_pilutil.py
17.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
"""
A collection of image utilities using the Python Imaging Library (PIL).
This is a local version of utility functions from scipy that are wrapping PIL
functionality. These functions are deprecated in scipy 1.0.0 and will be
removed in scipy 1.2.0. Therefore, the functionality used in sklearn is copied
here. This file is taken from scipy/misc/pilutil.py in scipy
1.0.0. Modifications include: making this module importable if pillow is not
installed, removal of DeprecationWarning, removal of functions scikit-learn
does not need.
Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.
Copyright (c) 2003-2017 SciPy Developers.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
c. Neither the name of Enthought nor the names of the SciPy Developers
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import division, print_function, absolute_import
import numpy
from numpy import (amin, amax, ravel, asarray, arange, ones, newaxis,
transpose, iscomplexobj, uint8, issubdtype, array)
# Modification of original scipy pilutil.py to make this module importable if
# pillow is not installed. If pillow is not installed, functions will raise
# ImportError when called.
try:
try:
from PIL import Image
except ImportError:
import Image
pillow_installed = True
if not hasattr(Image, 'frombytes'):
Image.frombytes = Image.fromstring
except ImportError:
pillow_installed = False
__all__ = ['bytescale', 'imread', 'imsave', 'fromimage', 'toimage', 'imresize']
PILLOW_ERROR_MESSAGE = (
"The Python Imaging Library (PIL) is required to load data "
"from jpeg files. Please refer to "
"https://pillow.readthedocs.io/en/stable/installation.html "
"for installing PIL."
)
def bytescale(data, cmin=None, cmax=None, high=255, low=0):
"""
Byte scales an array (image).
Byte scaling means converting the input image to uint8 dtype and scaling
the range to ``(low, high)`` (default 0-255).
If the input image already has dtype uint8, no scaling is done.
This function is only available if Python Imaging Library (PIL) is installed.
Parameters
----------
data : ndarray
PIL image data array.
cmin : scalar, optional
Bias scaling of small values. Default is ``data.min()``.
cmax : scalar, optional
Bias scaling of large values. Default is ``data.max()``.
high : scalar, optional
Scale max value to `high`. Default is 255.
low : scalar, optional
Scale min value to `low`. Default is 0.
Returns
-------
img_array : uint8 ndarray
The byte-scaled array.
Examples
--------
>>> import numpy as np
>>> from scipy.misc import bytescale
>>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ],
... [ 73.88003259, 80.91433048, 4.88878881],
... [ 51.53875334, 34.45808177, 27.5873488 ]])
>>> bytescale(img)
array([[255, 0, 236],
[205, 225, 4],
[140, 90, 70]], dtype=uint8)
>>> bytescale(img, high=200, low=100)
array([[200, 100, 192],
[180, 188, 102],
[155, 135, 128]], dtype=uint8)
>>> bytescale(img, cmin=0, cmax=255)
array([[91, 3, 84],
[74, 81, 5],
[52, 34, 28]], dtype=uint8)
"""
if data.dtype == uint8:
return data
if high > 255:
raise ValueError("`high` should be less than or equal to 255.")
if low < 0:
raise ValueError("`low` should be greater than or equal to 0.")
if high < low:
raise ValueError("`high` should be greater than or equal to `low`.")
if cmin is None:
cmin = data.min()
if cmax is None:
cmax = data.max()
cscale = cmax - cmin
if cscale < 0:
raise ValueError("`cmax` should be larger than `cmin`.")
elif cscale == 0:
cscale = 1
scale = float(high - low) / cscale
bytedata = (data - cmin) * scale + low
return (bytedata.clip(low, high) + 0.5).astype(uint8)
def imread(name, flatten=False, mode=None):
"""
Read an image from a file as an array.
This function is only available if Python Imaging Library (PIL) is installed.
Parameters
----------
name : str or file object
The file name or file object to be read.
flatten : bool, optional
If True, flattens the color layers into a single gray-scale layer.
mode : str, optional
Mode to convert image to, e.g. ``'RGB'``. See the Notes for more
details.
Returns
-------
imread : ndarray
The array obtained by reading the image.
Notes
-----
`imread` uses the Python Imaging Library (PIL) to read an image.
The following notes are from the PIL documentation.
`mode` can be one of the following strings:
* 'L' (8-bit pixels, black and white)
* 'P' (8-bit pixels, mapped to any other mode using a color palette)
* 'RGB' (3x8-bit pixels, true color)
* 'RGBA' (4x8-bit pixels, true color with transparency mask)
* 'CMYK' (4x8-bit pixels, color separation)
* 'YCbCr' (3x8-bit pixels, color video format)
* 'I' (32-bit signed integer pixels)
* 'F' (32-bit floating point pixels)
PIL also provides limited support for a few special modes, including
'LA' ('L' with alpha), 'RGBX' (true color with padding) and 'RGBa'
(true color with premultiplied alpha).
