text.py
68.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
# -*- coding: utf-8 -*-
# Authors: Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Lars Buitinck
# Robert Layton <robertlayton@gmail.com>
# Jochen Wersdörfer <jochen@wersdoerfer.de>
# Roman Sinayev <roman.sinayev@gmail.com>
#
# License: BSD 3 clause
"""
The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to
build feature vectors from text documents.
"""
import array
from collections import defaultdict
from collections.abc import Mapping
from functools import partial
import numbers
from operator import itemgetter
import re
import unicodedata
import warnings
import numpy as np
import scipy.sparse as sp
from ..base import BaseEstimator, TransformerMixin
from ..preprocessing import normalize
from ._hash import FeatureHasher
from ._stop_words import ENGLISH_STOP_WORDS
from ..utils.validation import check_is_fitted, check_array, FLOAT_DTYPES
from ..utils import _IS_32BIT, deprecated
from ..utils.fixes import _astype_copy_false
from ..exceptions import NotFittedError
from ..utils.validation import _deprecate_positional_args
__all__ = ['HashingVectorizer',
'CountVectorizer',
'ENGLISH_STOP_WORDS',
'TfidfTransformer',
'TfidfVectorizer',
'strip_accents_ascii',
'strip_accents_unicode',
'strip_tags']
def _preprocess(doc, accent_function=None, lower=False):
"""Chain together an optional series of text preprocessing steps to
apply to a document.
Parameters
----------
doc: str
The string to preprocess
accent_function: callable, default=None
Function for handling accented characters. Common strategies include
normalizing and removing.
lower: bool, default=False
Whether to use str.lower to lowercase all fo the text
Returns
-------
doc: str
preprocessed string
"""
if lower:
doc = doc.lower()
if accent_function is not None:
doc = accent_function(doc)
return doc
def _analyze(doc, analyzer=None, tokenizer=None, ngrams=None,
preprocessor=None, decoder=None, stop_words=None):
"""Chain together an optional series of text processing steps to go from
a single document to ngrams, with or without tokenizing or preprocessing.
If analyzer is used, only the decoder argument is used, as the analyzer is
intended to replace the preprocessor, tokenizer, and ngrams steps.
Parameters
----------
analyzer: callable, default=None
tokenizer: callable, default=None
ngrams: callable, default=None
preprocessor: callable, default=None
decoder: callable, default=None
stop_words: list, default=None
Returns
-------
ngrams: list
A sequence of tokens, possibly with pairs, triples, etc.
"""
if decoder is not None:
doc = decoder(doc)
if analyzer is not None:
doc = analyzer(doc)
else:
if preprocessor is not None:
doc = preprocessor(doc)
if tokenizer is not None:
doc = tokenizer(doc)
if ngrams is not None:
if stop_words is not None:
doc = ngrams(doc, stop_words)
else:
doc = ngrams(doc)
return doc
def strip_accents_unicode(s):
"""Transform accentuated unicode symbols into their simple counterpart
Warning: the python-level loop and join operations make this
implementation 20 times slower than the strip_accents_ascii basic
normalization.
Parameters
----------
s : string
The string to strip
See Also
--------
strip_accents_ascii
Remove accentuated char for any unicode symbol that has a direct
ASCII equivalent.
"""
try:
# If `s` is ASCII-compatible, then it does not contain any accented
# characters and we can avoid an expensive list comprehension
s.encode("ASCII", errors="strict")
return s
except UnicodeEncodeError:
normalized = unicodedata.normalize('NFKD', s)
return ''.join([c for c in normalized if not unicodedata.combining(c)])
def strip_accents_ascii(s):
"""Transform accentuated unicode symbols into ascii or nothing
Warning: this solution is only suited for languages that have a direct
transliteration to ASCII symbols.
Parameters
----------
s : string
The string to strip
See Also
--------
strip_accents_unicode
Remove accentuated char for any unicode symbol.
"""
nkfd_form = unicodedata.normalize('NFKD', s)
return nkfd_form.encode('ASCII', 'ignore').decode('ASCII')
def strip_tags(s):
"""Basic regexp based HTML / XML tag stripper function
For serious HTML/XML preprocessing you should rather use an external
library such as lxml or BeautifulSoup.
Parameters
----------
s : string
The string to strip
"""
return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s)
def _check_stop_list(stop):
if stop == "english":
return ENGLISH_STOP_WORDS
elif isinstance(stop, str):
raise ValueError("not a built-in stop list: %s" % stop)
elif stop is None:
return None
else: # assume it's a collection
return frozenset(stop)
class _VectorizerMixin:
"""Provides common code for text vectorizers (tokenization logic)."""
_white_spaces = re.compile(r"\s\s+")
def decode(self, doc):
"""Decode the input into a string of unicode symbols.
The decoding strategy depends on the vectorizer parameters.
Parameters
----------
doc : str
The string to decode.
Returns
-------
doc: str
A string of unicode symbols.
"""
if self.input == 'filename':
with open(doc, 'rb') as fh:
doc = fh.read()
elif self.input == 'file':
doc = doc.read()
if isinstance(doc, bytes):
doc = doc.decode(self.encoding, self.decode_error)
if doc is np.nan:
raise ValueError("np.nan is an invalid document, expected byte or "
"unicode string.")
return doc
def _word_ngrams(self, tokens, stop_words=None):
"""Turn tokens into a sequence of n-grams after stop words filtering"""
# handle stop words
if stop_words is not None:
tokens = [w for w in tokens if w not in stop_words]
# handle token n-grams
min_n, max_n = self.ngram_range
if max_n != 1:
original_tokens = tokens
if min_n == 1:
# no need to do any slicing for unigrams
# just iterate through the original tokens
tokens = list(original_tokens)
min_n += 1
else:
tokens = []
n_original_tokens = len(original_tokens)
# bind method outside of loop to reduce overhead
tokens_append = tokens.append
space_join = " ".join
for n in range(min_n,
min(max_n + 1, n_original_tokens + 1)):
for i in range(n_original_tokens - n + 1):
tokens_append(space_join(original_tokens[i: i + n]))
return tokens
def _char_ngrams(self, text_document):
"""Tokenize text_document into a sequence of character n-grams"""
# normalize white spaces
text_document = self._white_spaces.sub(" ", text_document)
text_len = len(text_document)
min_n, max_n = self.ngram_range
if min_n == 1:
# no need to do any slicing for unigrams
# iterate through the string
ngrams = list(text_document)
min_n += 1
else:
ngrams = []
# bind method outside of loop to reduce overhead
ngrams_append = ngrams.append
for n in range(min_n, min(max_n + 1, text_len + 1)):
for i in range(text_len - n + 1):
ngrams_append(text_document[i: i + n])
return ngrams
def _char_wb_ngrams(self, text_document):
"""Whitespace sensitive char-n-gram tokenization.
