_weight_boosting.py 41.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
"""Weight Boosting

This module contains weight boosting estimators for both classification and
regression.

The module structure is the following:

- The ``BaseWeightBoosting`` base class implements a common ``fit`` method
  for all the estimators in the module. Regression and classification
  only differ from each other in the loss function that is optimized.

- ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for
  classification problems.

- ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for
  regression problems.
"""

# Authors: Noel Dawe <noel@dawe.me>
#          Gilles Louppe <g.louppe@gmail.com>
#          Hamzeh Alsalhi <ha258@cornell.edu>
#          Arnaud Joly <arnaud.v.joly@gmail.com>
#
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod

import numpy as np

from scipy.special import xlogy

from ._base import BaseEnsemble
from ..base import ClassifierMixin, RegressorMixin, is_classifier, is_regressor

from ..tree import DecisionTreeClassifier, DecisionTreeRegressor
from ..utils import check_array, check_random_state, _safe_indexing
from ..utils.extmath import softmax
from ..utils.extmath import stable_cumsum
from ..metrics import accuracy_score, r2_score
from ..utils.validation import check_is_fitted
from ..utils.validation import _check_sample_weight
from ..utils.validation import has_fit_parameter
from ..utils.validation import _num_samples
from ..utils.validation import _deprecate_positional_args

__all__ = [
    'AdaBoostClassifier',
    'AdaBoostRegressor',
]


class BaseWeightBoosting(BaseEnsemble, metaclass=ABCMeta):
    """Base class for AdaBoost estimators.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator=None, *,
                 n_estimators=50,
                 estimator_params=tuple(),
                 learning_rate=1.,
                 random_state=None):

        super().__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params)

        self.learning_rate = learning_rate
        self.random_state = random_state

    def _check_X(self, X):
        return check_array(X, accept_sparse=['csr', 'csc'], ensure_2d=True,
                           allow_nd=True, dtype=None)

    def fit(self, X, y, sample_weight=None):
        """Build a boosted classifier/regressor from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        y : array-like of shape (n_samples,)
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, the sample weights are initialized to
            1 / n_samples.

        Returns
        -------
        self : object
        """
        # Check parameters
        if self.learning_rate <= 0:
            raise ValueError("learning_rate must be greater than zero")

        X, y = self._validate_data(X, y,
                                   accept_sparse=['csr', 'csc'],
                                   ensure_2d=True,
                                   allow_nd=True,
                                   dtype=None,
                                   y_numeric=is_regressor(self))

        sample_weight = _check_sample_weight(sample_weight, X, np.float64)
        sample_weight /= sample_weight.sum()
        if np.any(sample_weight < 0):
            raise ValueError("sample_weight cannot contain negative weights")

        # Check parameters
        self._validate_estimator()

        # Clear any previous fit results
        self.estimators_ = []
        self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
        self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)

        # Initializion of the random number instance that will be used to
        # generate a seed at each iteration
        random_state = check_random_state(self.random_state)

        for iboost in range(self.n_estimators):
            # Boosting step
            sample_weight, estimator_weight, estimator_error = self._boost(
                iboost,
                X, y,
                sample_weight,
                random_state)

            # Early termination
            if sample_weight is None:
                break

            self.estimator_weights_[iboost] = estimator_weight
            self.estimator_errors_[iboost] = estimator_error

            # Stop if error is zero
            if estimator_error == 0:
                break

            sample_weight_sum = np.sum(sample_weight)

            # Stop if the sum of sample weights has become non-positive
            if sample_weight_sum <= 0:
                break

            if iboost < self.n_estimators - 1:
                # Normalize
                sample_weight /= sample_weight_sum

        return self

    @abstractmethod
    def _boost(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost.

        Warning: This method needs to be overridden by subclasses.

        Parameters
        ----------
        iboost : int
            The index of the current boost iteration.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        y : array-like of shape (n_samples,)
            The target values (class labels).

        sample_weight : array-like of shape (n_samples,)
            The current sample weights.

        random_state : RandomState
            The current random number generator

        Returns
        -------
        sample_weight : array-like of shape (n_samples,) or None
            The reweighted sample weights.
            If None then boosting has terminated early.

        estimator_weight : float
            The weight for the current boost.
            If None then boosting has terminated early.

        error : float
            The classification error for the current boost.
            If None then boosting has terminated early.
        """
        pass

    def staged_score(self, X, y, sample_weight=None):
        """Return staged scores for X, y.

