_lobpcg.py 25.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
"""
scikit-learn copy of scipy/sparse/linalg/eigen/lobpcg/lobpcg.py v1.3.0
to be deleted after scipy 1.3.0 becomes a dependency in scikit-lean
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).

References
----------
.. [1] A. V. Knyazev (2001),
       Toward the Optimal Preconditioned Eigensolver: Locally Optimal
       Block Preconditioned Conjugate Gradient Method.
       SIAM Journal on Scientific Computing 23, no. 2,
       pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124

.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007),
       Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX)
       in hypre and PETSc.  https://arxiv.org/abs/0705.2626

.. [3] A. V. Knyazev's C and MATLAB implementations:
       https://bitbucket.org/joseroman/blopex
"""

from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.linalg import (inv, eigh, cho_factor, cho_solve, cholesky, orth,
                          LinAlgError)
from scipy.sparse.linalg import aslinearoperator

__all__ = ['lobpcg']


def bmat(*args, **kwargs):
    import warnings
    with warnings.catch_warnings(record=True):
        warnings.filterwarnings(
            'ignore', '.*the matrix subclass is not the recommended way.*')
        return np.bmat(*args, **kwargs)


def _save(ar, fileName):
    # Used only when verbosity level > 10.
    np.savetxt(fileName, ar)


def _report_nonhermitian(M, name):
    """
    Report if `M` is not a hermitian matrix given its type.
    """
    from scipy.linalg import norm

    md = M - M.T.conj()

    nmd = norm(md, 1)
    tol = 10 * np.finfo(M.dtype).eps
    tol = max(tol, tol * norm(M, 1))
    if nmd > tol:
        print('matrix %s of the type %s is not sufficiently Hermitian:'
              % (name, M.dtype))
        print('condition: %.e < %e' % (nmd, tol))


def _as2d(ar):
    """
    If the input array is 2D return it, if it is 1D, append a dimension,
    making it a column vector.
    """
    if ar.ndim == 2:
        return ar
    else:  # Assume 1!
        aux = np.array(ar, copy=False)
        aux.shape = (ar.shape[0], 1)
        return aux


def _makeOperator(operatorInput, expectedShape):
    """Takes a dense numpy array or a sparse matrix or
    a function and makes an operator performing matrix * blockvector
    products."""
    if operatorInput is None:
        return None
    else:
        operator = aslinearoperator(operatorInput)

    if operator.shape != expectedShape:
        raise ValueError('operator has invalid shape')

    return operator


def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY):
    """Changes blockVectorV in place."""
    YBV = np.dot(blockVectorBY.T.conj(), blockVectorV)
    tmp = cho_solve(factYBY, YBV)
    blockVectorV -= np.dot(blockVectorY, tmp)


def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, retInvR=False):
    """B-orthonormalize the given block vector using Cholesky."""
    normalization = blockVectorV.max(axis=0)+np.finfo(blockVectorV.dtype).eps
    blockVectorV = blockVectorV / normalization
    if blockVectorBV is None:
        if B is not None:
            blockVectorBV = B(blockVectorV)
        else:
            blockVectorBV = blockVectorV  # Shared data!!!
    else:
        blockVectorBV = blockVectorBV / normalization
    VBV = np.matmul(blockVectorV.T.conj(), blockVectorBV)
    try:
        # VBV is a Cholesky factor from now on...
        VBV = cholesky(VBV, overwrite_a=True)
        VBV = inv(VBV, overwrite_a=True)
        blockVectorV = np.matmul(blockVectorV, VBV)
        # blockVectorV = (cho_solve((VBV.T, True), blockVectorV.T)).T
        if B is not None:
            blockVectorBV = np.matmul(blockVectorBV, VBV)
            # blockVectorBV = (cho_solve((VBV.T, True), blockVectorBV.T)).T
        else:
            blockVectorBV = None
    except LinAlgError:
        # raise ValueError('Cholesky has failed')
        blockVectorV = None
        blockVectorBV = None
        VBV = None

    if retInvR:
        return blockVectorV, blockVectorBV, VBV, normalization
    else:
        return blockVectorV, blockVectorBV


def _get_indx(_lambda, num, largest):
    """Get `num` indices into `_lambda` depending on `largest` option."""
    ii = np.argsort(_lambda)
    if largest:
        ii = ii[:-num-1:-1]
    else:
        ii = ii[:num]

    return ii


def lobpcg(A, X,
           B=None, M=None, Y=None,
           tol=None, maxiter=20,
           largest=True, verbosityLevel=0,
           retLambdaHistory=False, retResidualNormsHistory=False):
    """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG)

    LOBPCG is a preconditioned eigensolver for large symmetric positive
    definite (SPD) generalized eigenproblems.