Tokenize text_document into a sequence of character n-grams
operating only inside word boundaries. n-grams at the edges
of words are padded with space."""
# normalize white spaces
text_document = self._white_spaces.sub(" ", text_document)
min_n, max_n = self.ngram_range
ngrams = []
# bind method outside of loop to reduce overhead
ngrams_append = ngrams.append
for w in text_document.split():
w = ' ' + w + ' '
w_len = len(w)
for n in range(min_n, max_n + 1):
offset = 0
ngrams_append(w[offset:offset + n])
while offset + n < w_len:
offset += 1
ngrams_append(w[offset:offset + n])
if offset == 0: # count a short word (w_len < n) only once
break
return ngrams
def build_preprocessor(self):
"""Return a function to preprocess the text before tokenization.
Returns
-------
preprocessor: callable
A function to preprocess the text before tokenization.
"""
if self.preprocessor is not None:
return self.preprocessor
# accent stripping
if not self.strip_accents:
strip_accents = None
elif callable(self.strip_accents):
strip_accents = self.strip_accents
elif self.strip_accents == 'ascii':
strip_accents = strip_accents_ascii
elif self.strip_accents == 'unicode':
strip_accents = strip_accents_unicode
else:
raise ValueError('Invalid value for "strip_accents": %s' %
self.strip_accents)
return partial(
_preprocess, accent_function=strip_accents, lower=self.lowercase
)
def build_tokenizer(self):
"""Return a function that splits a string into a sequence of tokens.
Returns
-------
tokenizer: callable
A function to split a string into a sequence of tokens.
"""
if self.tokenizer is not None:
return self.tokenizer
token_pattern = re.compile(self.token_pattern)
return token_pattern.findall
def get_stop_words(self):
"""Build or fetch the effective stop words list.
Returns
-------
stop_words: list or None
A list of stop words.
"""
return _check_stop_list(self.stop_words)
def _check_stop_words_consistency(self, stop_words, preprocess, tokenize):
"""Check if stop words are consistent
Returns
-------
is_consistent : True if stop words are consistent with the preprocessor
and tokenizer, False if they are not, None if the check
was previously performed, "error" if it could not be
performed (e.g. because of the use of a custom
preprocessor / tokenizer)
"""
if id(self.stop_words) == getattr(self, '_stop_words_id', None):
# Stop words are were previously validated
return None
# NB: stop_words is validated, unlike self.stop_words
try:
inconsistent = set()
for w in stop_words or ():
tokens = list(tokenize(preprocess(w)))
for token in tokens:
if token not in stop_words:
inconsistent.add(token)
self._stop_words_id = id(self.stop_words)
if inconsistent:
warnings.warn('Your stop_words may be inconsistent with '
'your preprocessing. Tokenizing the stop '
'words generated tokens %r not in '
'stop_words.' % sorted(inconsistent))
return not inconsistent
except Exception:
# Failed to check stop words consistency (e.g. because a custom
# preprocessor or tokenizer was used)
self._stop_words_id = id(self.stop_words)
return 'error'
def build_analyzer(self):
"""Return a callable that handles preprocessing, tokenization
and n-grams generation.
Returns
-------
analyzer: callable
A function to handle preprocessing, tokenization
and n-grams generation.
"""
if callable(self.analyzer):
return partial(
_analyze, analyzer=self.analyzer, decoder=self.decode
)
preprocess = self.build_preprocessor()
if self.analyzer == 'char':
return partial(_analyze, ngrams=self._char_ngrams,
preprocessor=preprocess, decoder=self.decode)
elif self.analyzer == 'char_wb':
return partial(_analyze, ngrams=self._char_wb_ngrams,
preprocessor=preprocess, decoder=self.decode)
elif self.analyzer == 'word':
stop_words = self.get_stop_words()
tokenize = self.build_tokenizer()
self._check_stop_words_consistency(stop_words, preprocess,
tokenize)
return partial(_analyze, ngrams=self._word_ngrams,
tokenizer=tokenize, preprocessor=preprocess,
decoder=self.decode, stop_words=stop_words)
else:
raise ValueError('%s is not a valid tokenization scheme/analyzer' %
self.analyzer)
def _validate_vocabulary(self):
vocabulary = self.vocabulary
if vocabulary is not None:
if isinstance(vocabulary, set):
vocabulary = sorted(vocabulary)
if not isinstance(vocabulary, Mapping):
vocab = {}
for i, t in enumerate(vocabulary):
if vocab.setdefault(t, i) != i:
msg = "Duplicate term in vocabulary: %r" % t
raise ValueError(msg)
vocabulary = vocab
else:
indices = set(vocabulary.values())
if len(indices) != len(vocabulary):
raise ValueError("Vocabulary contains repeated indices.")
for i in range(len(vocabulary)):
if i not in indices:
msg = ("Vocabulary of size %d doesn't contain index "
"%d." % (len(vocabulary), i))
raise ValueError(msg)
if not vocabulary:
raise ValueError("empty vocabulary passed to fit")
self.fixed_vocabulary_ = True
self.vocabulary_ = dict(vocabulary)
else:
self.fixed_vocabulary_ = False
def _check_vocabulary(self):
"""Check if vocabulary is empty or missing (not fitted)"""
if not hasattr(self, 'vocabulary_'):
self._validate_vocabulary()
if not self.fixed_vocabulary_:
raise NotFittedError("Vocabulary not fitted or provided")
if len(self.vocabulary_) == 0:
raise ValueError("Vocabulary is empty")
def _validate_params(self):
"""Check validity of ngram_range parameter"""
min_n, max_m = self.ngram_range
if min_n > max_m:
raise ValueError(
"Invalid value for ngram_range=%s "
"lower boundary larger than the upper boundary."