        This generator method yields the ensemble score after each iteration of
        boosting and therefore allows monitoring, such as to determine the
        score on a test set after each boost.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        y : array-like of shape (n_samples,)
            Labels for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Yields
        ------
        z : float
        """
        X = self._check_X(X)

        for y_pred in self.staged_predict(X):
            if is_classifier(self):
                yield accuracy_score(y, y_pred, sample_weight=sample_weight)
            else:
                yield r2_score(y, y_pred, sample_weight=sample_weight)

    @property
    def feature_importances_(self):
        """The impurity-based feature importances.

        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : ndarray of shape (n_features,)
            The feature importances.
        """
        if self.estimators_ is None or len(self.estimators_) == 0:
            raise ValueError("Estimator not fitted, "
                             "call `fit` before `feature_importances_`.")

        try:
            norm = self.estimator_weights_.sum()
            return (sum(weight * clf.feature_importances_ for weight, clf
                    in zip(self.estimator_weights_, self.estimators_))
                    / norm)

        except AttributeError:
            raise AttributeError(
                "Unable to compute feature importances "
                "since base_estimator does not have a "
                "feature_importances_ attribute")


def _samme_proba(estimator, n_classes, X):
    """Calculate algorithm 4, step 2, equation c) of Zhu et al [1].

    References
    ----------
    .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

    """
    proba = estimator.predict_proba(X)

    # Displace zero probabilities so the log is defined.
    # Also fix negative elements which may occur with
    # negative sample weights.
    np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)
    log_proba = np.log(proba)

    return (n_classes - 1) * (log_proba - (1. / n_classes)
                              * log_proba.sum(axis=1)[:, np.newaxis])


class AdaBoostClassifier(ClassifierMixin, BaseWeightBoosting):
    """An AdaBoost classifier.

    An AdaBoost [1] classifier is a meta-estimator that begins by fitting a
    classifier on the original dataset and then fits additional copies of the
    classifier on the same dataset but where the weights of incorrectly
    classified instances are adjusted such that subsequent classifiers focus
    more on difficult cases.

    This class implements the algorithm known as AdaBoost-SAMME [2].

    Read more in the :ref:`User Guide <adaboost>`.

    .. versionadded:: 0.14

    Parameters
    ----------
    base_estimator : object, default=None
        The base estimator from which the boosted ensemble is built.
        Support for sample weighting is required, as well as proper
        ``classes_`` and ``n_classes_`` attributes. If ``None``, then
        the base estimator is ``DecisionTreeClassifier(max_depth=1)``.

    n_estimators : int, default=50
        The maximum number of estimators at which boosting is terminated.
        In case of perfect fit, the learning procedure is stopped early.

    learning_rate : float, default=1.
        Learning rate shrinks the contribution of each classifier by
        ``learning_rate``. There is a trade-off between ``learning_rate`` and
        ``n_estimators``.

    algorithm : {'SAMME', 'SAMME.R'}, default='SAMME.R'
        If 'SAMME.R' then use the SAMME.R real boosting algorithm.
        ``base_estimator`` must support calculation of class probabilities.
        If 'SAMME' then use the SAMME discrete boosting algorithm.
        The SAMME.R algorithm typically converges faster than SAMME,
        achieving a lower test error with fewer boosting iterations.

    random_state : int or RandomState, default=None
        Controls the random seed given at each `base_estimator` at each
        boosting iteration.
        Thus, it is only used when `base_estimator` exposes a `random_state`.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    base_estimator_ : estimator
        The base estimator from which the ensemble is grown.

    estimators_ : list of classifiers
        The collection of fitted sub-estimators.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_classes_ : int
        The number of classes.

    estimator_weights_ : ndarray of floats
        Weights for each estimator in the boosted ensemble.

    estimator_errors_ : ndarray of floats
        Classification error for each estimator in the boosted
        ensemble.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances if supported by the
        ``base_estimator`` (when based on decision trees).