    Parameters
    ----------
    A : {sparse matrix, dense matrix, LinearOperator}
        The symmetric linear operator of the problem, usually a
        sparse matrix.  Often called the "stiffness matrix".
    X : ndarray, float32 or float64
        Initial approximation to the ``k`` eigenvectors (non-sparse). If `A`
        has ``shape=(n,n)`` then `X` should have shape ``shape=(n,k)``.
    B : {dense matrix, sparse matrix, LinearOperator}, optional
        The right hand side operator in a generalized eigenproblem.
        By default, ``B = Identity``.  Often called the "mass matrix".
    M : {dense matrix, sparse matrix, LinearOperator}, optional
        Preconditioner to `A`; by default ``M = Identity``.
        `M` should approximate the inverse of `A`.
    Y : ndarray, float32 or float64, optional
        n-by-sizeY matrix of constraints (non-sparse), sizeY < n
        The iterations will be performed in the B-orthogonal complement
        of the column-space of Y. Y must be full rank.
    tol : scalar, optional
        Solver tolerance (stopping criterion).
        The default is ``tol=n*sqrt(eps)``.
    maxiter : int, optional
        Maximum number of iterations.  The default is ``maxiter=min(n, 20)``.
    largest : bool, optional
        When True, solve for the largest eigenvalues, otherwise the smallest.
    verbosityLevel : int, optional
        Controls solver output.  The default is ``verbosityLevel=0``.
    retLambdaHistory : bool, optional
        Whether to return eigenvalue history.  Default is False.
    retResidualNormsHistory : bool, optional
        Whether to return history of residual norms.  Default is False.

    Returns
    -------
    w : ndarray
        Array of ``k`` eigenvalues
    v : ndarray
        An array of ``k`` eigenvectors.  `v` has the same shape as `X`.
    lambdas : list of ndarray, optional
        The eigenvalue history, if `retLambdaHistory` is True.
    rnorms : list of ndarray, optional
        The history of residual norms, if `retResidualNormsHistory` is True.

    Notes
    -----
    If both ``retLambdaHistory`` and ``retResidualNormsHistory`` are True,
    the return tuple has the following format
    ``(lambda, V, lambda history, residual norms history)``.

    In the following ``n`` denotes the matrix size and ``m`` the number
    of required eigenvalues (smallest or largest).

    The LOBPCG code internally solves eigenproblems of the size ``3m`` on every
    iteration by calling the "standard" dense eigensolver, so if ``m`` is not
    small enough compared to ``n``, it does not make sense to call the LOBPCG
    code, but rather one should use the "standard" eigensolver, e.g. numpy or
    scipy function in this case.
    If one calls the LOBPCG algorithm for ``5m > n``, it will most likely break
    internally, so the code tries to call the standard function instead.

    It is not that ``n`` should be large for the LOBPCG to work, but rather the
    ratio ``n / m`` should be large. It you call LOBPCG with ``m=1``
    and ``n=10``, it works though ``n`` is small. The method is intended
    for extremely large ``n / m``, see e.g., reference [28] in
    https://arxiv.org/abs/0705.2626

    The convergence speed depends basically on two factors:

    1. How well relatively separated the seeking eigenvalues are from the rest
       of the eigenvalues. One can try to vary ``m`` to make this better.

    2. How well conditioned the problem is. This can be changed by using proper
       preconditioning. For example, a rod vibration test problem (under tests
       directory) is ill-conditioned for large ``n``, so convergence will be
       slow, unless efficient preconditioning is used. For this specific
       problem, a good simple preconditioner function would be a linear solve
       for `A`, which is easy to code since A is tridiagonal.