% str(self.ngram_range))
def _warn_for_unused_params(self):
if self.tokenizer is not None and self.token_pattern is not None:
warnings.warn("The parameter 'token_pattern' will not be used"
" since 'tokenizer' is not None'")
if self.preprocessor is not None and callable(self.analyzer):
warnings.warn("The parameter 'preprocessor' will not be used"
" since 'analyzer' is callable'")
if (self.ngram_range != (1, 1) and self.ngram_range is not None
and callable(self.analyzer)):
warnings.warn("The parameter 'ngram_range' will not be used"
" since 'analyzer' is callable'")
if self.analyzer != 'word' or callable(self.analyzer):
if self.stop_words is not None:
warnings.warn("The parameter 'stop_words' will not be used"
" since 'analyzer' != 'word'")
if self.token_pattern is not None and \
self.token_pattern != r"(?u)\b\w\w+\b":
warnings.warn("The parameter 'token_pattern' will not be used"
" since 'analyzer' != 'word'")
if self.tokenizer is not None:
warnings.warn("The parameter 'tokenizer' will not be used"
" since 'analyzer' != 'word'")
@deprecated("VectorizerMixin is deprecated in version "
"0.22 and will be removed in version 0.24.")
class VectorizerMixin(_VectorizerMixin):
pass
class HashingVectorizer(TransformerMixin, _VectorizerMixin, BaseEstimator):
"""Convert a collection of text documents to a matrix of token occurrences
It turns a collection of text documents into a scipy.sparse matrix holding
token occurrence counts (or binary occurrence information), possibly
normalized as token frequencies if norm='l1' or projected on the euclidean
unit sphere if norm='l2'.
This text vectorizer implementation uses the hashing trick to find the
token string name to feature integer index mapping.
This strategy has several advantages:
- it is very low memory scalable to large datasets as there is no need to
store a vocabulary dictionary in memory
- it is fast to pickle and un-pickle as it holds no state besides the
constructor parameters
- it can be used in a streaming (partial fit) or parallel pipeline as there
is no state computed during fit.
There are also a couple of cons (vs using a CountVectorizer with an
in-memory vocabulary):
- there is no way to compute the inverse transform (from feature indices to
string feature names) which can be a problem when trying to introspect
which features are most important to a model.
- there can be collisions: distinct tokens can be mapped to the same
feature index. However in practice this is rarely an issue if n_features
is large enough (e.g. 2 ** 18 for text classification problems).
- no IDF weighting as this would render the transformer stateful.
The hash function employed is the signed 32-bit version of Murmurhash3.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
input : string {'filename', 'file', 'content'}, default='content'
If 'filename', the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.
If 'file', the sequence items must have a 'read' method (file-like
object) that is called to fetch the bytes in memory.
Otherwise the input is expected to be a sequence of items that
can be of type string or byte.
encoding : string, default='utf-8'
If bytes or files are given to analyze, this encoding is used to
decode.
decode_error : {'strict', 'ignore', 'replace'}, default='strict'
Instruction on what to do if a byte sequence is given to analyze that
contains characters not of the given `encoding`. By default, it is
'strict', meaning that a UnicodeDecodeError will be raised. Other
values are 'ignore' and 'replace'.
strip_accents : {'ascii', 'unicode'}, default=None
Remove accents and perform other character normalization
during the preprocessing step.
'ascii' is a fast method that only works on characters that have
an direct ASCII mapping.
'unicode' is a slightly slower method that works on any characters.
None (default) does nothing.
Both 'ascii' and 'unicode' use NFKD normalization from
:func:`unicodedata.normalize`.
lowercase : bool, default=True
Convert all characters to lowercase before tokenizing.
preprocessor : callable, default=None
Override the preprocessing (string transformation) stage while
preserving the tokenizing and n-grams generation steps.
Only applies if ``analyzer is not callable``.
tokenizer : callable, default=None
Override the string tokenization step while preserving the
preprocessing and n-grams generation steps.
Only applies if ``analyzer == 'word'``.
stop_words : string {'english'}, list, default=None
If 'english', a built-in stop word list for English is used.
There are several known issues with 'english' and you should
consider an alternative (see :ref:`stop_words`).
If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if ``analyzer == 'word'``.
token_pattern : string
Regular expression denoting what constitutes a "token", only used
if ``analyzer == 'word'``. The default regexp selects tokens of 2
or more alphanumeric characters (punctuation is completely ignored
and always treated as a token separator).
ngram_range : tuple (min_n, max_n), default=(1, 1)
The lower and upper boundary of the range of n-values for different
n-grams to be extracted. All values of n such that min_n <= n <= max_n
will be used. For example an ``ngram_range`` of ``(1, 1)`` means only
unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means
only bigrams.
Only applies if ``analyzer is not callable``.
analyzer : string, {'word', 'char', 'char_wb'} or callable, \
default='word'
Whether the feature should be made of word or character n-grams.
Option 'char_wb' creates character n-grams only from text inside
word boundaries; n-grams at the edges of words are padded with space.
If a callable is passed it is used to extract the sequence of features
out of the raw, unprocessed input.
.. versionchanged:: 0.21
Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
first read from the file and then passed to the given callable
analyzer.
n_features : int, default=(2 ** 20)
The number of features (columns) in the output matrices. Small numbers
of features are likely to cause hash collisions, but large numbers
will cause larger coefficient dimensions in linear learners.
binary : bool, default=False.
If True, all non zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer
counts.
norm : {'l1', 'l2'}, default='l2'
Norm used to normalize term vectors. None for no normalization.
alternate_sign : bool, default=True
When True, an alternating sign is added to the features as to
approximately conserve the inner product in the hashed space even for
small n_features. This approach is similar to sparse random projection.
.. versionadded:: 0.19
dtype : type, default=np.float64
Type of the matrix returned by fit_transform() or transform().
Examples
--------
>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = HashingVectorizer(n_features=2**4)
>>> X = vectorizer.fit_transform(corpus)
>>> print(X.shape)
(4, 16)
See Also
--------
CountVectorizer, TfidfVectorizer
"""
@_deprecate_positional_args
def __init__(self, *, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None,
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20),
binary=False, norm='l2', alternate_sign=True,
dtype=np.float64):
self.input = input
self.encoding = encoding
self.decode_error = decode_error
self.strip_accents = strip_accents
self.preprocessor = preprocessor
self.tokenizer = tokenizer
self.analyzer = analyzer
self.lowercase = lowercase
self.token_pattern = token_pattern
self.stop_words = stop_words
self.n_features = n_features
self.ngram_range = ngram_range
self.binary = binary
self.norm = norm
self.alternate_sign = alternate_sign
self.dtype = dtype
def partial_fit(self, X, y=None):
"""Does nothing: this transformer is stateless.
This method is just there to mark the fact that this transformer
can work in a streaming setup.
Parameters
----------
X : ndarray of shape [n_samples, n_features]
Training data.