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    See Also
    --------
    AdaBoostRegressor
        An AdaBoost regressor that begins by fitting a regressor on the
        original dataset and then fits additional copies of the regressor
        on the same dataset but where the weights of instances are
        adjusted according to the error of the current prediction.

    GradientBoostingClassifier
        GB builds an additive model in a forward stage-wise fashion. Regression
        trees are fit on the negative gradient of the binomial or multinomial
        deviance loss function. Binary classification is a special case where
        only a single regression tree is induced.

    sklearn.tree.DecisionTreeClassifier
        A non-parametric supervised learning method used for classification.
        Creates a model that predicts the value of a target variable by
        learning simple decision rules inferred from the data features.

    References
    ----------
    .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
           on-Line Learning and an Application to Boosting", 1995.

    .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.

    Examples
    --------
    >>> from sklearn.ensemble import AdaBoostClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=1000, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = AdaBoostClassifier(n_estimators=100, random_state=0)
    >>> clf.fit(X, y)
    AdaBoostClassifier(n_estimators=100, random_state=0)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])
    >>> clf.score(X, y)
    0.983...
    """
    @_deprecate_positional_args
    def __init__(self,
                 base_estimator=None, *,
                 n_estimators=50,
                 learning_rate=1.,
                 algorithm='SAMME.R',
                 random_state=None):

        super().__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            learning_rate=learning_rate,
            random_state=random_state)

        self.algorithm = algorithm

    def fit(self, X, y, sample_weight=None):
        """Build a boosted classifier from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        y : array-like of shape (n_samples,)
            The target values (class labels).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, the sample weights are initialized to
            ``1 / n_samples``.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        # Check that algorithm is supported
        if self.algorithm not in ('SAMME', 'SAMME.R'):
            raise ValueError("algorithm %s is not supported" % self.algorithm)

        # Fit
        return super().fit(X, y, sample_weight)

    def _validate_estimator(self):
        """Check the estimator and set the base_estimator_ attribute."""
        super()._validate_estimator(
            default=DecisionTreeClassifier(max_depth=1))

        #  SAMME-R requires predict_proba-enabled base estimators
        if self.algorithm == 'SAMME.R':
            if not hasattr(self.base_estimator_, 'predict_proba'):
                raise TypeError(
                    "AdaBoostClassifier with algorithm='SAMME.R' requires "
                    "that the weak learner supports the calculation of class "
                    "probabilities with a predict_proba method.\n"
                    "Please change the base estimator or set "
                    "algorithm='SAMME' instead.")
        if not has_fit_parameter(self.base_estimator_, "sample_weight"):
            raise ValueError("%s doesn't support sample_weight."
                             % self.base_estimator_.__class__.__name__)

    def _boost(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost.

        Perform a single boost according to the real multi-class SAMME.R
        algorithm or to the discrete SAMME algorithm and return the updated
        sample weights.

        Parameters
        ----------
        iboost : int
            The index of the current boost iteration.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples,)
            The target values (class labels).

        sample_weight : array-like of shape (n_samples,)
            The current sample weights.

        random_state : RandomState
            The RandomState instance used if the base estimator accepts a
            `random_state` attribute.

        Returns
        -------
        sample_weight : array-like of shape (n_samples,) or None
            The reweighted sample weights.
            If None then boosting has terminated early.

        estimator_weight : float
            The weight for the current boost.
            If None then boosting has terminated early.

        estimator_error : float
            The classification error for the current boost.
            If None then boosting has terminated early.
        """
        if self.algorithm == 'SAMME.R':
            return self._boost_real(iboost, X, y, sample_weight, random_state)

        else:  # elif self.algorithm == "SAMME":
            return self._boost_discrete(iboost, X, y, sample_weight,
                                        random_state)

    def _boost_real(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost using the SAMME.R real algorithm."""
        estimator = self._make_estimator(random_state=random_state)

        estimator.fit(X, y, sample_weight=sample_weight)

        y_predict_proba = estimator.predict_proba(X)

        if iboost == 0:
            self.classes_ = getattr(estimator, 'classes_', None)
            self.n_classes_ = len(self.classes_)

        y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1),
                                       axis=0)

