_pilutil.py 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
"""
A collection of image utilities using the Python Imaging Library (PIL).

This is a local version of utility functions from scipy that are wrapping PIL
functionality. These functions are deprecated in scipy 1.0.0 and will be
removed in scipy 1.2.0. Therefore, the functionality used in sklearn is copied
here. This file is taken from scipy/misc/pilutil.py in scipy
1.0.0. Modifications include: making this module importable if pillow is not
installed, removal of DeprecationWarning, removal of functions scikit-learn
does not need.

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2017 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

  a. Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.
  b. Redistributions in binary form must reproduce the above copyright
     notice, this list of conditions and the following disclaimer in the
     documentation and/or other materials provided with the distribution.
  c. Neither the name of Enthought nor the names of the SciPy Developers
     may be used to endorse or promote products derived from this software
     without specific prior written permission.


THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import division, print_function, absolute_import


import numpy

from numpy import (amin, amax, ravel, asarray, arange, ones, newaxis,
                   transpose, iscomplexobj, uint8, issubdtype, array)

# Modification of original scipy pilutil.py to make this module importable if
# pillow is not installed. If pillow is not installed, functions will raise
# ImportError when called.
try:
    try:
        from PIL import Image
    except ImportError:
        import Image
    pillow_installed = True
    if not hasattr(Image, 'frombytes'):
        Image.frombytes = Image.fromstring
except ImportError:
    pillow_installed = False

__all__ = ['bytescale', 'imread', 'imsave', 'fromimage', 'toimage', 'imresize']


PILLOW_ERROR_MESSAGE = (
    "The Python Imaging Library (PIL) is required to load data "
    "from jpeg files. Please refer to "
    "https://pillow.readthedocs.io/en/stable/installation.html "
    "for installing PIL."
)


def bytescale(data, cmin=None, cmax=None, high=255, low=0):
    """
    Byte scales an array (image).

    Byte scaling means converting the input image to uint8 dtype and scaling
    the range to ``(low, high)`` (default 0-255).
    If the input image already has dtype uint8, no scaling is done.

    This function is only available if Python Imaging Library (PIL) is installed.

    Parameters
    ----------
    data : ndarray
        PIL image data array.
    cmin : scalar, optional
        Bias scaling of small values. Default is ``data.min()``.
    cmax : scalar, optional
        Bias scaling of large values. Default is ``data.max()``.
    high : scalar, optional
        Scale max value to `high`.  Default is 255.
    low : scalar, optional
        Scale min value to `low`.  Default is 0.

    Returns
    -------
    img_array : uint8 ndarray
        The byte-scaled array.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.misc import bytescale
    >>> img = np.array([[ 91.06794177,   3.39058326,  84.4221549 ],
    ...                 [ 73.88003259,  80.91433048,   4.88878881],
    ...                 [ 51.53875334,  34.45808177,  27.5873488 ]])
    >>> bytescale(img)
    array([[255,   0, 236],
           [205, 225,   4],
           [140,  90,  70]], dtype=uint8)
    >>> bytescale(img, high=200, low=100)
    array([[200, 100, 192],
           [180, 188, 102],
           [155, 135, 128]], dtype=uint8)
    >>> bytescale(img, cmin=0, cmax=255)
    array([[91,  3, 84],
           [74, 81,  5],
           [52, 34, 28]], dtype=uint8)

    """
    if data.dtype == uint8:
        return data

    if high > 255:
        raise ValueError("`high` should be less than or equal to 255.")
    if low < 0:
        raise ValueError("`low` should be greater than or equal to 0.")
    if high < low:
        raise ValueError("`high` should be greater than or equal to `low`.")

    if cmin is None:
        cmin = data.min()
    if cmax is None:
        cmax = data.max()

    cscale = cmax - cmin
    if cscale < 0:
        raise ValueError("`cmax` should be larger than `cmin`.")
    elif cscale == 0:
        cscale = 1

    scale = float(high - low) / cscale
    bytedata = (data - cmin) * scale + low
    return (bytedata.clip(low, high) + 0.5).astype(uint8)


def imread(name, flatten=False, mode=None):
    """
    Read an image from a file as an array.

    This function is only available if Python Imaging Library (PIL) is installed.

    Parameters
    ----------
    name : str or file object
        The file name or file object to be read.
    flatten : bool, optional
        If True, flattens the color layers into a single gray-scale layer.
    mode : str, optional
        Mode to convert image to, e.g. ``'RGB'``.  See the Notes for more
        details.

    Returns
    -------
    imread : ndarray
        The array obtained by reading the image.

    Notes
    -----
    `imread` uses the Python Imaging Library (PIL) to read an image.
    The following notes are from the PIL documentation.

    `mode` can be one of the following strings:

    * 'L' (8-bit pixels, black and white)
    * 'P' (8-bit pixels, mapped to any other mode using a color palette)
    * 'RGB' (3x8-bit pixels, true color)
    * 'RGBA' (4x8-bit pixels, true color with transparency mask)
    * 'CMYK' (4x8-bit pixels, color separation)
    * 'YCbCr' (3x8-bit pixels, color video format)
    * 'I' (32-bit signed integer pixels)
    * 'F' (32-bit floating point pixels)

    PIL also provides limited support for a few special modes, including
    'LA' ('L' with alpha), 'RGBX' (true color with padding) and 'RGBa'
    (true color with premultiplied alpha).

