_scorer(scoring)
    for w in coefs:
        if multi_class == 'ovr':
            w = w[np.newaxis, :]
        if fit_intercept:
            log_reg.coef_ = w[:, :-1]
            log_reg.intercept_ = w[:, -1]
        else:
            log_reg.coef_ = w
            log_reg.intercept_ = 0.

        if scoring is None:
            scores.append(log_reg.score(X_test, y_test))
        else:
            scores.append(scoring(log_reg, X_test, y_test))

    return coefs, Cs, np.array(scores), n_iter


class LogisticRegression(BaseEstimator, LinearClassifierMixin,
                         SparseCoefMixin):
    """
    Logistic Regression (aka logit, MaxEnt) classifier.

    In the multiclass case, the training algorithm uses the one-vs-rest (OvR)
    scheme if the 'multi_class' option is set to 'ovr', and uses the
    cross-entropy loss if the 'multi_class' option is set to 'multinomial'.
    (Currently the 'multinomial' option is supported only by the 'lbfgs',
    'sag', 'saga' and 'newton-cg' solvers.)

    This class implements regularized logistic regression using the
    'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note
    that regularization is applied by default**. It can handle both dense
    and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit
    floats for optimal performance; any other input format will be converted
    (and copied).

    The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization
    with primal formulation, or no regularization. The 'liblinear' solver
    supports both L1 and L2 regularization, with a dual formulation only for
    the L2 penalty. The Elastic-Net regularization is only supported by the
    'saga' solver.

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    penalty : {'l1', 'l2', 'elasticnet', 'none'}, default='l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is
        only supported by the 'saga' solver. If 'none' (not supported by the
        liblinear solver), no regularization is applied.

        .. versionadded:: 0.19
           l1 penalty with SAGA solver (allowing 'multinomial' + L1)

    dual : bool, default=False
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    tol : float, default=1e-4
        Tolerance for stopping criteria.

    C : float, default=1.0
        Inverse of regularization strength; must be a positive float.
        Like in support vector machines, smaller values specify stronger
        regularization.

    fit_intercept : bool, default=True
        Specifies if a constant (a.k.a. bias or intercept) should be
        added to the decision function.

    intercept_scaling : float, default=1
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equal to
        intercept_scaling is appended to the instance vector.
        The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

        .. versionadded:: 0.17
           *class_weight='balanced'*

    random_state : int, RandomState instance, default=None
        Used when ``solver`` == 'sag', 'saga' or 'liblinear' to shuffle the
        data. See :term:`Glossary <random_state>` for details.

    solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
            default='lbfgs'

        Algorithm to use in the optimization problem.

        - For small datasets, 'liblinear' is a good choice, whereas 'sag' and
          'saga' are faster for large ones.
        - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs'
          handle multinomial loss; 'liblinear' is limited to one-versus-rest
          schemes.
        - 'newton-cg', 'lbfgs', 'sag' and 'saga' handle L2 or no penalty
        - 'liblinear' and 'saga' also handle L1 penalty
        - 'saga' also supports 'elasticnet' penalty
        - 'liblinear' does not support setting ``penalty='none'``

        Note that 'sag' and 'saga' fast convergence is only guaranteed on
        features with approximately the same scale. You can
        preprocess the data with a scaler from sklearn.preprocessing.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.
        .. versionchanged:: 0.22
            The default solver changed from 'liblinear' to 'lbfgs' in 0.22.

    max_iter : int, default=100
        Maximum number of iterations taken for the solvers to converge.

    multi_class : {'auto', 'ovr', 'multinomial'}, default='auto'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.
        'auto' selects 'ovr' if the data is binary, or if solver='liblinear',
        and otherwise selects 'multinomial'.

        .. versionadded:: 0.18
           Stochastic Average Gradient descent solver for 'multinomial' case.
        .. versionchanged:: 0.22
            Default changed from 'ovr' to 'auto' in 0.22.

    verbose : int, default=0
        For the liblinear and lbfgs solvers set verbose to any positive
        number for verbosity.

    warm_start : bool, default=False
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution.
        Useless for liblinear solver. See :term:`the Glossary <warm_start>`.

        .. versionadded:: 0.17
           *warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers.

    n_jobs : int, default=None
        Number of CPU cores used when parallelizing over classes if
        multi_class='ovr'". This parameter is ignored when the ``solver`` is
        set to 'liblinear' regardless of whether 'multi_class' is specified or
        not. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors.
        See :term:`Glossary <n_jobs>` for more details.

    l1_ratio : float, default=None
        The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only
        used if ``penalty='elasticnet'``. Setting ``l1_ratio=0`` is equivalent
        to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent
        to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a
        combination of L1 and L2.