    References
    ----------
    .. [1] A. V. Knyazev (2001),
           Toward the Optimal Preconditioned Eigensolver: Locally Optimal
           Block Preconditioned Conjugate Gradient Method.
           SIAM Journal on Scientific Computing 23, no. 2,
           pp. 517-541. http://dx.doi.org/10.1137/S1064827500366124

    .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov
           (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers
           (BLOPEX) in hypre and PETSc. https://arxiv.org/abs/0705.2626

    .. [3] A. V. Knyazev's C and MATLAB implementations:
           https://bitbucket.org/joseroman/blopex

    Examples
    --------

    Solve ``A x = lambda x`` with constraints and preconditioning.

    >>> import numpy as np
    >>> from scipy.sparse import spdiags, issparse
    >>> from scipy.sparse.linalg import lobpcg, LinearOperator
    >>> n = 100
    >>> vals = np.arange(1, n + 1)
    >>> A = spdiags(vals, 0, n, n)
    >>> A.toarray()
    array([[  1.,   0.,   0., ...,   0.,   0.,   0.],
           [  0.,   2.,   0., ...,   0.,   0.,   0.],
           [  0.,   0.,   3., ...,   0.,   0.,   0.],
           ...,
           [  0.,   0.,   0., ...,  98.,   0.,   0.],
           [  0.,   0.,   0., ...,   0.,  99.,   0.],
           [  0.,   0.,   0., ...,   0.,   0., 100.]])

    Constraints:

    >>> Y = np.eye(n, 3)

    Initial guess for eigenvectors, should have linearly independent
    columns. Column dimension = number of requested eigenvalues.

    >>> X = np.random.rand(n, 3)

    Preconditioner in the inverse of A in this example:

    >>> invA = spdiags([1./vals], 0, n, n)

    The preconditiner must be defined by a function:

    >>> def precond( x ):
    ...     return invA @ x

    The argument x of the preconditioner function is a matrix inside `lobpcg`,
    thus the use of matrix-matrix product ``@``.

    The preconditioner function is passed to lobpcg as a `LinearOperator`:

    >>> M = LinearOperator(matvec=precond, matmat=precond,
    ...                    shape=(n, n), dtype=float)

    Let us now solve the eigenvalue problem for the matrix A:

    >>> eigenvalues, _ = lobpcg(A, X, Y=Y, M=M, largest=False)
    >>> eigenvalues
    array([4., 5., 6.])

    Note that the vectors passed in Y are the eigenvectors of the 3 smallest
    eigenvalues. The results returned are orthogonal to those.

    """
    blockVectorX = X
    blockVectorY = Y
    residualTolerance = tol
    maxIterations = maxiter

    if blockVectorY is not None:
        sizeY = blockVectorY.shape[1]
    else:
        sizeY = 0

    # Block size.
    if len(blockVectorX.shape) != 2:
        raise ValueError('expected rank-2 array for argument X')

    n, sizeX = blockVectorX.shape

    if verbosityLevel:
        aux = "Solving "
        if B is None:
            aux += "standard"
        else:
            aux += "generalized"
        aux += " eigenvalue problem with"
        if M is None:
            aux += "out"
        aux += " preconditioning\n\n"
        aux += "matrix size %d\n" % n
        aux += "block size %d\n\n" % sizeX
        if blockVectorY is None:
            aux += "No constraints\n\n"
        else:
            if sizeY > 1:
                aux += "%d constraints\n\n" % sizeY
            else:
                aux += "%d constraint\n\n" % sizeY
        print(aux)

    A = _makeOperator(A, (n, n))
    B = _makeOperator(B, (n, n))
    M = _makeOperator(M, (n, n))

    if (n - sizeY) < (5 * sizeX):
        # warn('The problem size is small compared to the block size.' \
        #        ' Using dense eigensolver instead of LOBPCG.')

        sizeX = min(sizeX, n)

        if blockVectorY is not None:
            raise NotImplementedError('The dense eigensolver '
                                      'does not support constraints.')

