_stacking.py 26.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
"""Stacking classifier and regressor."""

# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod
from copy import deepcopy

import numpy as np
from joblib import Parallel, delayed
import scipy.sparse as sparse

from ..base import clone
from ..base import ClassifierMixin, RegressorMixin, TransformerMixin
from ..base import is_classifier, is_regressor
from ..exceptions import NotFittedError
from ..utils._estimator_html_repr import _VisualBlock

from ._base import _fit_single_estimator
from ._base import _BaseHeterogeneousEnsemble

from ..linear_model import LogisticRegression
from ..linear_model import RidgeCV

from ..model_selection import cross_val_predict
from ..model_selection import check_cv

from ..preprocessing import LabelEncoder

from ..utils import Bunch
from ..utils.metaestimators import if_delegate_has_method
from ..utils.multiclass import check_classification_targets
from ..utils.validation import check_is_fitted
from ..utils.validation import column_or_1d
from ..utils.validation import _deprecate_positional_args


class _BaseStacking(TransformerMixin, _BaseHeterogeneousEnsemble,
                    metaclass=ABCMeta):
    """Base class for stacking method."""

    @abstractmethod
    def __init__(self, estimators, final_estimator=None, *, cv=None,
                 stack_method='auto', n_jobs=None, verbose=0,
                 passthrough=False):
        super().__init__(estimators=estimators)
        self.final_estimator = final_estimator
        self.cv = cv
        self.stack_method = stack_method
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.passthrough = passthrough

    def _clone_final_estimator(self, default):
        if self.final_estimator is not None:
            self.final_estimator_ = clone(self.final_estimator)
        else:
            self.final_estimator_ = clone(default)

    def _concatenate_predictions(self, X, predictions):
        """Concatenate the predictions of each first layer learner and
        possibly the input dataset `X`.

        If `X` is sparse and `self.passthrough` is False, the output of
        `transform` will be dense (the predictions). If `X` is sparse
        and `self.passthrough` is True, the output of `transform` will
        be sparse.

        This helper is in charge of ensuring the predictions are 2D arrays and
        it will drop one of the probability column when using probabilities
        in the binary case. Indeed, the p(y|c=0) = 1 - p(y|c=1)
        """
        X_meta = []
        for est_idx, preds in enumerate(predictions):
            # case where the the estimator returned a 1D array
            if preds.ndim == 1:
                X_meta.append(preds.reshape(-1, 1))
            else:
                if (self.stack_method_[est_idx] == 'predict_proba' and
                        len(self.classes_) == 2):
                    # Remove the first column when using probabilities in
                    # binary classification because both features are perfectly
                    # collinear.
                    X_meta.append(preds[:, 1:])
                else:
                    X_meta.append(preds)
        if self.passthrough:
            X_meta.append(X)
            if sparse.issparse(X):
                return sparse.hstack(X_meta, format=X.format)

        return np.hstack(X_meta)

    @staticmethod
    def _method_name(name, estimator, method):
        if estimator == 'drop':
            return None
        if method == 'auto':
            if getattr(estimator, 'predict_proba', None):
                return 'predict_proba'
            elif getattr(estimator, 'decision_function', None):
                return 'decision_function'
            else:
                return 'predict'
        else:
            if not hasattr(estimator, method):
                raise ValueError('Underlying estimator {} does not implement '
                                 'the method {}.'.format(name, method))
            return method

    def fit(self, X, y, sample_weight=None):
        """Fit the estimators.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,) or default=None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if all underlying estimators
            support sample weights.