    Attributes
    ----------

    classes_ : ndarray of shape (n_classes, )
        A list of class labels known to the classifier.

    coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function.

        `coef_` is of shape (1, n_features) when the given problem is binary.
        In particular, when `multi_class='multinomial'`, `coef_` corresponds
        to outcome 1 (True) and `-coef_` corresponds to outcome 0 (False).

    intercept_ : ndarray of shape (1,) or (n_classes,)
        Intercept (a.k.a. bias) added to the decision function.

        If `fit_intercept` is set to False, the intercept is set to zero.
        `intercept_` is of shape (1,) when the given problem is binary.
        In particular, when `multi_class='multinomial'`, `intercept_`
        corresponds to outcome 1 (True) and `-intercept_` corresponds to
        outcome 0 (False).

    n_iter_ : ndarray of shape (n_classes,) or (1, )
        Actual number of iterations for all classes. If binary or multinomial,
        it returns only 1 element. For liblinear solver, only the maximum
        number of iteration across all classes is given.

        .. versionchanged:: 0.20

            In SciPy <= 1.0.0 the number of lbfgs iterations may exceed
            ``max_iter``. ``n_iter_`` will now report at most ``max_iter``.

    See Also
    --------
    SGDClassifier : Incrementally trained logistic regression (when given
        the parameter ``loss="log"``).
    LogisticRegressionCV : Logistic regression with built-in cross validation.

    Notes
    -----
    The underlying C implementation uses a random number generator to
    select features when fitting the model. It is thus not uncommon,
    to have slightly different results for the same input data. If
    that happens, try with a smaller tol parameter.

    Predict output may not match that of standalone liblinear in certain
    cases. See :ref:`differences from liblinear <liblinear_differences>`
    in the narrative documentation.

    References
    ----------

    L-BFGS-B -- Software for Large-scale Bound-constrained Optimization
        Ciyou Zhu, Richard Byrd, Jorge Nocedal and Jose Luis Morales.
        http://users.iems.northwestern.edu/~nocedal/lbfgsb.html

    LIBLINEAR -- A Library for Large Linear Classification
        https://www.csie.ntu.edu.tw/~cjlin/liblinear/

    SAG -- Mark Schmidt, Nicolas Le Roux, and Francis Bach
        Minimizing Finite Sums with the Stochastic Average Gradient
        https://hal.inria.fr/hal-00860051/document

    SAGA -- Defazio, A., Bach F. & Lacoste-Julien S. (2014).
        SAGA: A Fast Incremental Gradient Method With Support
        for Non-Strongly Convex Composite Objectives
        https://arxiv.org/abs/1407.0202

    Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent
        methods for logistic regression and maximum entropy models.
        Machine Learning 85(1-2):41-75.
        https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.linear_model import LogisticRegression
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = LogisticRegression(random_state=0).fit(X, y)
    >>> clf.predict(X[:2, :])
    array([0, 0])
    >>> clf.predict_proba(X[:2, :])
    array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
           [9.7...e-01, 2.8...e-02, ...e-08]])
    >>> clf.score(X, y)
    0.97...
    """
    @_deprecate_positional_args
    def __init__(self, penalty='l2', *, dual=False, tol=1e-4, C=1.0,
                 fit_intercept=True, intercept_scaling=1, class_weight=None,
                 random_state=None, solver='lbfgs', max_iter=100,
                 multi_class='auto', verbose=0, warm_start=False, n_jobs=None,
                 l1_ratio=None):

        self.penalty = penalty
        self.dual = dual
        self.tol = tol
        self.C = C
        self.fit_intercept = fit_intercept
        self.intercept_scaling = intercept_scaling
        self.class_weight = class_weight
        self.random_state = random_state
        self.solver = solver
        self.max_iter = max_iter
        self.multi_class = multi_class
        self.verbose = verbose
        self.warm_start = warm_start
        self.n_jobs = n_jobs
        self.l1_ratio = l1_ratio

    def fit(self, X, y, sample_weight=None):
        """
        Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like of shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like of shape (n_samples,) default=None
            Array of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

            .. versionadded:: 0.17
               *sample_weight* support to LogisticRegression.

        Returns
        -------
        self
            Fitted estimator.