        # Define the closed range of indices of eigenvalues to return.
        if largest:
            eigvals = (n - sizeX, n-1)
        else:
            eigvals = (0, sizeX-1)

        A_dense = A(np.eye(n, dtype=A.dtype))
        B_dense = None if B is None else B(np.eye(n, dtype=B.dtype))

        vals, vecs = eigh(A_dense, B_dense, eigvals=eigvals,
                          check_finite=False)
        if largest:
            # Reverse order to be compatible with eigs() in 'LM' mode.
            vals = vals[::-1]
            vecs = vecs[:, ::-1]

        return vals, vecs

    if (residualTolerance is None) or (residualTolerance <= 0.0):
        residualTolerance = np.sqrt(1e-15) * n

    # Apply constraints to X.
    if blockVectorY is not None:

        if B is not None:
            blockVectorBY = B(blockVectorY)
        else:
            blockVectorBY = blockVectorY

        # gramYBY is a dense array.
        gramYBY = np.dot(blockVectorY.T.conj(), blockVectorBY)
        try:
            # gramYBY is a Cholesky factor from now on...
            gramYBY = cho_factor(gramYBY)
        except LinAlgError:
            raise ValueError('cannot handle linearly dependent constraints')

        _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY)

    ##
    # B-orthonormalize X.
    blockVectorX, blockVectorBX = _b_orthonormalize(B, blockVectorX)

    ##
    # Compute the initial Ritz vectors: solve the eigenproblem.
    blockVectorAX = A(blockVectorX)
    gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)

    _lambda, eigBlockVector = eigh(gramXAX, check_finite=False)
    ii = _get_indx(_lambda, sizeX, largest)
    _lambda = _lambda[ii]

    eigBlockVector = np.asarray(eigBlockVector[:, ii])
    blockVectorX = np.dot(blockVectorX, eigBlockVector)
    blockVectorAX = np.dot(blockVectorAX, eigBlockVector)
    if B is not None:
        blockVectorBX = np.dot(blockVectorBX, eigBlockVector)

    ##
    # Active index set.
    activeMask = np.ones((sizeX,), dtype=bool)

    lambdaHistory = [_lambda]
    residualNormsHistory = []

    previousBlockSize = sizeX
    ident = np.eye(sizeX, dtype=A.dtype)
    ident0 = np.eye(sizeX, dtype=A.dtype)

    ##
    # Main iteration loop.

    blockVectorP = None  # set during iteration
    blockVectorAP = None
    blockVectorBP = None

    iterationNumber = -1
    restart = True
    explicitGramFlag = False
    while iterationNumber < maxIterations:
        iterationNumber += 1
        if verbosityLevel > 0:
            print('iteration %d' % iterationNumber)

        if B is not None:
            aux = blockVectorBX * _lambda[np.newaxis, :]
        else:
            aux = blockVectorX * _lambda[np.newaxis, :]

        blockVectorR = blockVectorAX - aux

        aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
        residualNorms = np.sqrt(aux)

        residualNormsHistory.append(residualNorms)

        ii = np.where(residualNorms > residualTolerance, True, False)
        activeMask = activeMask & ii
        if verbosityLevel > 2:
            print(activeMask)

        currentBlockSize = activeMask.sum()
        if currentBlockSize != previousBlockSize:
            previousBlockSize = currentBlockSize
            ident = np.eye(currentBlockSize, dtype=A.dtype)

        if currentBlockSize == 0:
            break

        if verbosityLevel > 0:
            print('current block size:', currentBlockSize)
            print('eigenvalue:', _lambda)
            print('residual norms:', residualNorms)
        if verbosityLevel > 10:
            print(eigBlockVector)

        activeBlockVectorR = _as2d(blockVectorR[:, activeMask])

        if iterationNumber > 0:
            activeBlockVectorP = _as2d(blockVectorP[:, activeMask])
            activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask])
            if B is not None:
                activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask])

        if M is not None:
            # Apply preconditioner T to the active residuals.
            activeBlockVectorR = M(activeBlockVectorR)

        ##
        # Apply constraints to the preconditioned residuals.
        if blockVectorY is not None:
            _applyConstraints(activeBlockVectorR,
                              gramYBY, blockVectorBY, blockVectorY)

        ##
        # B-orthogonalize the preconditioned residuals to X.
        if B is not None:
            activeBlockVectorR = activeBlockVectorR - \
                np.matmul(blockVectorX,
                          np.matmul(blockVectorBX.T.conj(),
                                    activeBlockVectorR))
        else:
            activeBlockVectorR = activeBlockVectorR - \
                np.matmul(blockVectorX,
                          np.matmul(blockVectorX.T.conj(),
                                    activeBlockVectorR))