    When translating a color image to black and white (mode 'L', 'I' or
    'F'), the library uses the ITU-R 601-2 luma transform::

        L = R * 299/1000 + G * 587/1000 + B * 114/1000

    When `flatten` is True, the image is converted using mode 'F'.
    When `mode` is not None and `flatten` is True, the image is first
    converted according to `mode`, and the result is then flattened using
    mode 'F'.

    """
    if not pillow_installed:
        raise ImportError(PILLOW_ERROR_MESSAGE)

    im = Image.open(name)
    return fromimage(im, flatten=flatten, mode=mode)


def imsave(name, arr, format=None):
    """
    Save an array as an image.

    This function is only available if Python Imaging Library (PIL) is installed.

    .. warning::

        This function uses `bytescale` under the hood to rescale images to use
        the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
        It will also cast data for 2-D images to ``uint32`` for ``mode=None``
        (which is the default).

    Parameters
    ----------
    name : str or file object
        Output file name or file object.
    arr : ndarray, MxN or MxNx3 or MxNx4
        Array containing image values.  If the shape is ``MxN``, the array
        represents a grey-level image.  Shape ``MxNx3`` stores the red, green
        and blue bands along the last dimension.  An alpha layer may be
        included, specified as the last colour band of an ``MxNx4`` array.
    format : str
        Image format. If omitted, the format to use is determined from the
        file name extension. If a file object was used instead of a file name,
        this parameter should always be used.

    Examples
    --------
    Construct an array of gradient intensity values and save to file:

    >>> import numpy as np
    >>> from scipy.misc import imsave
    >>> x = np.zeros((255, 255))
    >>> x = np.zeros((255, 255), dtype=np.uint8)
    >>> x[:] = np.arange(255)
    >>> imsave('gradient.png', x)

    Construct an array with three colour bands (R, G, B) and store to file:

    >>> rgb = np.zeros((255, 255, 3), dtype=np.uint8)
    >>> rgb[..., 0] = np.arange(255)
    >>> rgb[..., 1] = 55
    >>> rgb[..., 2] = 1 - np.arange(255)
    >>> imsave('rgb_gradient.png', rgb)

    """
    im = toimage(arr, channel_axis=2)
    if format is None:
        im.save(name)
    else:
        im.save(name, format)
    return


def fromimage(im, flatten=False, mode=None):
    """
    Return a copy of a PIL image as a numpy array.

    This function is only available if Python Imaging Library (PIL) is installed.

    Parameters
    ----------
    im : PIL image
        Input image.
    flatten : bool
        If true, convert the output to grey-scale.
    mode : str, optional
        Mode to convert image to, e.g. ``'RGB'``.  See the Notes of the
        `imread` docstring for more details.

    Returns
    -------
    fromimage : ndarray
        The different colour bands/channels are stored in the
        third dimension, such that a grey-image is MxN, an
        RGB-image MxNx3 and an RGBA-image MxNx4.

    """
    if not pillow_installed:
        raise ImportError(PILLOW_ERROR_MESSAGE)

    if not Image.isImageType(im):
        raise TypeError("Input is not a PIL image.")

    if mode is not None:
        if mode != im.mode:
            im = im.convert(mode)
    elif im.mode == 'P':
        # Mode 'P' means there is an indexed "palette".  If we leave the mode
        # as 'P', then when we do `a = array(im)` below, `a` will be a 2-D
        # containing the indices into the palette, and not a 3-D array
        # containing the RGB or RGBA values.
        if 'transparency' in im.info:
            im = im.convert('RGBA')
        else:
            im = im.convert('RGB')

    if flatten:
        im = im.convert('F')
    elif im.mode == '1':
        # Workaround for crash in PIL. When im is 1-bit, the call array(im)
        # can cause a seg. fault, or generate garbage. See
        # https://github.com/scipy/scipy/issues/2138 and
        # https://github.com/python-pillow/Pillow/issues/350.
        #
        # This converts im from a 1-bit image to an 8-bit image.
        im = im.convert('L')

    a = array(im)
    return a

_errstr = "Mode is unknown or incompatible with input array shape."


def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None,
            mode=None, channel_axis=None):
    """Takes a numpy array and returns a PIL image.

    This function is only available if Python Imaging Library (PIL) is installed.

    The mode of the PIL image depends on the array shape and the `pal` and
    `mode` keywords.

    For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values
    (from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode
    is given as 'F' or 'I' in which case a float and/or integer array is made.

    .. warning::

        This function uses `bytescale` under the hood to rescale images to use
        the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
        It will also cast data for 2-D images to ``uint32`` for ``mode=None``
        (which is the default).

    Notes
    -----
    For 3-D arrays, the `channel_axis` argument tells which dimension of the
    array holds the channel data.

    For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
    by default or 'YCbCr' if selected.