        Notes
        -----
        The SAGA solver supports both float64 and float32 bit arrays.
        """
        solver = _check_solver(self.solver, self.penalty, self.dual)

        if not isinstance(self.C, numbers.Number) or self.C < 0:
            raise ValueError("Penalty term must be positive; got (C=%r)"
                             % self.C)
        if self.penalty == 'elasticnet':
            if (not isinstance(self.l1_ratio, numbers.Number) or
                    self.l1_ratio < 0 or self.l1_ratio > 1):
                raise ValueError("l1_ratio must be between 0 and 1;"
                                 " got (l1_ratio=%r)" % self.l1_ratio)
        elif self.l1_ratio is not None:
            warnings.warn("l1_ratio parameter is only used when penalty is "
                          "'elasticnet'. Got "
                          "(penalty={})".format(self.penalty))
        if self.penalty == 'none':
            if self.C != 1.0:  # default values
                warnings.warn(
                    "Setting penalty='none' will ignore the C and l1_ratio "
                    "parameters"
                )
                # Note that check for l1_ratio is done right above
            C_ = np.inf
            penalty = 'l2'
        else:
            C_ = self.C
            penalty = self.penalty
        if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:
            raise ValueError("Maximum number of iteration must be positive;"
                             " got (max_iter=%r)" % self.max_iter)
        if not isinstance(self.tol, numbers.Number) or self.tol < 0:
            raise ValueError("Tolerance for stopping criteria must be "
                             "positive; got (tol=%r)" % self.tol)

        if solver == 'lbfgs':
            _dtype = np.float64
        else:
            _dtype = [np.float64, np.float32]

        X, y = self._validate_data(X, y, accept_sparse='csr', dtype=_dtype,
                                   order="C",
                                   accept_large_sparse=solver != 'liblinear')
        check_classification_targets(y)
        self.classes_ = np.unique(y)

        multi_class = _check_multi_class(self.multi_class, solver,
                                         len(self.classes_))

        if solver == 'liblinear':
            if effective_n_jobs(self.n_jobs) != 1:
                warnings.warn("'n_jobs' > 1 does not have any effect when"
                              " 'solver' is set to 'liblinear'. Got 'n_jobs'"
                              " = {}.".format(effective_n_jobs(self.n_jobs)))
            self.coef_, self.intercept_, n_iter_ = _fit_liblinear(
                X, y, self.C, self.fit_intercept, self.intercept_scaling,
                self.class_weight, self.penalty, self.dual, self.verbose,
                self.max_iter, self.tol, self.random_state,
                sample_weight=sample_weight)
            self.n_iter_ = np.array([n_iter_])
            return self

        if solver in ['sag', 'saga']:
            max_squared_sum = row_norms(X, squared=True).max()
        else:
            max_squared_sum = None

        n_classes = len(self.classes_)
        classes_ = self.classes_
        if n_classes < 2:
            raise ValueError("This solver needs samples of at least 2 classes"
                             " in the data, but the data contains only one"
                             " class: %r" % classes_[0])

        if len(self.classes_) == 2:
            n_classes = 1
            classes_ = classes_[1:]

        if self.warm_start:
            warm_start_coef = getattr(self, 'coef_', None)
        else:
            warm_start_coef = None
        if warm_start_coef is not None and self.fit_intercept:
            warm_start_coef = np.append(warm_start_coef,
                                        self.intercept_[:, np.newaxis],
                                        axis=1)

        self.coef_ = list()
        self.intercept_ = np.zeros(n_classes)

        # Hack so that we iterate only once for the multinomial case.
        if multi_class == 'multinomial':
            classes_ = [None]
            warm_start_coef = [warm_start_coef]
        if warm_start_coef is None:
            warm_start_coef = [None] * n_classes

        path_func = delayed(_logistic_regression_path)

        # The SAG solver releases the GIL so it's more efficient to use
        # threads for this solver.
        if solver in ['sag', 'saga']:
            prefer = 'threads'
        else:
            prefer = 'processes'
        fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                               **_joblib_parallel_args(prefer=prefer))(
            path_func(X, y, pos_class=class_, Cs=[C_],
                      l1_ratio=self.l1_ratio, fit_intercept=self.fit_intercept,
                      tol=self.tol, verbose=self.verbose, solver=solver,
                      multi_class=multi_class, max_iter=self.max_iter,
                      class_weight=self.class_weight, check_input=False,
                      random_state=self.random_state, coef=warm_start_coef_,
                      penalty=penalty, max_squared_sum=max_squared_sum,
                      sample_weight=sample_weight)
            for class_, warm_start_coef_ in zip(classes_, warm_start_coef))

        fold_coefs_, _, n_iter_ = zip(*fold_coefs_)
        self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0]

        n_features = X.shape[1]
        if multi_class == 'multinomial':
            self.coef_ = fold_coefs_[0][0]
        else:
            self.coef_ = np.asarray(fold_coefs_)
            self.coef_ = self.coef_.reshape(n_classes, n_features +
                                            int(self.fit_intercept))

        if self.fit_intercept:
            self.intercept_ = self.coef_[:, -1]
            self.coef_ = self.coef_[:, :-1]

