test_common.py 7.2 KB
import pytest

from sklearn.base import clone
from sklearn.base import ClassifierMixin
from sklearn.base import is_classifier

from sklearn.datasets import make_classification
from sklearn.datasets import make_regression

from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.svm import LinearSVC, LinearSVR, SVC, SVR
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

from sklearn.ensemble import StackingClassifier, StackingRegressor
from sklearn.ensemble import VotingClassifier, VotingRegressor


@pytest.mark.parametrize(
    "X, y, estimator",
    [(*make_classification(n_samples=10),
      StackingClassifier(estimators=[('lr', LogisticRegression()),
                                     ('svm', LinearSVC()),
                                     ('rf', RandomForestClassifier())])),
     (*make_classification(n_samples=10),
      VotingClassifier(estimators=[('lr', LogisticRegression()),
                                   ('svm', LinearSVC()),
                                   ('rf', RandomForestClassifier())])),
     (*make_regression(n_samples=10),
      StackingRegressor(estimators=[('lr', LinearRegression()),
                                    ('svm', LinearSVR()),
                                    ('rf', RandomForestRegressor())])),
     (*make_regression(n_samples=10),
      VotingRegressor(estimators=[('lr', LinearRegression()),
                                  ('svm', LinearSVR()),
                                  ('rf', RandomForestRegressor())]))],
    ids=['stacking-classifier', 'voting-classifier',
         'stacking-regressor', 'voting-regressor']
)
def test_ensemble_heterogeneous_estimators_behavior(X, y, estimator):
    # check that the behavior of `estimators`, `estimators_`,
    # `named_estimators`, `named_estimators_` is consistent across all
    # ensemble classes and when using `set_params()`.

    # before fit
    assert 'svm' in estimator.named_estimators
    assert estimator.named_estimators.svm is estimator.estimators[1][1]
    assert estimator.named_estimators.svm is estimator.named_estimators['svm']

    # check fitted attributes
    estimator.fit(X, y)
    assert len(estimator.named_estimators) == 3
    assert len(estimator.named_estimators_) == 3
    assert (sorted(list(estimator.named_estimators_.keys())) ==
            sorted(['lr', 'svm', 'rf']))

    # check that set_params() does not add a new attribute
    estimator_new_params = clone(estimator)
    svm_estimator = SVC() if is_classifier(estimator) else SVR()
    estimator_new_params.set_params(svm=svm_estimator).fit(X, y)
    assert not hasattr(estimator_new_params, 'svm')
    assert (estimator_new_params.named_estimators.lr.get_params() ==
            estimator.named_estimators.lr.get_params())
    assert (estimator_new_params.named_estimators.rf.get_params() ==
            estimator.named_estimators.rf.get_params())

    # check the behavior when setting an dropping an estimator
    estimator_dropped = clone(estimator)
    estimator_dropped.set_params(svm='drop')
    estimator_dropped.fit(X, y)
    assert len(estimator_dropped.named_estimators) == 3
    assert estimator_dropped.named_estimators.svm == 'drop'
    assert len(estimator_dropped.named_estimators_) == 3
    assert (sorted(list(estimator_dropped.named_estimators_.keys())) ==
            sorted(['lr', 'svm', 'rf']))
    for sub_est in estimator_dropped.named_estimators_:
        # check that the correspondence is correct
        assert not isinstance(sub_est, type(estimator.named_estimators.svm))

    # check that we can set the parameters of the underlying classifier
    estimator.set_params(svm__C=10.0)
    estimator.set_params(rf__max_depth=5)
    assert (estimator.get_params()['svm__C'] ==
            estimator.get_params()['svm'].get_params()['C'])
    assert (estimator.get_params()['rf__max_depth'] ==
            estimator.get_params()['rf'].get_params()['max_depth'])


@pytest.mark.parametrize(
    "Ensemble",
    [StackingClassifier, VotingClassifier, StackingRegressor, VotingRegressor]
)
def test_ensemble_heterogeneous_estimators_type(Ensemble):
    # check that ensemble will fail during validation if the underlying
    # estimators are not of the same type (i.e. classifier or regressor)
    if issubclass(Ensemble, ClassifierMixin):
        X, y = make_classification(n_samples=10)
        estimators = [('lr', LinearRegression())]
        ensemble_type = 'classifier'
    else:
        X, y = make_regression(n_samples=10)
        estimators = [('lr', LogisticRegression())]
        ensemble_type = 'regressor'
    ensemble = Ensemble(estimators=estimators)

    err_msg = "should be a {}".format(ensemble_type)
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)


@pytest.mark.parametrize(
    "X, y, Ensemble",
    [(*make_classification(n_samples=10), StackingClassifier),
     (*make_classification(n_samples=10), VotingClassifier),
     (*make_regression(n_samples=10), StackingRegressor),
     (*make_regression(n_samples=10), VotingRegressor)]
)
def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble):
    # raise an error when the name contains dunder
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [('lr__', LogisticRegression())]
    else:
        estimators = [('lr__', LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = r"Estimator names must not contain __: got \['lr__'\]"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)

    # raise an error when the name is not unique
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [('lr', LogisticRegression()),
                      ('lr', LogisticRegression())]
    else:
        estimators = [('lr', LinearRegression()),
                      ('lr', LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = r"Names provided are not unique: \['lr', 'lr'\]"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)

    # raise an error when the name conflicts with the parameters
    if issubclass(Ensemble, ClassifierMixin):
        estimators = [('estimators', LogisticRegression())]
    else:
        estimators = [('estimators', LinearRegression())]
    ensemble = Ensemble(estimators=estimators)

    err_msg = "Estimator names conflict with constructor arguments"
    with pytest.raises(ValueError, match=err_msg):
        ensemble.fit(X, y)


@pytest.mark.parametrize(
    "X, y, estimator",
    [(*make_classification(n_samples=10),
      StackingClassifier(estimators=[('lr', LogisticRegression())])),
     (*make_classification(n_samples=10),
      VotingClassifier(estimators=[('lr', LogisticRegression())])),
     (*make_regression(n_samples=10),
      StackingRegressor(estimators=[('lr', LinearRegression())])),
     (*make_regression(n_samples=10),
      VotingRegressor(estimators=[('lr', LinearRegression())]))],
    ids=['stacking-classifier', 'voting-classifier',
         'stacking-regressor', 'voting-regressor']
)
def test_ensemble_heterogeneous_estimators_all_dropped(X, y, estimator):
    # check that we raise a consistent error when all estimators are
    # dropped
    estimator.set_params(lr='drop')
    with pytest.raises(ValueError, match="All estimators are dropped."):
        estimator.fit(X, y)