        # Instances incorrectly classified
        incorrect = y_predict != y

        # Error fraction
        estimator_error = np.mean(
            np.average(incorrect, weights=sample_weight, axis=0))

        # Stop if classification is perfect
        if estimator_error <= 0:
            return sample_weight, 1., 0.

        # Construct y coding as described in Zhu et al [2]:
        #
        #    y_k = 1 if c == k else -1 / (K - 1)
        #
        # where K == n_classes_ and c, k in [0, K) are indices along the second
        # axis of the y coding with c being the index corresponding to the true
        # class label.
        n_classes = self.n_classes_
        classes = self.classes_
        y_codes = np.array([-1. / (n_classes - 1), 1.])
        y_coding = y_codes.take(classes == y[:, np.newaxis])

        # Displace zero probabilities so the log is defined.
        # Also fix negative elements which may occur with
        # negative sample weights.
        proba = y_predict_proba  # alias for readability
        np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)

        # Boost weight using multi-class AdaBoost SAMME.R alg
        estimator_weight = (-1. * self.learning_rate
                            * ((n_classes - 1.) / n_classes)
                            * xlogy(y_coding, y_predict_proba).sum(axis=1))

        # Only boost the weights if it will fit again
        if not iboost == self.n_estimators - 1:
            # Only boost positive weights
            sample_weight *= np.exp(estimator_weight *
                                    ((sample_weight > 0) |
                                     (estimator_weight < 0)))

        return sample_weight, 1., estimator_error

    def _boost_discrete(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost using the SAMME discrete algorithm."""
        estimator = self._make_estimator(random_state=random_state)

        estimator.fit(X, y, sample_weight=sample_weight)

        y_predict = estimator.predict(X)

        if iboost == 0:
            self.classes_ = getattr(estimator, 'classes_', None)
            self.n_classes_ = len(self.classes_)

        # Instances incorrectly classified
        incorrect = y_predict != y

        # Error fraction
        estimator_error = np.mean(
            np.average(incorrect, weights=sample_weight, axis=0))

        # Stop if classification is perfect
        if estimator_error <= 0:
            return sample_weight, 1., 0.

        n_classes = self.n_classes_

        # Stop if the error is at least as bad as random guessing
        if estimator_error >= 1. - (1. / n_classes):
            self.estimators_.pop(-1)
            if len(self.estimators_) == 0:
                raise ValueError('BaseClassifier in AdaBoostClassifier '
                                 'ensemble is worse than random, ensemble '
                                 'can not be fit.')
            return None, None, None

        # Boost weight using multi-class AdaBoost SAMME alg
        estimator_weight = self.learning_rate * (
            np.log((1. - estimator_error) / estimator_error) +
            np.log(n_classes - 1.))

        # Only boost the weights if I will fit again
        if not iboost == self.n_estimators - 1:
            # Only boost positive weights
            sample_weight *= np.exp(estimator_weight * incorrect *
                                    (sample_weight > 0))

        return sample_weight, estimator_weight, estimator_error

    def predict(self, X):
        """Predict classes for X.

        The predicted class of an input sample is computed as the weighted mean
        prediction of the classifiers in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted classes.
        """
        X = self._check_X(X)

        pred = self.decision_function(X)

        if self.n_classes_ == 2:
            return self.classes_.take(pred > 0, axis=0)

        return self.classes_.take(np.argmax(pred, axis=1), axis=0)

    def staged_predict(self, X):
        """Return staged predictions for X.

        The predicted class of an input sample is computed as the weighted mean
        prediction of the classifiers in the ensemble.