        return self

    def predict_proba(self, X):
        """
        Probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        For a multi_class problem, if multi_class is set to be "multinomial"
        the softmax function is used to find the predicted probability of
        each class.
        Else use a one-vs-rest approach, i.e calculate the probability
        of each class assuming it to be positive using the logistic function.
        and normalize these values across all the classes.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Vector to be scored, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        T : array-like of shape (n_samples, n_classes)
            Returns the probability of the sample for each class in the model,
            where classes are ordered as they are in ``self.classes_``.
        """
        check_is_fitted(self)

        ovr = (self.multi_class in ["ovr", "warn"] or
               (self.multi_class == 'auto' and (self.classes_.size <= 2 or
                                                self.solver == 'liblinear')))
        if ovr:
            return super()._predict_proba_lr(X)
        else:
            decision = self.decision_function(X)
            if decision.ndim == 1:
                # Workaround for multi_class="multinomial" and binary outcomes
                # which requires softmax prediction with only a 1D decision.
                decision_2d = np.c_[-decision, decision]
            else:
                decision_2d = decision
            return softmax(decision_2d, copy=False)

    def predict_log_proba(self, X):
        """
        Predict logarithm of probability estimates.

        The returned estimates for all classes are ordered by the
        label of classes.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Vector to be scored, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        T : array-like of shape (n_samples, n_classes)
            Returns the log-probability of the sample for each class in the
            model, where classes are ordered as they are in ``self.classes_``.
        """
        return np.log(self.predict_proba(X))


class LogisticRegressionCV(LogisticRegression, BaseEstimator,
                           LinearClassifierMixin):
    """Logistic Regression CV (aka logit, MaxEnt) classifier.

    See glossary entry for :term:`cross-validation estimator`.

    This class implements logistic regression using liblinear, newton-cg, sag
    of lbfgs optimizer. The newton-cg, sag and lbfgs solvers support only L2
    regularization with primal formulation. The liblinear solver supports both
    L1 and L2 regularization, with a dual formulation only for the L2 penalty.
    Elastic-Net penalty is only supported by the saga solver.

    For the grid of `Cs` values and `l1_ratios` values, the best hyperparameter
    is selected by the cross-validator
    :class:`~sklearn.model_selection.StratifiedKFold`, but it can be changed
    using the :term:`cv` parameter. The 'newton-cg', 'sag', 'saga' and 'lbfgs'
    solvers can warm-start the coefficients (see :term:`Glossary<warm_start>`).

    Read more in the :ref:`User Guide <logistic_regression>`.

    Parameters
    ----------
    Cs : int or list of floats, default=10
        Each of the values in Cs describes the inverse of regularization
        strength. If Cs is as an int, then a grid of Cs values are chosen
        in a logarithmic scale between 1e-4 and 1e4.
        Like in support vector machines, smaller values specify stronger
        regularization.

    fit_intercept : bool, default=True
        Specifies if a constant (a.k.a. bias or intercept) should be
        added to the decision function.

    cv : int or cross-validation generator, default=None
        The default cross-validation generator used is Stratified K-Folds.
        If an integer is provided, then it is the number of folds used.
        See the module :mod:`sklearn.model_selection` module for the
        list of possible cross-validation objects.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    dual : bool, default=False
        Dual or primal formulation. Dual formulation is only implemented for
        l2 penalty with liblinear solver. Prefer dual=False when
        n_samples > n_features.

    penalty : {'l1', 'l2', 'elasticnet'}, default='l2'
        Used to specify the norm used in the penalization. The 'newton-cg',
        'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is
        only supported by the 'saga' solver.

    scoring : str or callable, default=None
        A string (see model evaluation documentation) or
        a scorer callable object / function with signature
        ``scorer(estimator, X, y)``. For a list of scoring functions
        that can be used, look at :mod:`sklearn.metrics`. The
        default scoring option used is 'accuracy'.

    solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, \
            default='lbfgs'

        Algorithm to use in the optimization problem.

        - For small datasets, 'liblinear' is a good choice, whereas 'sag' and
          'saga' are faster for large ones.
        - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs'
          handle multinomial loss; 'liblinear' is limited to one-versus-rest
          schemes.
        - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas
          'liblinear' and 'saga' handle L1 penalty.
        - 'liblinear' might be slower in LogisticRegressionCV because it does
          not handle warm-starting.

        Note that 'sag' and 'saga' fast convergence is only guaranteed on
        features with approximately the same scale. You can preprocess the data
        with a scaler from sklearn.preprocessing.