When translating a color image to black and white (mode 'L', 'I' or
'F'), the library uses the ITU-R 601-2 luma transform::
L = R * 299/1000 + G * 587/1000 + B * 114/1000
When `flatten` is True, the image is converted using mode 'F'.
When `mode` is not None and `flatten` is True, the image is first
converted according to `mode`, and the result is then flattened using
mode 'F'.
"""
if not pillow_installed:
raise ImportError(PILLOW_ERROR_MESSAGE)
im = Image.open(name)
return fromimage(im, flatten=flatten, mode=mode)
def imsave(name, arr, format=None):
"""
Save an array as an image.
This function is only available if Python Imaging Library (PIL) is installed.
.. warning::
This function uses `bytescale` under the hood to rescale images to use
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
It will also cast data for 2-D images to ``uint32`` for ``mode=None``
(which is the default).
Parameters
----------
name : str or file object
Output file name or file object.
arr : ndarray, MxN or MxNx3 or MxNx4
Array containing image values. If the shape is ``MxN``, the array
represents a grey-level image. Shape ``MxNx3`` stores the red, green
and blue bands along the last dimension. An alpha layer may be
included, specified as the last colour band of an ``MxNx4`` array.
format : str
Image format. If omitted, the format to use is determined from the
file name extension. If a file object was used instead of a file name,
this parameter should always be used.
Examples
--------
Construct an array of gradient intensity values and save to file:
>>> import numpy as np
>>> from scipy.misc import imsave
>>> x = np.zeros((255, 255))
>>> x = np.zeros((255, 255), dtype=np.uint8)
>>> x[:] = np.arange(255)
>>> imsave('gradient.png', x)
Construct an array with three colour bands (R, G, B) and store to file:
>>> rgb = np.zeros((255, 255, 3), dtype=np.uint8)
>>> rgb[..., 0] = np.arange(255)
>>> rgb[..., 1] = 55
>>> rgb[..., 2] = 1 - np.arange(255)
>>> imsave('rgb_gradient.png', rgb)
"""
im = toimage(arr, channel_axis=2)
if format is None:
im.save(name)
else:
im.save(name, format)
return
def fromimage(im, flatten=False, mode=None):
"""
Return a copy of a PIL image as a numpy array.
This function is only available if Python Imaging Library (PIL) is installed.
Parameters
----------
im : PIL image
Input image.
flatten : bool
If true, convert the output to grey-scale.
mode : str, optional
Mode to convert image to, e.g. ``'RGB'``. See the Notes of the
`imread` docstring for more details.
Returns
-------
fromimage : ndarray
The different colour bands/channels are stored in the
third dimension, such that a grey-image is MxN, an
RGB-image MxNx3 and an RGBA-image MxNx4.
"""
if not pillow_installed:
raise ImportError(PILLOW_ERROR_MESSAGE)
if not Image.isImageType(im):
raise TypeError("Input is not a PIL image.")
if mode is not None:
if mode != im.mode:
im = im.convert(mode)
elif im.mode == 'P':
# Mode 'P' means there is an indexed "palette". If we leave the mode
# as 'P', then when we do `a = array(im)` below, `a` will be a 2-D
# containing the indices into the palette, and not a 3-D array
# containing the RGB or RGBA values.
if 'transparency' in im.info:
im = im.convert('RGBA')
else:
im = im.convert('RGB')
if flatten:
im = im.convert('F')
elif im.mode == '1':
# Workaround for crash in PIL. When im is 1-bit, the call array(im)
# can cause a seg. fault, or generate garbage. See
# https://github.com/scipy/scipy/issues/2138 and
# https://github.com/python-pillow/Pillow/issues/350.
#
# This converts im from a 1-bit image to an 8-bit image.
im = im.convert('L')
a = array(im)
return a
_errstr = "Mode is unknown or incompatible with input array shape."
def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None,
mode=None, channel_axis=None):
"""Takes a numpy array and returns a PIL image.
This function is only available if Python Imaging Library (PIL) is installed.
The mode of the PIL image depends on the array shape and the `pal` and
`mode` keywords.
For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values
(from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode
is given as 'F' or 'I' in which case a float and/or integer array is made.
.. warning::
This function uses `bytescale` under the hood to rescale images to use
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
It will also cast data for 2-D images to ``uint32`` for ``mode=None``
(which is the default).
Notes
-----
For 3-D arrays, the `channel_axis` argument tells which dimension of the
array holds the channel data.
For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
by default or 'YCbCr' if selected.
The numpy array must be either 2 dimensional or 3 dimensional.