        This generator method yields the ensemble prediction after each
        iteration of boosting and therefore allows monitoring, such as to
        determine the prediction on a test set after each boost.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted classes.
        """
        X = self._check_X(X)

        n_classes = self.n_classes_
        classes = self.classes_

        if n_classes == 2:
            for pred in self.staged_decision_function(X):
                yield np.array(classes.take(pred > 0, axis=0))

        else:
            for pred in self.staged_decision_function(X):
                yield np.array(classes.take(
                    np.argmax(pred, axis=1), axis=0))

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Returns
        -------
        score : ndarray of shape of (n_samples, k)
            The decision function of the input samples. The order of
            outputs is the same of that of the :term:`classes_` attribute.
            Binary classification is a special cases with ``k == 1``,
            otherwise ``k==n_classes``. For binary classification,
            values closer to -1 or 1 mean more like the first or second
            class in ``classes_``, respectively.
        """
        check_is_fitted(self)
        X = self._check_X(X)

        n_classes = self.n_classes_
        classes = self.classes_[:, np.newaxis]

        if self.algorithm == 'SAMME.R':
            # The weights are all 1. for SAMME.R
            pred = sum(_samme_proba(estimator, n_classes, X)
                       for estimator in self.estimators_)
        else:  # self.algorithm == "SAMME"
            pred = sum((estimator.predict(X) == classes).T * w
                       for estimator, w in zip(self.estimators_,
                                               self.estimator_weights_))

        pred /= self.estimator_weights_.sum()
        if n_classes == 2:
            pred[:, 0] *= -1
            return pred.sum(axis=1)
        return pred

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each boosting iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each boosting iteration.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Yields
        ------
        score : generator of ndarray of shape (n_samples, k)
            The decision function of the input samples. The order of
            outputs is the same of that of the :term:`classes_` attribute.
            Binary classification is a special cases with ``k == 1``,
            otherwise ``k==n_classes``. For binary classification,
            values closer to -1 or 1 mean more like the first or second
            class in ``classes_``, respectively.
        """
        check_is_fitted(self)
        X = self._check_X(X)

        n_classes = self.n_classes_
        classes = self.classes_[:, np.newaxis]
        pred = None
        norm = 0.

        for weight, estimator in zip(self.estimator_weights_,
                                     self.estimators_):
            norm += weight

            if self.algorithm == 'SAMME.R':
                # The weights are all 1. for SAMME.R
                current_pred = _samme_proba(estimator, n_classes, X)
            else:  # elif self.algorithm == "SAMME":
                current_pred = estimator.predict(X)
                current_pred = (current_pred == classes).T * weight

            if pred is None:
                pred = current_pred
            else:
                pred += current_pred

            if n_classes == 2:
                tmp_pred = np.copy(pred)
                tmp_pred[:, 0] *= -1
                yield (tmp_pred / norm).sum(axis=1)
            else:
                yield pred / norm

    @staticmethod
    def _compute_proba_from_decision(decision, n_classes):
        """Compute probabilities from the decision function.

        This is based eq. (4) of [1] where:
            p(y=c|X) = exp((1 / K-1) f_c(X)) / sum_k(exp((1 / K-1) f_k(X)))
                     = softmax((1 / K-1) * f(X))

        References
        ----------
        .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost",
               2009.
        """
        if n_classes == 2:
            decision = np.vstack([-decision, decision]).T / 2
        else:
            decision /= (n_classes - 1)
        return softmax(decision, copy=False)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the weighted mean predicted class probabilities of the classifiers
        in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of
            outputs is the same of that of the :term:`classes_` attribute.
        """
        check_is_fitted(self)
        X = self._check_X(X)

        n_classes = self.n_classes_

        if n_classes == 1:
            return np.ones((_num_samples(X), 1))

        decision = self.decision_function(X)
        return self._compute_proba_from_decision(decision, n_classes)

    def staged_predict_proba(self, X):
        """Predict class probabilities for X.

        The predicted class probabilities of an input sample is computed as
        the weighted mean predicted class probabilities of the classifiers
        in the ensemble.