        .. versionadded:: 0.17
           Stochastic Average Gradient descent solver.
        .. versionadded:: 0.19
           SAGA solver.

    tol : float, default=1e-4
        Tolerance for stopping criteria.

    max_iter : int, default=100
        Maximum number of iterations of the optimization algorithm.

    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

        .. versionadded:: 0.17
           class_weight == 'balanced'

    n_jobs : int, default=None
        Number of CPU cores used during the cross-validation loop.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : int, default=0
        For the 'liblinear', 'sag' and 'lbfgs' solvers set verbose to any
        positive number for verbosity.

    refit : bool, default=True
        If set to True, the scores are averaged across all folds, and the
        coefs and the C that corresponds to the best score is taken, and a
        final refit is done using these parameters.
        Otherwise the coefs, intercepts and C that correspond to the
        best scores across folds are averaged.

    intercept_scaling : float, default=1
        Useful only when the solver 'liblinear' is used
        and self.fit_intercept is set to True. In this case, x becomes
        [x, self.intercept_scaling],
        i.e. a "synthetic" feature with constant value equal to
        intercept_scaling is appended to the instance vector.
        The intercept becomes ``intercept_scaling * synthetic_feature_weight``.

        Note! the synthetic feature weight is subject to l1/l2 regularization
        as all other features.
        To lessen the effect of regularization on synthetic feature weight
        (and therefore on the intercept) intercept_scaling has to be increased.

    multi_class : {'auto, 'ovr', 'multinomial'}, default='auto'
        If the option chosen is 'ovr', then a binary problem is fit for each
        label. For 'multinomial' the loss minimised is the multinomial loss fit
        across the entire probability distribution, *even when the data is
        binary*. 'multinomial' is unavailable when solver='liblinear'.
        'auto' selects 'ovr' if the data is binary, or if solver='liblinear',
        and otherwise selects 'multinomial'.

        .. versionadded:: 0.18
           Stochastic Average Gradient descent solver for 'multinomial' case.
        .. versionchanged:: 0.22
            Default changed from 'ovr' to 'auto' in 0.22.

    random_state : int, RandomState instance, default=None
        Used when `solver='sag'`, 'saga' or 'liblinear' to shuffle the data.
        Note that this only applies to the solver and not the cross-validation
        generator. See :term:`Glossary <random_state>` for details.

    l1_ratios : list of float, default=None
        The list of Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``.
        Only used if ``penalty='elasticnet'``. A value of 0 is equivalent to
        using ``penalty='l2'``, while 1 is equivalent to using
        ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a combination
        of L1 and L2.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes, )
        A list of class labels known to the classifier.

    coef_ : ndarray of shape (1, n_features) or (n_classes, n_features)
        Coefficient of the features in the decision function.

        `coef_` is of shape (1, n_features) when the given problem
        is binary.

    intercept_ : ndarray of shape (1,) or (n_classes,)
        Intercept (a.k.a. bias) added to the decision function.

        If `fit_intercept` is set to False, the intercept is set to zero.
        `intercept_` is of shape(1,) when the problem is binary.

    Cs_ : ndarray of shape (n_cs)
        Array of C i.e. inverse of regularization parameter values used
        for cross-validation.

    l1_ratios_ : ndarray of shape (n_l1_ratios)
        Array of l1_ratios used for cross-validation. If no l1_ratio is used
        (i.e. penalty is not 'elasticnet'), this is set to ``[None]``

    coefs_paths_ : ndarray of shape (n_folds, n_cs, n_features) or \
                   (n_folds, n_cs, n_features + 1)
        dict with classes as the keys, and the path of coefficients obtained
        during cross-validating across each fold and then across each Cs
        after doing an OvR for the corresponding class as values.
        If the 'multi_class' option is set to 'multinomial', then
        the coefs_paths are the coefficients corresponding to each class.
        Each dict value has shape ``(n_folds, n_cs, n_features)`` or
        ``(n_folds, n_cs, n_features + 1)`` depending on whether the
        intercept is fit or not. If ``penalty='elasticnet'``, the shape is
        ``(n_folds, n_cs, n_l1_ratios_, n_features)`` or
        ``(n_folds, n_cs, n_l1_ratios_, n_features + 1)``.

    scores_ : dict
        dict with classes as the keys, and the values as the
        grid of scores obtained during cross-validating each fold, after doing
        an OvR for the corresponding class. If the 'multi_class' option
        given is 'multinomial' then the same scores are repeated across
        all classes, since this is the multinomial class. Each dict value
        has shape ``(n_folds, n_cs`` or ``(n_folds, n_cs, n_l1_ratios)`` if
        ``penalty='elasticnet'``.