"""
return self
def fit(self, X, y=None):
"""Does nothing: this transformer is stateless.
Parameters
----------
X : ndarray of shape [n_samples, n_features]
Training data.
"""
# triggers a parameter validation
if isinstance(X, str):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
self._warn_for_unused_params()
self._validate_params()
self._get_hasher().fit(X, y=y)
return self
def transform(self, X):
"""Transform a sequence of documents to a document-term matrix.
Parameters
----------
X : iterable over raw text documents, length = n_samples
Samples. Each sample must be a text document (either bytes or
unicode strings, file name or file object depending on the
constructor argument) which will be tokenized and hashed.
Returns
-------
X : sparse matrix of shape (n_samples, n_features)
Document-term matrix.
"""
if isinstance(X, str):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
self._validate_params()
analyzer = self.build_analyzer()
X = self._get_hasher().transform(analyzer(doc) for doc in X)
if self.binary:
X.data.fill(1)
if self.norm is not None:
X = normalize(X, norm=self.norm, copy=False)
return X
def fit_transform(self, X, y=None):
"""Transform a sequence of documents to a document-term matrix.
Parameters
----------
X : iterable over raw text documents, length = n_samples
Samples. Each sample must be a text document (either bytes or
unicode strings, file name or file object depending on the
constructor argument) which will be tokenized and hashed.
y : any
Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.
Returns
-------
X : sparse matrix of shape (n_samples, n_features)
Document-term matrix.
"""
return self.fit(X, y).transform(X)
def _get_hasher(self):
return FeatureHasher(n_features=self.n_features,
input_type='string', dtype=self.dtype,
alternate_sign=self.alternate_sign)
def _more_tags(self):
return {'X_types': ['string']}
def _document_frequency(X):
"""Count the number of non-zero values for each feature in sparse X."""
if sp.isspmatrix_csr(X):
return np.bincount(X.indices, minlength=X.shape[1])
else:
return np.diff(X.indptr)
class CountVectorizer(_VectorizerMixin, BaseEstimator):
"""Convert a collection of text documents to a matrix of token counts
This implementation produces a sparse representation of the counts using
scipy.sparse.csr_matrix.
If you do not provide an a-priori dictionary and you do not use an analyzer
that does some kind of feature selection then the number of features will
be equal to the vocabulary size found by analyzing the data.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
input : string {'filename', 'file', 'content'}, default='content'
If 'filename', the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.
If 'file', the sequence items must have a 'read' method (file-like
object) that is called to fetch the bytes in memory.
Otherwise the input is expected to be a sequence of items that
can be of type string or byte.
encoding : string, default='utf-8'
If bytes or files are given to analyze, this encoding is used to
decode.
decode_error : {'strict', 'ignore', 'replace'}, default='strict'
Instruction on what to do if a byte sequence is given to analyze that
contains characters not of the given `encoding`. By default, it is
'strict', meaning that a UnicodeDecodeError will be raised. Other
values are 'ignore' and 'replace'.
strip_accents : {'ascii', 'unicode'}, default=None
Remove accents and perform other character normalization
during the preprocessing step.
'ascii' is a fast method that only works on characters that have
an direct ASCII mapping.
'unicode' is a slightly slower method that works on any characters.
None (default) does nothing.
Both 'ascii' and 'unicode' use NFKD normalization from
:func:`unicodedata.normalize`.
lowercase : bool, default=True
Convert all characters to lowercase before tokenizing.
preprocessor : callable, default=None
Override the preprocessing (string transformation) stage while
preserving the tokenizing and n-grams generation steps.
Only applies if ``analyzer is not callable``.
tokenizer : callable, default=None
Override the string tokenization step while preserving the
preprocessing and n-grams generation steps.
Only applies if ``analyzer == 'word'``.
stop_words : string {'english'}, list, default=None
If 'english', a built-in stop word list for English is used.
There are several known issues with 'english' and you should
consider an alternative (see :ref:`stop_words`).
If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if ``analyzer == 'word'``.
If None, no stop words will be used. max_df can be set to a value
in the range [0.7, 1.0) to automatically detect and filter stop
words based on intra corpus document frequency of terms.
token_pattern : string
Regular expression denoting what constitutes a "token", only used
if ``analyzer == 'word'``. The default regexp select tokens of 2
or more alphanumeric characters (punctuation is completely ignored
and always treated as a token separator).
ngram_range : tuple (min_n, max_n), default=(1, 1)
The lower and upper boundary of the range of n-values for different
word n-grams or char n-grams to be extracted. All values of n such
such that min_n <= n <= max_n will be used. For example an
``ngram_range`` of ``(1, 1)`` means only unigrams, ``(1, 2)`` means
unigrams and bigrams, and ``(2, 2)`` means only bigrams.
Only applies if ``analyzer is not callable``.
analyzer : string, {'word', 'char', 'char_wb'} or callable, \
default='word'
Whether the feature should be made of word n-gram or character
n-grams.
Option 'char_wb' creates character n-grams only from text inside
word boundaries; n-grams at the edges of words are padded with space.
If a callable is passed it is used to extract the sequence of features
out of the raw, unprocessed input.
.. versionchanged:: 0.21
Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
first read from the file and then passed to the given callable
analyzer.
max_df : float in range [0.0, 1.0] or int, default=1.0
When building the vocabulary ignore terms that have a document
frequency strictly higher than the given threshold (corpus-specific
stop words).
If float, the parameter represents a proportion of documents, integer
absolute counts.
This parameter is ignored if vocabulary is not None.
min_df : float in range [0.0, 1.0] or int, default=1
When building the vocabulary ignore terms that have a document
frequency strictly lower than the given threshold. This value is also
called cut-off in the literature.
If float, the parameter represents a proportion of documents, integer
absolute counts.
This parameter is ignored if vocabulary is not None.
max_features : int, default=None
If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.
This parameter is ignored if vocabulary is not None.
vocabulary : Mapping or iterable, default=None
Either a Mapping (e.g., a dict) where keys are terms and values are
indices in the feature matrix, or an iterable over terms. If not
given, a vocabulary is determined from the input documents. Indices
in the mapping should not be repeated and should not have any gap
between 0 and the largest index.
binary : bool, default=False
If True, all non zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer
counts.
dtype : type, default=np.int64
Type of the matrix returned by fit_transform() or transform().
Attributes
----------
vocabulary_ : dict
A mapping of terms to feature indices.
fixed_vocabulary_: boolean
True if a fixed vocabulary of term to indices mapping
is provided by the user
stop_words_ : set
Terms that were ignored because they either:
- occurred in too many documents (`max_df`)
- occurred in too few documents (`min_df`)
- were cut off by feature selection (`max_features`).