    The numpy array must be either 2 dimensional or 3 dimensional.

    """
    if not pillow_installed:
        raise ImportError(PILLOW_ERROR_MESSAGE)

    data = asarray(arr)
    if iscomplexobj(data):
        raise ValueError("Cannot convert a complex-valued array.")
    shape = list(data.shape)
    valid = len(shape) == 2 or ((len(shape) == 3) and
                                ((3 in shape) or (4 in shape)))
    if not valid:
        raise ValueError("'arr' does not have a suitable array shape for "
                         "any mode.")
    if len(shape) == 2:
        shape = (shape[1], shape[0])  # columns show up first
        if mode == 'F':
            data32 = data.astype(numpy.float32)
            image = Image.frombytes(mode, shape, data32.tostring())
            return image
        if mode in [None, 'L', 'P']:
            bytedata = bytescale(data, high=high, low=low,
                                 cmin=cmin, cmax=cmax)
            image = Image.frombytes('L', shape, bytedata.tostring())
            if pal is not None:
                image.putpalette(asarray(pal, dtype=uint8).tostring())
                # Becomes a mode='P' automagically.
            elif mode == 'P':  # default gray-scale
                pal = (arange(0, 256, 1, dtype=uint8)[:, newaxis] *
                       ones((3,), dtype=uint8)[newaxis, :])
                image.putpalette(asarray(pal, dtype=uint8).tostring())
            return image
        if mode == '1':  # high input gives threshold for 1
            bytedata = (data > high)
            image = Image.frombytes('1', shape, bytedata.tostring())
            return image
        if cmin is None:
            cmin = amin(ravel(data))
        if cmax is None:
            cmax = amax(ravel(data))
        data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low
        if mode == 'I':
            data32 = data.astype(numpy.uint32)
            image = Image.frombytes(mode, shape, data32.tostring())
        else:
            raise ValueError(_errstr)
        return image

    # if here then 3-d array with a 3 or a 4 in the shape length.
    # Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
    if channel_axis is None:
        if (3 in shape):
            ca = numpy.flatnonzero(asarray(shape) == 3)[0]
        else:
            ca = numpy.flatnonzero(asarray(shape) == 4)
            if len(ca):
                ca = ca[0]
            else:
                raise ValueError("Could not find channel dimension.")
    else:
        ca = channel_axis

    numch = shape[ca]
    if numch not in [3, 4]:
        raise ValueError("Channel axis dimension is not valid.")

    bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax)
    if ca == 2:
        strdata = bytedata.tostring()
        shape = (shape[1], shape[0])
    elif ca == 1:
        strdata = transpose(bytedata, (0, 2, 1)).tostring()
        shape = (shape[2], shape[0])
    elif ca == 0:
        strdata = transpose(bytedata, (1, 2, 0)).tostring()
        shape = (shape[2], shape[1])
    if mode is None:
        if numch == 3:
            mode = 'RGB'
        else:
            mode = 'RGBA'

    if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']:
        raise ValueError(_errstr)

    if mode in ['RGB', 'YCbCr']:
        if numch != 3:
            raise ValueError("Invalid array shape for mode.")
    if mode in ['RGBA', 'CMYK']:
        if numch != 4:
            raise ValueError("Invalid array shape for mode.")

    # Here we know data and mode is correct
    image = Image.frombytes(mode, shape, strdata)
    return image


def imresize(arr, size, interp='bilinear', mode=None):
    """
    Resize an image.

    This function is only available if Python Imaging Library (PIL) is installed.

    .. warning::

        This function uses `bytescale` under the hood to rescale images to use
        the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
        It will also cast data for 2-D images to ``uint32`` for ``mode=None``
        (which is the default).

    Parameters
    ----------
    arr : ndarray
        The array of image to be resized.
    size : int, float or tuple
        * int   - Percentage of current size.
        * float - Fraction of current size.
        * tuple - Size of the output image (height, width).

    interp : str, optional
        Interpolation to use for re-sizing ('nearest', 'lanczos', 'bilinear',
        'bicubic' or 'cubic').
    mode : str, optional
        The PIL image mode ('P', 'L', etc.) to convert `arr` before resizing.
        If ``mode=None`` (the default), 2-D images will be treated like
        ``mode='L'``, i.e. casting to long integer.  For 3-D and 4-D arrays,
        `mode` will be set to ``'RGB'`` and ``'RGBA'`` respectively.

    Returns
    -------
    imresize : ndarray
        The resized array of image.

    See Also
    --------
    toimage : Implicitly used to convert `arr` according to `mode`.
    scipy.ndimage.zoom : More generic implementation that does not use PIL.

    """
    im = toimage(arr, mode=mode)
    ts = type(size)
    if issubdtype(ts, numpy.signedinteger):
        percent = size / 100.0
        size = tuple((array(im.size)*percent).astype(int))
    elif issubdtype(type(size), numpy.floating):
        size = tuple((array(im.size)*size).astype(int))
    else:
        size = (size[1], size[0])
    func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3}
    imnew = im.resize(size, resample=func[interp])
    return fromimage(imnew)