    C_ : ndarray of shape (n_classes,) or (n_classes - 1,)
        Array of C that maps to the best scores across every class. If refit is
        set to False, then for each class, the best C is the average of the
        C's that correspond to the best scores for each fold.
        `C_` is of shape(n_classes,) when the problem is binary.

    l1_ratio_ : ndarray of shape (n_classes,) or (n_classes - 1,)
        Array of l1_ratio that maps to the best scores across every class. If
        refit is set to False, then for each class, the best l1_ratio is the
        average of the l1_ratio's that correspond to the best scores for each
        fold.  `l1_ratio_` is of shape(n_classes,) when the problem is binary.

    n_iter_ : ndarray of shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)
        Actual number of iterations for all classes, folds and Cs.
        In the binary or multinomial cases, the first dimension is equal to 1.
        If ``penalty='elasticnet'``, the shape is ``(n_classes, n_folds,
        n_cs, n_l1_ratios)`` or ``(1, n_folds, n_cs, n_l1_ratios)``.


    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.linear_model import LogisticRegressionCV
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = LogisticRegressionCV(cv=5, random_state=0).fit(X, y)
    >>> clf.predict(X[:2, :])
    array([0, 0])
    >>> clf.predict_proba(X[:2, :]).shape
    (2, 3)
    >>> clf.score(X, y)
    0.98...

    See also
    --------
    LogisticRegression

    """
    @_deprecate_positional_args
    def __init__(self, *, Cs=10, fit_intercept=True, cv=None, dual=False,
                 penalty='l2', scoring=None, solver='lbfgs', tol=1e-4,
                 max_iter=100, class_weight=None, n_jobs=None, verbose=0,
                 refit=True, intercept_scaling=1., multi_class='auto',
                 random_state=None, l1_ratios=None):
        self.Cs = Cs
        self.fit_intercept = fit_intercept
        self.cv = cv
        self.dual = dual
        self.penalty = penalty
        self.scoring = scoring
        self.tol = tol
        self.max_iter = max_iter
        self.class_weight = class_weight
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.solver = solver
        self.refit = refit
        self.intercept_scaling = intercept_scaling
        self.multi_class = multi_class
        self.random_state = random_state
        self.l1_ratios = l1_ratios

    def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vector, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like of shape (n_samples,)
            Target vector relative to X.

        sample_weight : array-like of shape (n_samples,) default=None
            Array of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.

        Returns
        -------
        self : object
        """
        solver = _check_solver(self.solver, self.penalty, self.dual)

        if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:
            raise ValueError("Maximum number of iteration must be positive;"
                             " got (max_iter=%r)" % self.max_iter)
        if not isinstance(self.tol, numbers.Number) or self.tol < 0:
            raise ValueError("Tolerance for stopping criteria must be "
                             "positive; got (tol=%r)" % self.tol)
        if self.penalty == 'elasticnet':
            if self.l1_ratios is None or len(self.l1_ratios) == 0 or any(
                    (not isinstance(l1_ratio, numbers.Number) or l1_ratio < 0
                     or l1_ratio > 1) for l1_ratio in self.l1_ratios):
                raise ValueError("l1_ratios must be a list of numbers between "
                                 "0 and 1; got (l1_ratios=%r)" %
                                 self.l1_ratios)
            l1_ratios_ = self.l1_ratios
        else:
            if self.l1_ratios is not None:
                warnings.warn("l1_ratios parameter is only used when penalty "
                              "is 'elasticnet'. Got (penalty={})".format(
                                  self.penalty))

            l1_ratios_ = [None]

        if self.penalty == 'none':
            raise ValueError(
                "penalty='none' is not useful and not supported by "
                "LogisticRegressionCV."
            )

        X, y = self._validate_data(X, y, accept_sparse='csr', dtype=np.float64,
                                   order="C",
                                   accept_large_sparse=solver != 'liblinear')
        check_classification_targets(y)

        class_weight = self.class_weight

        # Encode for string labels
        label_encoder = LabelEncoder().fit(y)
        y = label_encoder.transform(y)
        if isinstance(class_weight, dict):
            class_weight = {label_encoder.transform([cls])[0]: v
                            for cls, v in class_weight.items()}

        # The original class labels
        classes = self.classes_ = label_encoder.classes_
        encoded_labels = label_encoder.transform(label_encoder.classes_)

        multi_class = _check_multi_class(self.multi_class, solver,
                                         len(classes))

        if solver in ['sag', 'saga']:
            max_squared_sum = row_norms(X, squared=True).max()
        else:
            max_squared_sum = None

        # init cross-validation generator
        cv = check_cv(self.cv, y, classifier=True)
        folds = list(cv.split(X, y))