This is only available if no vocabulary was given.
Examples
--------
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = CountVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
>>> print(X.toarray())
[[0 1 1 1 0 0 1 0 1]
[0 2 0 1 0 1 1 0 1]
[1 0 0 1 1 0 1 1 1]
[0 1 1 1 0 0 1 0 1]]
>>> vectorizer2 = CountVectorizer(analyzer='word', ngram_range=(2, 2))
>>> X2 = vectorizer2.fit_transform(corpus)
>>> print(vectorizer2.get_feature_names())
['and this', 'document is', 'first document', 'is the', 'is this',
'second document', 'the first', 'the second', 'the third', 'third one',
'this document', 'this is', 'this the']
>>> print(X2.toarray())
[[0 0 1 1 0 0 1 0 0 0 0 1 0]
[0 1 0 1 0 1 0 1 0 0 1 0 0]
[1 0 0 1 0 0 0 0 1 1 0 1 0]
[0 0 1 0 1 0 1 0 0 0 0 0 1]]
See Also
--------
HashingVectorizer, TfidfVectorizer
Notes
-----
The ``stop_words_`` attribute can get large and increase the model size
when pickling. This attribute is provided only for introspection and can
be safely removed using delattr or set to None before pickling.
"""
@_deprecate_positional_args
def __init__(self, *, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None,
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), analyzer='word',
max_df=1.0, min_df=1, max_features=None,
vocabulary=None, binary=False, dtype=np.int64):
self.input = input
self.encoding = encoding
self.decode_error = decode_error
self.strip_accents = strip_accents
self.preprocessor = preprocessor
self.tokenizer = tokenizer
self.analyzer = analyzer
self.lowercase = lowercase
self.token_pattern = token_pattern
self.stop_words = stop_words
self.max_df = max_df
self.min_df = min_df
if max_df < 0 or min_df < 0:
raise ValueError("negative value for max_df or min_df")
self.max_features = max_features
if max_features is not None:
if (not isinstance(max_features, numbers.Integral) or
max_features <= 0):
raise ValueError(
"max_features=%r, neither a positive integer nor None"
% max_features)
self.ngram_range = ngram_range
self.vocabulary = vocabulary
self.binary = binary
self.dtype = dtype
def _sort_features(self, X, vocabulary):
"""Sort features by name
Returns a reordered matrix and modifies the vocabulary in place
"""
sorted_features = sorted(vocabulary.items())
map_index = np.empty(len(sorted_features), dtype=X.indices.dtype)
for new_val, (term, old_val) in enumerate(sorted_features):
vocabulary[term] = new_val
map_index[old_val] = new_val
X.indices = map_index.take(X.indices, mode='clip')
return X
def _limit_features(self, X, vocabulary, high=None, low=None,
limit=None):
"""Remove too rare or too common features.
Prune features that are non zero in more samples than high or less
documents than low, modifying the vocabulary, and restricting it to
at most the limit most frequent.
This does not prune samples with zero features.
"""
if high is None and low is None and limit is None:
return X, set()
# Calculate a mask based on document frequencies
dfs = _document_frequency(X)
mask = np.ones(len(dfs), dtype=bool)
if high is not None:
mask &= dfs <= high
if low is not None:
mask &= dfs >= low
if limit is not None and mask.sum() > limit:
tfs = np.asarray(X.sum(axis=0)).ravel()
mask_inds = (-tfs[mask]).argsort()[:limit]
new_mask = np.zeros(len(dfs), dtype=bool)
new_mask[np.where(mask)[0][mask_inds]] = True
mask = new_mask
new_indices = np.cumsum(mask) - 1 # maps old indices to new
removed_terms = set()
for term, old_index in list(vocabulary.items()):
if mask[old_index]:
vocabulary[term] = new_indices[old_index]
else:
del vocabulary[term]
removed_terms.add(term)
kept_indices = np.where(mask)[0]
if len(kept_indices) == 0:
raise ValueError("After pruning, no terms remain. Try a lower"
" min_df or a higher max_df.")
return X[:, kept_indices], removed_terms
def _count_vocab(self, raw_documents, fixed_vocab):
"""Create sparse feature matrix, and vocabulary where fixed_vocab=False
"""
if fixed_vocab:
vocabulary = self.vocabulary_
else:
# Add a new value when a new vocabulary item is seen
vocabulary = defaultdict()
vocabulary.default_factory = vocabulary.__len__
analyze = self.build_analyzer()
j_indices = []
indptr = []
values = _make_int_array()
indptr.append(0)
for doc in raw_documents:
feature_counter = {}
for feature in analyze(doc):
try:
feature_idx = vocabulary[feature]
if feature_idx not in feature_counter:
feature_counter[feature_idx] = 1
else:
feature_counter[feature_idx] += 1
except KeyError:
# Ignore out-of-vocabulary items for fixed_vocab=True
continue
j_indices.extend(feature_counter.keys())
values.extend(feature_counter.values())
indptr.append(len(j_indices))
if not fixed_vocab:
# disable defaultdict behaviour
vocabulary = dict(vocabulary)
if not vocabulary:
raise ValueError("empty vocabulary; perhaps the documents only"
" contain stop words")
if indptr[-1] > np.iinfo(np.int32).max: # = 2**31 - 1
if _IS_32BIT:
raise ValueError(('sparse CSR array has {} non-zero '
'elements and requires 64 bit indexing, '
'which is unsupported with 32 bit Python.')
.format(indptr[-1]))
indices_dtype = np.int64
else:
indices_dtype = np.int32
j_indices = np.asarray(j_indices, dtype=indices_dtype)
indptr = np.asarray(indptr, dtype=indices_dtype)
values = np.frombuffer(values, dtype=np.intc)
X = sp.csr_matrix((values, j_indices, indptr),
shape=(len(indptr) - 1, len(vocabulary)),
dtype=self.dtype)
X.sort_indices()
return vocabulary, X
def fit(self, raw_documents, y=None):
"""Learn a vocabulary dictionary of all tokens in the raw documents.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
self
"""
self._warn_for_unused_params()
self.fit_transform(raw_documents)
return self
def fit_transform(self, raw_documents, y=None):
"""Learn the vocabulary dictionary and return document-term matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : array of shape (n_samples, n_features)
Document-term matrix.