        ##
        # B-orthonormalize the preconditioned residuals.
        aux = _b_orthonormalize(B, activeBlockVectorR)
        activeBlockVectorR, activeBlockVectorBR = aux

        activeBlockVectorAR = A(activeBlockVectorR)

        if iterationNumber > 0:
            if B is not None:
                aux = _b_orthonormalize(B, activeBlockVectorP,
                                        activeBlockVectorBP, retInvR=True)
                activeBlockVectorP, activeBlockVectorBP, invR, normal = aux
            else:
                aux = _b_orthonormalize(B, activeBlockVectorP, retInvR=True)
                activeBlockVectorP, _, invR, normal = aux
            # Function _b_orthonormalize returns None if Cholesky fails
            if activeBlockVectorP is not None:
                activeBlockVectorAP = activeBlockVectorAP / normal
                activeBlockVectorAP = np.dot(activeBlockVectorAP, invR)
                restart = False
            else:
                restart = True

        ##
        # Perform the Rayleigh Ritz Procedure:
        # Compute symmetric Gram matrices:

        if activeBlockVectorAR.dtype == 'float32':
            myeps = 1
        elif activeBlockVectorR.dtype == 'float32':
            myeps = 1e-4
        else:
            myeps = 1e-8

        if residualNorms.max() > myeps and not explicitGramFlag:
            explicitGramFlag = False
        else:
            # Once explicitGramFlag, forever explicitGramFlag.
            explicitGramFlag = True

        # Shared memory assingments to simplify the code
        if B is None:
            blockVectorBX = blockVectorX
            activeBlockVectorBR = activeBlockVectorR
            if not restart:
                activeBlockVectorBP = activeBlockVectorP

        # Common submatrices:
        gramXAR = np.dot(blockVectorX.T.conj(), activeBlockVectorAR)
        gramRAR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR)

        if explicitGramFlag:
            gramRAR = (gramRAR + gramRAR.T.conj())/2
            gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX)
            gramXAX = (gramXAX + gramXAX.T.conj())/2
            gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX)
            gramRBR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBR)
            gramXBR = np.dot(blockVectorX.T.conj(), activeBlockVectorBR)
        else:
            gramXAX = np.diag(_lambda)
            gramXBX = ident0
            gramRBR = ident
            gramXBR = np.zeros((sizeX, currentBlockSize), dtype=A.dtype)

        def _handle_gramA_gramB_verbosity(gramA, gramB):
            if verbosityLevel > 0:
                _report_nonhermitian(gramA, 'gramA')
                _report_nonhermitian(gramB, 'gramB')
            if verbosityLevel > 10:
                # Note: not documented, but leave it in here for now
                np.savetxt('gramA.txt', gramA)
                np.savetxt('gramB.txt', gramB)

        if not restart:
            gramXAP = np.dot(blockVectorX.T.conj(), activeBlockVectorAP)
            gramRAP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP)
            gramPAP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP)
            gramXBP = np.dot(blockVectorX.T.conj(), activeBlockVectorBP)
            gramRBP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP)
            if explicitGramFlag:
                gramPAP = (gramPAP + gramPAP.T.conj())/2
                gramPBP = np.dot(activeBlockVectorP.T.conj(),
                                 activeBlockVectorBP)
            else:
                gramPBP = ident

            gramA = bmat([[gramXAX, gramXAR, gramXAP],
                          [gramXAR.T.conj(), gramRAR, gramRAP],
                          [gramXAP.T.conj(), gramRAP.T.conj(), gramPAP]])
            gramB = bmat([[gramXBX, gramXBR, gramXBP],
                          [gramXBR.T.conj(), gramRBR, gramRBP],
                          [gramXBP.T.conj(), gramRBP.T.conj(), gramPBP]])

            _handle_gramA_gramB_verbosity(gramA, gramB)

            try:
                _lambda, eigBlockVector = eigh(gramA, gramB,
                                               check_finite=False)
            except LinAlgError:
                # try again after dropping the direction vectors P from RR
                restart = True

        if restart:
            gramA = bmat([[gramXAX, gramXAR],
                          [gramXAR.T.conj(), gramRAR]])
            gramB = bmat([[gramXBX, gramXBR],
                          [gramXBR.T.conj(), gramRBR]])