        # Use the label encoded classes
        n_classes = len(encoded_labels)

        if n_classes < 2:
            raise ValueError("This solver needs samples of at least 2 classes"
                             " in the data, but the data contains only one"
                             " class: %r" % classes[0])

        if n_classes == 2:
            # OvR in case of binary problems is as good as fitting
            # the higher label
            n_classes = 1
            encoded_labels = encoded_labels[1:]
            classes = classes[1:]

        # We need this hack to iterate only once over labels, in the case of
        # multi_class = multinomial, without changing the value of the labels.
        if multi_class == 'multinomial':
            iter_encoded_labels = iter_classes = [None]
        else:
            iter_encoded_labels = encoded_labels
            iter_classes = classes

        # compute the class weights for the entire dataset y
        if class_weight == "balanced":
            class_weight = compute_class_weight(
                class_weight, classes=np.arange(len(self.classes_)), y=y)
            class_weight = dict(enumerate(class_weight))

        path_func = delayed(_log_reg_scoring_path)

        # The SAG solver releases the GIL so it's more efficient to use
        # threads for this solver.
        if self.solver in ['sag', 'saga']:
            prefer = 'threads'
        else:
            prefer = 'processes'

        fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                               **_joblib_parallel_args(prefer=prefer))(
            path_func(X, y, train, test, pos_class=label, Cs=self.Cs,
                      fit_intercept=self.fit_intercept, penalty=self.penalty,
                      dual=self.dual, solver=solver, tol=self.tol,
                      max_iter=self.max_iter, verbose=self.verbose,
                      class_weight=class_weight, scoring=self.scoring,
                      multi_class=multi_class,
                      intercept_scaling=self.intercept_scaling,
                      random_state=self.random_state,
                      max_squared_sum=max_squared_sum,
                      sample_weight=sample_weight,
                      l1_ratio=l1_ratio
                      )
            for label in iter_encoded_labels
            for train, test in folds
            for l1_ratio in l1_ratios_)

        # _log_reg_scoring_path will output different shapes depending on the
        # multi_class param, so we need to reshape the outputs accordingly.
        # Cs is of shape (n_classes . n_folds . n_l1_ratios, n_Cs) and all the
        # rows are equal, so we just take the first one.
        # After reshaping,
        # - scores is of shape (n_classes, n_folds, n_Cs . n_l1_ratios)
        # - coefs_paths is of shape
        #  (n_classes, n_folds, n_Cs . n_l1_ratios, n_features)
        # - n_iter is of shape
        #  (n_classes, n_folds, n_Cs . n_l1_ratios) or
        #  (1, n_folds, n_Cs . n_l1_ratios)
        coefs_paths, Cs, scores, n_iter_ = zip(*fold_coefs_)
        self.Cs_ = Cs[0]
        if multi_class == 'multinomial':
            coefs_paths = np.reshape(
                coefs_paths,
                (len(folds),  len(l1_ratios_) * len(self.Cs_), n_classes, -1)
            )
            # equiv to coefs_paths = np.moveaxis(coefs_paths, (0, 1, 2, 3),
            #                                                 (1, 2, 0, 3))
            coefs_paths = np.swapaxes(coefs_paths, 0, 1)
            coefs_paths = np.swapaxes(coefs_paths, 0, 2)
            self.n_iter_ = np.reshape(
                n_iter_,
                (1, len(folds), len(self.Cs_) * len(l1_ratios_))
            )
            # repeat same scores across all classes
            scores = np.tile(scores, (n_classes, 1, 1))
        else:
            coefs_paths = np.reshape(
                coefs_paths,
                (n_classes, len(folds), len(self.Cs_) * len(l1_ratios_),
                 -1)
            )
            self.n_iter_ = np.reshape(
                n_iter_,
                (n_classes, len(folds), len(self.Cs_) * len(l1_ratios_))
            )
        scores = np.reshape(scores, (n_classes, len(folds), -1))
        self.scores_ = dict(zip(classes, scores))
        self.coefs_paths_ = dict(zip(classes, coefs_paths))

        self.C_ = list()
        self.l1_ratio_ = list()
        self.coef_ = np.empty((n_classes, X.shape[1]))
        self.intercept_ = np.zeros(n_classes)
        for index, (cls, encoded_label) in enumerate(
                zip(iter_classes, iter_encoded_labels)):

            if multi_class == 'ovr':
                scores = self.scores_[cls]
                coefs_paths = self.coefs_paths_[cls]
            else:
                # For multinomial, all scores are the same across classes
                scores = scores[0]
                # coefs_paths will keep its original shape because
                # logistic_regression_path expects it this way