"""
# We intentionally don't call the transform method to make
# fit_transform overridable without unwanted side effects in
# TfidfVectorizer.
if isinstance(raw_documents, str):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
self._validate_params()
self._validate_vocabulary()
max_df = self.max_df
min_df = self.min_df
max_features = self.max_features
vocabulary, X = self._count_vocab(raw_documents,
self.fixed_vocabulary_)
if self.binary:
X.data.fill(1)
if not self.fixed_vocabulary_:
n_doc = X.shape[0]
max_doc_count = (max_df
if isinstance(max_df, numbers.Integral)
else max_df * n_doc)
min_doc_count = (min_df
if isinstance(min_df, numbers.Integral)
else min_df * n_doc)
if max_doc_count < min_doc_count:
raise ValueError(
"max_df corresponds to < documents than min_df")
if max_features is not None:
X = self._sort_features(X, vocabulary)
X, self.stop_words_ = self._limit_features(X, vocabulary,
max_doc_count,
min_doc_count,
max_features)
if max_features is None:
X = self._sort_features(X, vocabulary)
self.vocabulary_ = vocabulary
return X
def transform(self, raw_documents):
"""Transform documents to document-term matrix.
Extract token counts out of raw text documents using the vocabulary
fitted with fit or the one provided to the constructor.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
Returns
-------
X : sparse matrix of shape (n_samples, n_features)
Document-term matrix.
"""
if isinstance(raw_documents, str):
raise ValueError(
"Iterable over raw text documents expected, "
"string object received.")
self._check_vocabulary()
# use the same matrix-building strategy as fit_transform
_, X = self._count_vocab(raw_documents, fixed_vocab=True)
if self.binary:
X.data.fill(1)
return X
def inverse_transform(self, X):
"""Return terms per document with nonzero entries in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Document-term matrix.
Returns
-------
X_inv : list of arrays of shape (n_samples,)
List of arrays of terms.
"""
self._check_vocabulary()
if sp.issparse(X):
# We need CSR format for fast row manipulations.
X = X.tocsr()
else:
# We need to convert X to a matrix, so that the indexing
# returns 2D objects
X = np.asmatrix(X)
n_samples = X.shape[0]
terms = np.array(list(self.vocabulary_.keys()))
indices = np.array(list(self.vocabulary_.values()))
inverse_vocabulary = terms[np.argsort(indices)]
return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel()
for i in range(n_samples)]
def get_feature_names(self):
"""Array mapping from feature integer indices to feature name.
Returns
-------
feature_names : list
A list of feature names.
"""
self._check_vocabulary()
return [t for t, i in sorted(self.vocabulary_.items(),
key=itemgetter(1))]
def _more_tags(self):
return {'X_types': ['string']}
def _make_int_array():
"""Construct an array.array of a type suitable for scipy.sparse indices."""
return array.array(str("i"))
class TfidfTransformer(TransformerMixin, BaseEstimator):
"""Transform a count matrix to a normalized tf or tf-idf representation
Tf means term-frequency while tf-idf means term-frequency times inverse
document-frequency. This is a common term weighting scheme in information
retrieval, that has also found good use in document classification.
The goal of using tf-idf instead of the raw frequencies of occurrence of a
token in a given document is to scale down the impact of tokens that occur
very frequently in a given corpus and that are hence empirically less
informative than features that occur in a small fraction of the training
corpus.
The formula that is used to compute the tf-idf for a term t of a document d
in a document set is tf-idf(t, d) = tf(t, d) * idf(t), and the idf is
computed as idf(t) = log [ n / df(t) ] + 1 (if ``smooth_idf=False``), where
n is the total number of documents in the document set and df(t) is the
document frequency of t; the document frequency is the number of documents
in the document set that contain the term t. The effect of adding "1" to
the idf in the equation above is that terms with zero idf, i.e., terms
that occur in all documents in a training set, will not be entirely
ignored.
(Note that the idf formula above differs from the standard textbook
notation that defines the idf as
idf(t) = log [ n / (df(t) + 1) ]).
If ``smooth_idf=True`` (the default), the constant "1" is added to the
numerator and denominator of the idf as if an extra document was seen
containing every term in the collection exactly once, which prevents
zero divisions: idf(t) = log [ (1 + n) / (1 + df(t)) ] + 1.
Furthermore, the formulas used to compute tf and idf depend
on parameter settings that correspond to the SMART notation used in IR
as follows:
Tf is "n" (natural) by default, "l" (logarithmic) when
``sublinear_tf=True``.
Idf is "t" when use_idf is given, "n" (none) otherwise.
Normalization is "c" (cosine) when ``norm='l2'``, "n" (none)
when ``norm=None``.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
norm : {'l1', 'l2'}, default='l2'
Each output row will have unit norm, either:
* 'l2': Sum of squares of vector elements is 1. The cosine
similarity between two vectors is their dot product when l2 norm has
been applied.
* 'l1': Sum of absolute values of vector elements is 1.
See :func:`preprocessing.normalize`
use_idf : bool, default=True
Enable inverse-document-frequency reweighting.
smooth_idf : bool, default=True
Smooth idf weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection
exactly once. Prevents zero divisions.
sublinear_tf : bool, default=False
Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).
Attributes
----------
idf_ : array of shape (n_features)
The inverse document frequency (IDF) vector; only defined
if ``use_idf`` is True.
.. versionadded:: 0.20
Examples
--------
>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> corpus = ['this is the first document',
... 'this document is the second document',
... 'and this is the third one',
... 'is this the first document']
>>> vocabulary = ['this', 'document', 'first', 'is', 'second', 'the',
... 'and', 'one']
>>> pipe = Pipeline([('count', CountVectorizer(vocabulary=vocabulary)),
... ('tfid', TfidfTransformer())]).fit(corpus)
>>> pipe['count'].transform(corpus).toarray()
array([[1, 1, 1, 1, 0, 1, 0, 0],
[1, 2, 0, 1, 1, 1, 0, 0],
[1, 0, 0, 1, 0, 1, 1, 1],
[1, 1, 1, 1, 0, 1, 0, 0]])
>>> pipe['tfid'].idf_
array([1. , 1.22314355, 1.51082562, 1. , 1.91629073,
1. , 1.91629073, 1.91629073])
>>> pipe.transform(corpus).shape
(4, 8)
References
----------
.. [Yates2011] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern
Information Retrieval. Addison Wesley, pp. 68-74.
.. [MRS2008] C.D. Manning, P. Raghavan and H. Schütze (2008).
Introduction to Information Retrieval. Cambridge University
Press, pp. 118-120.