"""
if not pillow_installed:
raise ImportError(PILLOW_ERROR_MESSAGE)
data = asarray(arr)
if iscomplexobj(data):
raise ValueError("Cannot convert a complex-valued array.")
shape = list(data.shape)
valid = len(shape) == 2 or ((len(shape) == 3) and
((3 in shape) or (4 in shape)))
if not valid:
raise ValueError("'arr' does not have a suitable array shape for "
"any mode.")
if len(shape) == 2:
shape = (shape[1], shape[0]) # columns show up first
if mode == 'F':
data32 = data.astype(numpy.float32)
image = Image.frombytes(mode, shape, data32.tostring())
return image
if mode in [None, 'L', 'P']:
bytedata = bytescale(data, high=high, low=low,
cmin=cmin, cmax=cmax)
image = Image.frombytes('L', shape, bytedata.tostring())
if pal is not None:
image.putpalette(asarray(pal, dtype=uint8).tostring())
# Becomes a mode='P' automagically.
elif mode == 'P': # default gray-scale
pal = (arange(0, 256, 1, dtype=uint8)[:, newaxis] *
ones((3,), dtype=uint8)[newaxis, :])
image.putpalette(asarray(pal, dtype=uint8).tostring())
return image
if mode == '1': # high input gives threshold for 1
bytedata = (data > high)
image = Image.frombytes('1', shape, bytedata.tostring())
return image
if cmin is None:
cmin = amin(ravel(data))
if cmax is None:
cmax = amax(ravel(data))
data = (data*1.0 - cmin)*(high - low)/(cmax - cmin) + low
if mode == 'I':
data32 = data.astype(numpy.uint32)
image = Image.frombytes(mode, shape, data32.tostring())
else:
raise ValueError(_errstr)
return image
# if here then 3-d array with a 3 or a 4 in the shape length.
# Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
if channel_axis is None:
if (3 in shape):
ca = numpy.flatnonzero(asarray(shape) == 3)[0]
else:
ca = numpy.flatnonzero(asarray(shape) == 4)
if len(ca):
ca = ca[0]
else:
raise ValueError("Could not find channel dimension.")
else:
ca = channel_axis
numch = shape[ca]
if numch not in [3, 4]:
raise ValueError("Channel axis dimension is not valid.")
bytedata = bytescale(data, high=high, low=low, cmin=cmin, cmax=cmax)
if ca == 2:
strdata = bytedata.tostring()
shape = (shape[1], shape[0])
elif ca == 1:
strdata = transpose(bytedata, (0, 2, 1)).tostring()
shape = (shape[2], shape[0])
elif ca == 0:
strdata = transpose(bytedata, (1, 2, 0)).tostring()
shape = (shape[2], shape[1])
if mode is None:
if numch == 3:
mode = 'RGB'
else:
mode = 'RGBA'
if mode not in ['RGB', 'RGBA', 'YCbCr', 'CMYK']:
raise ValueError(_errstr)
if mode in ['RGB', 'YCbCr']:
if numch != 3:
raise ValueError("Invalid array shape for mode.")
if mode in ['RGBA', 'CMYK']:
if numch != 4:
raise ValueError("Invalid array shape for mode.")
# Here we know data and mode is correct
image = Image.frombytes(mode, shape, strdata)
return image
def imresize(arr, size, interp='bilinear', mode=None):
"""
Resize an image.
This function is only available if Python Imaging Library (PIL) is installed.
.. warning::
This function uses `bytescale` under the hood to rescale images to use
the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``.
It will also cast data for 2-D images to ``uint32`` for ``mode=None``
(which is the default).
Parameters
----------
arr : ndarray
The array of image to be resized.
size : int, float or tuple
* int - Percentage of current size.
* float - Fraction of current size.
* tuple - Size of the output image (height, width).
interp : str, optional
Interpolation to use for re-sizing ('nearest', 'lanczos', 'bilinear',
'bicubic' or 'cubic').
mode : str, optional
The PIL image mode ('P', 'L', etc.) to convert `arr` before resizing.
If ``mode=None`` (the default), 2-D images will be treated like
``mode='L'``, i.e. casting to long integer. For 3-D and 4-D arrays,
`mode` will be set to ``'RGB'`` and ``'RGBA'`` respectively.
Returns
-------
imresize : ndarray
The resized array of image.
See Also
--------
toimage : Implicitly used to convert `arr` according to `mode`.
scipy.ndimage.zoom : More generic implementation that does not use PIL.
"""
im = toimage(arr, mode=mode)
ts = type(size)
if issubdtype(ts, numpy.signedinteger):
percent = size / 100.0
size = tuple((array(im.size)*percent).astype(int))
elif issubdtype(type(size), numpy.floating):
size = tuple((array(im.size)*size).astype(int))
else:
size = (size[1], size[0])
func = {'nearest': 0, 'lanczos': 1, 'bilinear': 2, 'bicubic': 3, 'cubic': 3}
imnew = im.resize(size, resample=func[interp])
return fromimage(imnew)