            if self.refit:
                # best_index is between 0 and (n_Cs . n_l1_ratios - 1)
                # for example, with n_cs=2 and n_l1_ratios=3
                # the layout of scores is
                # [c1, c2, c1, c2, c1, c2]
                #   l1_1 ,  l1_2 ,  l1_3
                best_index = scores.sum(axis=0).argmax()

                best_index_C = best_index % len(self.Cs_)
                C_ = self.Cs_[best_index_C]
                self.C_.append(C_)

                best_index_l1 = best_index // len(self.Cs_)
                l1_ratio_ = l1_ratios_[best_index_l1]
                self.l1_ratio_.append(l1_ratio_)

                if multi_class == 'multinomial':
                    coef_init = np.mean(coefs_paths[:, :, best_index, :],
                                        axis=1)
                else:
                    coef_init = np.mean(coefs_paths[:, best_index, :], axis=0)

                # Note that y is label encoded and hence pos_class must be
                # the encoded label / None (for 'multinomial')
                w, _, _ = _logistic_regression_path(
                    X, y, pos_class=encoded_label, Cs=[C_], solver=solver,
                    fit_intercept=self.fit_intercept, coef=coef_init,
                    max_iter=self.max_iter, tol=self.tol,
                    penalty=self.penalty,
                    class_weight=class_weight,
                    multi_class=multi_class,
                    verbose=max(0, self.verbose - 1),
                    random_state=self.random_state,
                    check_input=False, max_squared_sum=max_squared_sum,
                    sample_weight=sample_weight,
                    l1_ratio=l1_ratio_)
                w = w[0]

            else:
                # Take the best scores across every fold and the average of
                # all coefficients corresponding to the best scores.
                best_indices = np.argmax(scores, axis=1)
                if multi_class == 'ovr':
                    w = np.mean([coefs_paths[i, best_indices[i], :]
                                 for i in range(len(folds))], axis=0)
                else:
                    w = np.mean([coefs_paths[:, i, best_indices[i], :]
                                 for i in range(len(folds))], axis=0)

                best_indices_C = best_indices % len(self.Cs_)
                self.C_.append(np.mean(self.Cs_[best_indices_C]))

                if self.penalty == 'elasticnet':
                    best_indices_l1 = best_indices // len(self.Cs_)
                    self.l1_ratio_.append(np.mean(l1_ratios_[best_indices_l1]))
                else:
                    self.l1_ratio_.append(None)

            if multi_class == 'multinomial':
                self.C_ = np.tile(self.C_, n_classes)
                self.l1_ratio_ = np.tile(self.l1_ratio_, n_classes)
                self.coef_ = w[:, :X.shape[1]]
                if self.fit_intercept:
                    self.intercept_ = w[:, -1]
            else:
                self.coef_[index] = w[: X.shape[1]]
                if self.fit_intercept:
                    self.intercept_[index] = w[-1]

        self.C_ = np.asarray(self.C_)
        self.l1_ratio_ = np.asarray(self.l1_ratio_)
        self.l1_ratios_ = np.asarray(l1_ratios_)
        # if elasticnet was used, add the l1_ratios dimension to some
        # attributes
        if self.l1_ratios is not None:
            # with n_cs=2 and n_l1_ratios=3
            # the layout of scores is
            # [c1, c2, c1, c2, c1, c2]
            #   l1_1 ,  l1_2 ,  l1_3
            # To get a 2d array with the following layout
            #      l1_1, l1_2, l1_3
            # c1 [[ .  ,  .  ,  .  ],
            # c2  [ .  ,  .  ,  .  ]]
            # We need to first reshape and then transpose.
            # The same goes for the other arrays
            for cls, coefs_path in self.coefs_paths_.items():
                self.coefs_paths_[cls] = coefs_path.reshape(
                    (len(folds), self.l1_ratios_.size, self.Cs_.size, -1))
                self.coefs_paths_[cls] = np.transpose(self.coefs_paths_[cls],
                                                      (0, 2, 1, 3))
            for cls, score in self.scores_.items():
                self.scores_[cls] = score.reshape(
                    (len(folds), self.l1_ratios_.size, self.Cs_.size))
                self.scores_[cls] = np.transpose(self.scores_[cls], (0, 2, 1))

            self.n_iter_ = self.n_iter_.reshape(
                (-1, len(folds), self.l1_ratios_.size, self.Cs_.size))
            self.n_iter_ = np.transpose(self.n_iter_, (0, 1, 3, 2))

        return self

    def score(self, X, y, sample_weight=None):
        """Returns the score using the `scoring` option on the given
        test data and labels.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : array-like of shape (n_samples,)
            True labels for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            Score of self.predict(X) wrt. y.

        """
        scoring = self.scoring or 'accuracy'
        scoring = get_scorer(scoring)

        return scoring(self, X, y, sample_weight=sample_weight)