            _handle_gramA_gramB_verbosity(gramA, gramB)

            try:
                _lambda, eigBlockVector = eigh(gramA, gramB,
                                               check_finite=False)
            except LinAlgError:
                raise ValueError('eigh has failed in lobpcg iterations')

        ii = _get_indx(_lambda, sizeX, largest)
        if verbosityLevel > 10:
            print(ii)
            print(_lambda)

        _lambda = _lambda[ii]
        eigBlockVector = eigBlockVector[:, ii]

        lambdaHistory.append(_lambda)

        if verbosityLevel > 10:
            print('lambda:', _lambda)
#         # Normalize eigenvectors!
#         aux = np.sum( eigBlockVector.conj() * eigBlockVector, 0 )
#         eigVecNorms = np.sqrt( aux )
#         eigBlockVector = eigBlockVector / eigVecNorms[np.newaxis, :]
#         eigBlockVector, aux = _b_orthonormalize( B, eigBlockVector )

        if verbosityLevel > 10:
            print(eigBlockVector)

        # Compute Ritz vectors.
        if B is not None:
            if not restart:
                eigBlockVectorX = eigBlockVector[:sizeX]
                eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
                eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]

                pp = np.dot(activeBlockVectorR, eigBlockVectorR)
                pp += np.dot(activeBlockVectorP, eigBlockVectorP)

                app = np.dot(activeBlockVectorAR, eigBlockVectorR)
                app += np.dot(activeBlockVectorAP, eigBlockVectorP)

                bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)
                bpp += np.dot(activeBlockVectorBP, eigBlockVectorP)
            else:
                eigBlockVectorX = eigBlockVector[:sizeX]
                eigBlockVectorR = eigBlockVector[sizeX:]

                pp = np.dot(activeBlockVectorR, eigBlockVectorR)
                app = np.dot(activeBlockVectorAR, eigBlockVectorR)
                bpp = np.dot(activeBlockVectorBR, eigBlockVectorR)

            if verbosityLevel > 10:
                print(pp)
                print(app)
                print(bpp)

            blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
            blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app
            blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp

            blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp

        else:
            if not restart:
                eigBlockVectorX = eigBlockVector[:sizeX]
                eigBlockVectorR = eigBlockVector[sizeX:sizeX+currentBlockSize]
                eigBlockVectorP = eigBlockVector[sizeX+currentBlockSize:]

                pp = np.dot(activeBlockVectorR, eigBlockVectorR)
                pp += np.dot(activeBlockVectorP, eigBlockVectorP)

                app = np.dot(activeBlockVectorAR, eigBlockVectorR)
                app += np.dot(activeBlockVectorAP, eigBlockVectorP)
            else:
                eigBlockVectorX = eigBlockVector[:sizeX]
                eigBlockVectorR = eigBlockVector[sizeX:]

                pp = np.dot(activeBlockVectorR, eigBlockVectorR)
                app = np.dot(activeBlockVectorAR, eigBlockVectorR)

            if verbosityLevel > 10:
                print(pp)
                print(app)

            blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp
            blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app

            blockVectorP, blockVectorAP = pp, app

    if B is not None:
        aux = blockVectorBX * _lambda[np.newaxis, :]

    else:
        aux = blockVectorX * _lambda[np.newaxis, :]

    blockVectorR = blockVectorAX - aux

    aux = np.sum(blockVectorR.conj() * blockVectorR, 0)
    residualNorms = np.sqrt(aux)

    # Future work: Need to add Postprocessing here:
    # Making sure eigenvectors "exactly" satisfy the blockVectorY constrains?
    # Making sure eigenvecotrs are "exactly" othonormalized by final "exact" RR
    # Computing the actual true residuals

    if verbosityLevel > 0:
        print('final eigenvalue:', _lambda)
        print('final residual norms:', residualNorms)

    if retLambdaHistory:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, lambdaHistory, residualNormsHistory
        else:
            return _lambda, blockVectorX, lambdaHistory
    else:
        if retResidualNormsHistory:
            return _lambda, blockVectorX, residualNormsHistory
        else:
            return _lambda, blockVectorX