"""
@_deprecate_positional_args
def __init__(self, *, norm='l2', use_idf=True, smooth_idf=True,
sublinear_tf=False):
self.norm = norm
self.use_idf = use_idf
self.smooth_idf = smooth_idf
self.sublinear_tf = sublinear_tf
def fit(self, X, y=None):
"""Learn the idf vector (global term weights).
Parameters
----------
X : sparse matrix of shape n_samples, n_features)
A matrix of term/token counts.
"""
X = check_array(X, accept_sparse=('csr', 'csc'))
if not sp.issparse(X):
X = sp.csr_matrix(X)
dtype = X.dtype if X.dtype in FLOAT_DTYPES else np.float64
if self.use_idf:
n_samples, n_features = X.shape
df = _document_frequency(X)
df = df.astype(dtype, **_astype_copy_false(df))
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
idf = np.log(n_samples / df) + 1
self._idf_diag = sp.diags(idf, offsets=0,
shape=(n_features, n_features),
format='csr',
dtype=dtype)
return self
def transform(self, X, copy=True):
"""Transform a count matrix to a tf or tf-idf representation
Parameters
----------
X : sparse matrix of (n_samples, n_features)
a matrix of term/token counts
copy : bool, default=True
Whether to copy X and operate on the copy or perform in-place
operations.
Returns
-------
vectors : sparse matrix of shape (n_samples, n_features)
"""
X = check_array(X, accept_sparse='csr', dtype=FLOAT_DTYPES, copy=copy)
if not sp.issparse(X):
X = sp.csr_matrix(X, dtype=np.float64)
n_samples, n_features = X.shape
if self.sublinear_tf:
np.log(X.data, X.data)
X.data += 1
if self.use_idf:
# idf_ being a property, the automatic attributes detection
# does not work as usual and we need to specify the attribute
# name:
check_is_fitted(self, attributes=["idf_"],
msg='idf vector is not fitted')
expected_n_features = self._idf_diag.shape[0]
if n_features != expected_n_features:
raise ValueError("Input has n_features=%d while the model"
" has been trained with n_features=%d" % (
n_features, expected_n_features))
# *= doesn't work
X = X * self._idf_diag
if self.norm:
X = normalize(X, norm=self.norm, copy=False)
return X
@property
def idf_(self):
# if _idf_diag is not set, this will raise an attribute error,
# which means hasattr(self, "idf_") is False
return np.ravel(self._idf_diag.sum(axis=0))
@idf_.setter
def idf_(self, value):
value = np.asarray(value, dtype=np.float64)
n_features = value.shape[0]
self._idf_diag = sp.spdiags(value, diags=0, m=n_features,
n=n_features, format='csr')
def _more_tags(self):
return {'X_types': 'sparse'}
class TfidfVectorizer(CountVectorizer):
"""Convert a collection of raw documents to a matrix of TF-IDF features.
Equivalent to :class:`CountVectorizer` followed by
:class:`TfidfTransformer`.
Read more in the :ref:`User Guide <text_feature_extraction>`.
Parameters
----------
input : {'filename', 'file', 'content'}, default='content'
If 'filename', the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.
If 'file', the sequence items must have a 'read' method (file-like
object) that is called to fetch the bytes in memory.
Otherwise the input is expected to be a sequence of items that
can be of type string or byte.
encoding : str, default='utf-8'
If bytes or files are given to analyze, this encoding is used to
decode.
decode_error : {'strict', 'ignore', 'replace'}, default='strict'
Instruction on what to do if a byte sequence is given to analyze that
contains characters not of the given `encoding`. By default, it is
'strict', meaning that a UnicodeDecodeError will be raised. Other
values are 'ignore' and 'replace'.
strip_accents : {'ascii', 'unicode'}, default=None
Remove accents and perform other character normalization
during the preprocessing step.
'ascii' is a fast method that only works on characters that have
an direct ASCII mapping.
'unicode' is a slightly slower method that works on any characters.
None (default) does nothing.
Both 'ascii' and 'unicode' use NFKD normalization from
:func:`unicodedata.normalize`.
lowercase : bool, default=True
Convert all characters to lowercase before tokenizing.
preprocessor : callable, default=None
Override the preprocessing (string transformation) stage while
preserving the tokenizing and n-grams generation steps.
Only applies if ``analyzer is not callable``.
tokenizer : callable, default=None
Override the string tokenization step while preserving the
preprocessing and n-grams generation steps.
Only applies if ``analyzer == 'word'``.
analyzer : {'word', 'char', 'char_wb'} or callable, default='word'
Whether the feature should be made of word or character n-grams.
Option 'char_wb' creates character n-grams only from text inside
word boundaries; n-grams at the edges of words are padded with space.
If a callable is passed it is used to extract the sequence of features
out of the raw, unprocessed input.
.. versionchanged:: 0.21
Since v0.21, if ``input`` is ``filename`` or ``file``, the data is
first read from the file and then passed to the given callable
analyzer.
stop_words : {'english'}, list, default=None
If a string, it is passed to _check_stop_list and the appropriate stop
list is returned. 'english' is currently the only supported string
value.
There are several known issues with 'english' and you should
consider an alternative (see :ref:`stop_words`).
If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if ``analyzer == 'word'``.
If None, no stop words will be used. max_df can be set to a value
in the range [0.7, 1.0) to automatically detect and filter stop
words based on intra corpus document frequency of terms.
token_pattern : str
Regular expression denoting what constitutes a "token", only used
if ``analyzer == 'word'``. The default regexp selects tokens of 2
or more alphanumeric characters (punctuation is completely ignored
and always treated as a token separator).
ngram_range : tuple (min_n, max_n), default=(1, 1)
The lower and upper boundary of the range of n-values for different
n-grams to be extracted. All values of n such that min_n <= n <= max_n
will be used. For example an ``ngram_range`` of ``(1, 1)`` means only
unigrams, ``(1, 2)`` means unigrams and bigrams, and ``(2, 2)`` means
only bigrams.
Only applies if ``analyzer is not callable``.
max_df : float or int, default=1.0
When building the vocabulary ignore terms that have a document
frequency strictly higher than the given threshold (corpus-specific
stop words).
If float in range [0.0, 1.0], the parameter represents a proportion of
documents, integer absolute counts.
This parameter is ignored if vocabulary is not None.
min_df : float or int, default=1
When building the vocabulary ignore terms that have a document
frequency strictly lower than the given threshold. This value is also
called cut-off in the literature.