        This generator method yields the ensemble predicted class probabilities
        after each iteration of boosting and therefore allows monitoring, such
        as to determine the predicted class probabilities on a test set after
        each boost.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Yields
        -------
        p : generator of ndarray of shape (n_samples,)
            The class probabilities of the input samples. The order of
            outputs is the same of that of the :term:`classes_` attribute.
        """
        X = self._check_X(X)

        n_classes = self.n_classes_

        for decision in self.staged_decision_function(X):
            yield self._compute_proba_from_decision(decision, n_classes)

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the weighted mean predicted class log-probabilities of the classifiers
        in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of
            outputs is the same of that of the :term:`classes_` attribute.
        """
        X = self._check_X(X)
        return np.log(self.predict_proba(X))


class AdaBoostRegressor(RegressorMixin, BaseWeightBoosting):
    """An AdaBoost regressor.

    An AdaBoost [1] regressor is a meta-estimator that begins by fitting a
    regressor on the original dataset and then fits additional copies of the
    regressor on the same dataset but where the weights of instances are
    adjusted according to the error of the current prediction. As such,
    subsequent regressors focus more on difficult cases.

    This class implements the algorithm known as AdaBoost.R2 [2].

    Read more in the :ref:`User Guide <adaboost>`.

    .. versionadded:: 0.14

    Parameters
    ----------
    base_estimator : object, default=None
        The base estimator from which the boosted ensemble is built.
        If ``None``, then the base estimator is
        ``DecisionTreeRegressor(max_depth=3)``.

    n_estimators : int, default=50
        The maximum number of estimators at which boosting is terminated.
        In case of perfect fit, the learning procedure is stopped early.

    learning_rate : float, default=1.
        Learning rate shrinks the contribution of each regressor by
        ``learning_rate``. There is a trade-off between ``learning_rate`` and
        ``n_estimators``.

    loss : {'linear', 'square', 'exponential'}, default='linear'
        The loss function to use when updating the weights after each
        boosting iteration.

    random_state : int or RandomState, default=None
        Controls the random seed given at each `base_estimator` at each
        boosting iteration.
        Thus, it is only used when `base_estimator` exposes a `random_state`.
        In addition, it controls the bootstrap of the weights used to train the
        `base_estimator` at each boosting iteration.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    base_estimator_ : estimator
        The base estimator from which the ensemble is grown.

    estimators_ : list of classifiers
        The collection of fitted sub-estimators.

    estimator_weights_ : ndarray of floats
        Weights for each estimator in the boosted ensemble.

    estimator_errors_ : ndarray of floats
        Regression error for each estimator in the boosted ensemble.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances if supported by the
        ``base_estimator`` (when based on decision trees).

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    Examples
    --------
    >>> from sklearn.ensemble import AdaBoostRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=4, n_informative=2,
    ...                        random_state=0, shuffle=False)
    >>> regr = AdaBoostRegressor(random_state=0, n_estimators=100)
    >>> regr.fit(X, y)
    AdaBoostRegressor(n_estimators=100, random_state=0)
    >>> regr.predict([[0, 0, 0, 0]])
    array([4.7972...])
    >>> regr.score(X, y)
    0.9771...

    See also
    --------
    AdaBoostClassifier, GradientBoostingRegressor,
    sklearn.tree.DecisionTreeRegressor

    References
    ----------
    .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of
           on-Line Learning and an Application to Boosting", 1995.

    .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997.

    """
    @_deprecate_positional_args
    def __init__(self,
                 base_estimator=None, *,
                 n_estimators=50,
                 learning_rate=1.,
                 loss='linear',
                 random_state=None):

        super().__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            learning_rate=learning_rate,
            random_state=random_state)

        self.loss = loss
        self.random_state = random_state

    def fit(self, X, y, sample_weight=None):
        """Build a boosted regressor from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        y : array-like of shape (n_samples,)
            The target values (real numbers).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, the sample weights are initialized to
            1 / n_samples.

        Returns
        -------
        self : object
        """
        # Check loss
        if self.loss not in ('linear', 'square', 'exponential'):
            raise ValueError(
                "loss must be 'linear', 'square', or 'exponential'")

        # Fit
        return super().fit(X, y, sample_weight)

    def _validate_estimator(self):
        """Check the estimator and set the base_estimator_ attribute."""
        super()._validate_estimator(
            default=DecisionTreeRegressor(max_depth=3))

    def _boost(self, iboost, X, y, sample_weight, random_state):
        """Implement a single boost for regression

        Perform a single boost according to the AdaBoost.R2 algorithm and
        return the updated sample weights.