If float in range of [0.0, 1.0], the parameter represents a proportion
of documents, integer absolute counts.
This parameter is ignored if vocabulary is not None.
max_features : int, default=None
If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.
This parameter is ignored if vocabulary is not None.
vocabulary : Mapping or iterable, default=None
Either a Mapping (e.g., a dict) where keys are terms and values are
indices in the feature matrix, or an iterable over terms. If not
given, a vocabulary is determined from the input documents.
binary : bool, default=False
If True, all non-zero term counts are set to 1. This does not mean
outputs will have only 0/1 values, only that the tf term in tf-idf
is binary. (Set idf and normalization to False to get 0/1 outputs).
dtype : dtype, default=float64
Type of the matrix returned by fit_transform() or transform().
norm : {'l1', 'l2'}, default='l2'
Each output row will have unit norm, either:
* 'l2': Sum of squares of vector elements is 1. The cosine
similarity between two vectors is their dot product when l2 norm has
been applied.
* 'l1': Sum of absolute values of vector elements is 1.
See :func:`preprocessing.normalize`.
use_idf : bool, default=True
Enable inverse-document-frequency reweighting.
smooth_idf : bool, default=True
Smooth idf weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection
exactly once. Prevents zero divisions.
sublinear_tf : bool, default=False
Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).
Attributes
----------
vocabulary_ : dict
A mapping of terms to feature indices.
fixed_vocabulary_: bool
True if a fixed vocabulary of term to indices mapping
is provided by the user
idf_ : array of shape (n_features,)
The inverse document frequency (IDF) vector; only defined
if ``use_idf`` is True.
stop_words_ : set
Terms that were ignored because they either:
- occurred in too many documents (`max_df`)
- occurred in too few documents (`min_df`)
- were cut off by feature selection (`max_features`).
This is only available if no vocabulary was given.
See Also
--------
CountVectorizer : Transforms text into a sparse matrix of n-gram counts.
TfidfTransformer : Performs the TF-IDF transformation from a provided
matrix of counts.
Notes
-----
The ``stop_words_`` attribute can get large and increase the model size
when pickling. This attribute is provided only for introspection and can
be safely removed using delattr or set to None before pickling.
Examples
--------
>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
... ]
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
>>> print(X.shape)
(4, 9)
"""
@_deprecate_positional_args
def __init__(self, *, input='content', encoding='utf-8',
decode_error='strict', strip_accents=None, lowercase=True,
preprocessor=None, tokenizer=None, analyzer='word',
stop_words=None, token_pattern=r"(?u)\b\w\w+\b",
ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, vocabulary=None, binary=False,
dtype=np.float64, norm='l2', use_idf=True, smooth_idf=True,
sublinear_tf=False):
super().__init__(
input=input, encoding=encoding, decode_error=decode_error,
strip_accents=strip_accents, lowercase=lowercase,
preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer,
stop_words=stop_words, token_pattern=token_pattern,
ngram_range=ngram_range, max_df=max_df, min_df=min_df,
max_features=max_features, vocabulary=vocabulary, binary=binary,
dtype=dtype)
self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf,
smooth_idf=smooth_idf,
sublinear_tf=sublinear_tf)
# Broadcast the TF-IDF parameters to the underlying transformer instance
# for easy grid search and repr
@property
def norm(self):
return self._tfidf.norm
@norm.setter
def norm(self, value):
self._tfidf.norm = value
@property
def use_idf(self):
return self._tfidf.use_idf
@use_idf.setter
def use_idf(self, value):
self._tfidf.use_idf = value
@property
def smooth_idf(self):
return self._tfidf.smooth_idf
@smooth_idf.setter
def smooth_idf(self, value):
self._tfidf.smooth_idf = value
@property
def sublinear_tf(self):
return self._tfidf.sublinear_tf
@sublinear_tf.setter
def sublinear_tf(self, value):
self._tfidf.sublinear_tf = value
@property
def idf_(self):
return self._tfidf.idf_
@idf_.setter
def idf_(self, value):
self._validate_vocabulary()
if hasattr(self, 'vocabulary_'):
if len(self.vocabulary_) != len(value):
raise ValueError("idf length = %d must be equal "
"to vocabulary size = %d" %
(len(value), len(self.vocabulary)))
self._tfidf.idf_ = value
def _check_params(self):
if self.dtype not in FLOAT_DTYPES:
warnings.warn("Only {} 'dtype' should be used. {} 'dtype' will "
"be converted to np.float64."
.format(FLOAT_DTYPES, self.dtype),
UserWarning)
def fit(self, raw_documents, y=None):
"""Learn vocabulary and idf from training set.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
y : None
This parameter is not needed to compute tfidf.
Returns
-------
self : object
Fitted vectorizer.
"""
self._check_params()
self._warn_for_unused_params()
X = super().fit_transform(raw_documents)
self._tfidf.fit(X)
return self
def fit_transform(self, raw_documents, y=None):
"""Learn vocabulary and idf, return document-term matrix.
This is equivalent to fit followed by transform, but more efficiently
implemented.
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
y : None
This parameter is ignored.
Returns
-------
X : sparse matrix of (n_samples, n_features)
Tf-idf-weighted document-term matrix.
"""
self._check_params()
X = super().fit_transform(raw_documents)
self._tfidf.fit(X)
# X is already a transformed view of raw_documents so
# we set copy to False
return self._tfidf.transform(X, copy=False)
def transform(self, raw_documents, copy="deprecated"):
"""Transform documents to document-term matrix.
Uses the vocabulary and document frequencies (df) learned by fit (or
fit_transform).
Parameters
----------
raw_documents : iterable
An iterable which yields either str, unicode or file objects.
copy : bool, default=True
Whether to copy X and operate on the copy or perform in-place
operations.
.. deprecated:: 0.22
The `copy` parameter is unused and was deprecated in version
0.22 and will be removed in 0.24. This parameter will be
ignored.
Returns
-------
X : sparse matrix of (n_samples, n_features)
Tf-idf-weighted document-term matrix.
"""
check_is_fitted(self, msg='The TF-IDF vectorizer is not fitted')
# FIXME Remove copy parameter support in 0.24
if copy != "deprecated":
msg = ("'copy' param is unused and has been deprecated since "
"version 0.22. Backward compatibility for 'copy' will "
"be removed in 0.24.")
warnings.warn(msg, FutureWarning)
X = super().transform(raw_documents)
return self._tfidf.transform(X, copy=False)
def _more_tags(self):
return {'X_types': ['string'], '_skip_test': True}