        Parameters
        ----------
        iboost : int
            The index of the current boost iteration.

        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples,)
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,)
            The current sample weights.

        random_state : RandomState
            The RandomState instance used if the base estimator accepts a
            `random_state` attribute.
            Controls also the bootstrap of the weights used to train the weak
            learner.
            replacement.

        Returns
        -------
        sample_weight : array-like of shape (n_samples,) or None
            The reweighted sample weights.
            If None then boosting has terminated early.

        estimator_weight : float
            The weight for the current boost.
            If None then boosting has terminated early.

        estimator_error : float
            The regression error for the current boost.
            If None then boosting has terminated early.
        """
        estimator = self._make_estimator(random_state=random_state)

        # Weighted sampling of the training set with replacement
        bootstrap_idx = random_state.choice(
            np.arange(_num_samples(X)), size=_num_samples(X), replace=True,
            p=sample_weight
        )

        # Fit on the bootstrapped sample and obtain a prediction
        # for all samples in the training set
        X_ = _safe_indexing(X, bootstrap_idx)
        y_ = _safe_indexing(y, bootstrap_idx)
        estimator.fit(X_, y_)
        y_predict = estimator.predict(X)

        error_vect = np.abs(y_predict - y)
        sample_mask = sample_weight > 0
        masked_sample_weight = sample_weight[sample_mask]
        masked_error_vector = error_vect[sample_mask]

        error_max = masked_error_vector.max()
        if error_max != 0:
            masked_error_vector /= error_max

        if self.loss == 'square':
            masked_error_vector **= 2
        elif self.loss == 'exponential':
            masked_error_vector = 1. - np.exp(-masked_error_vector)

        # Calculate the average loss
        estimator_error = (masked_sample_weight * masked_error_vector).sum()

        if estimator_error <= 0:
            # Stop if fit is perfect
            return sample_weight, 1., 0.

        elif estimator_error >= 0.5:
            # Discard current estimator only if it isn't the only one
            if len(self.estimators_) > 1:
                self.estimators_.pop(-1)
            return None, None, None

        beta = estimator_error / (1. - estimator_error)

        # Boost weight using AdaBoost.R2 alg
        estimator_weight = self.learning_rate * np.log(1. / beta)

        if not iboost == self.n_estimators - 1:
            sample_weight[sample_mask] *= np.power(
                beta, (1. - masked_error_vector) * self.learning_rate
            )

        return sample_weight, estimator_weight, estimator_error

    def _get_median_predict(self, X, limit):
        # Evaluate predictions of all estimators
        predictions = np.array([
            est.predict(X) for est in self.estimators_[:limit]]).T

        # Sort the predictions
        sorted_idx = np.argsort(predictions, axis=1)

        # Find index of median prediction for each sample
        weight_cdf = stable_cumsum(self.estimator_weights_[sorted_idx], axis=1)
        median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis]
        median_idx = median_or_above.argmax(axis=1)

        median_estimators = sorted_idx[np.arange(_num_samples(X)), median_idx]

        # Return median predictions
        return predictions[np.arange(_num_samples(X)), median_estimators]

    def predict(self, X):
        """Predict regression value for X.

        The predicted regression value of an input sample is computed
        as the weighted median prediction of the classifiers in the ensemble.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Sparse matrix can be CSC, CSR, COO,
            DOK, or LIL. COO, DOK, and LIL are converted to CSR.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted regression values.
        """
        check_is_fitted(self)
        X = self._check_X(X)

        return self._get_median_predict(X, len(self.estimators_))

    def staged_predict(self, X):
        """Return staged predictions for X.

        The predicted regression value of an input sample is computed
        as the weighted median prediction of the classifiers in the ensemble.

        This generator method yields the ensemble prediction after each
        iteration of boosting and therefore allows monitoring, such as to
        determine the prediction on a test set after each boost.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples.

        Yields
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted regression values.
        """
        check_is_fitted(self)
        X = self._check_X(X)

        for i, _ in enumerate(self.estimators_, 1):
            yield self._get_median_predict(X, limit=i)