            .. versionchanged:: 0.23
               when not None, `sample_weight` is passed to all underlying
               estimators

        Returns
        -------
        self : object
        """
        # all_estimators contains all estimators, the one to be fitted and the
        # 'drop' string.
        names, all_estimators = self._validate_estimators()
        self._validate_final_estimator()

        stack_method = [self.stack_method] * len(all_estimators)

        # Fit the base estimators on the whole training data. Those
        # base estimators will be used in transform, predict, and
        # predict_proba. They are exposed publicly.
        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_single_estimator)(clone(est), X, y, sample_weight)
            for est in all_estimators if est != 'drop'
        )

        self.named_estimators_ = Bunch()
        est_fitted_idx = 0
        for name_est, org_est in zip(names, all_estimators):
            if org_est != 'drop':
                self.named_estimators_[name_est] = self.estimators_[
                    est_fitted_idx]
                est_fitted_idx += 1
            else:
                self.named_estimators_[name_est] = 'drop'

        # To train the meta-classifier using the most data as possible, we use
        # a cross-validation to obtain the output of the stacked estimators.

        # To ensure that the data provided to each estimator are the same, we
        # need to set the random state of the cv if there is one and we need to
        # take a copy.
        cv = check_cv(self.cv, y=y, classifier=is_classifier(self))
        if hasattr(cv, 'random_state') and cv.random_state is None:
            cv.random_state = np.random.RandomState()

        self.stack_method_ = [
            self._method_name(name, est, meth)
            for name, est, meth in zip(names, all_estimators, stack_method)
        ]
        fit_params = ({"sample_weight": sample_weight}
                      if sample_weight is not None
                      else None)
        predictions = Parallel(n_jobs=self.n_jobs)(
            delayed(cross_val_predict)(clone(est), X, y, cv=deepcopy(cv),
                                       method=meth, n_jobs=self.n_jobs,
                                       fit_params=fit_params,
                                       verbose=self.verbose)
            for est, meth in zip(all_estimators, self.stack_method_)
            if est != 'drop'
        )

        # Only not None or not 'drop' estimators will be used in transform.
        # Remove the None from the method as well.
        self.stack_method_ = [
            meth for (meth, est) in zip(self.stack_method_, all_estimators)
            if est != 'drop'
        ]

        X_meta = self._concatenate_predictions(X, predictions)
        _fit_single_estimator(self.final_estimator_, X_meta, y,
                              sample_weight=sample_weight)

        return self

    @property
    def n_features_in_(self):
        """Number of features seen during :term:`fit`."""
        try:
            check_is_fitted(self)
        except NotFittedError as nfe:
            raise AttributeError(
                f"{self.__class__.__name__} object has no attribute "
                f"n_features_in_") from nfe
        return self.estimators_[0].n_features_in_

    def _transform(self, X):
        """Concatenate and return the predictions of the estimators."""
        check_is_fitted(self)
        predictions = [
            getattr(est, meth)(X)
            for est, meth in zip(self.estimators_, self.stack_method_)
            if est != 'drop'
        ]
        return self._concatenate_predictions(X, predictions)

    @if_delegate_has_method(delegate='final_estimator_')
    def predict(self, X, **predict_params):
        """Predict target for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        **predict_params : dict of str -> obj
            Parameters to the `predict` called by the `final_estimator`. Note
            that this may be used to return uncertainties from some estimators
            with `return_std` or `return_cov`. Be aware that it will only
            accounts for uncertainty in the final estimator.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)
            Predicted targets.
        """

        check_is_fitted(self)
        return self.final_estimator_.predict(
            self.transform(X), **predict_params
        )

    def _sk_visual_block_(self, final_estimator):
        names, estimators = zip(*self.estimators)
        parallel = _VisualBlock('parallel', estimators, names=names,
                                dash_wrapped=False)
        serial = _VisualBlock('serial', (parallel, final_estimator),
                              dash_wrapped=False)
        return _VisualBlock('serial', [serial])


class StackingClassifier(ClassifierMixin, _BaseStacking):
    """Stack of estimators with a final classifier.

    Stacked generalization consists in stacking the output of individual
    estimator and use a classifier to compute the final prediction. Stacking
    allows to use the strength of each individual estimator by using their
    output as input of a final estimator.

    Note that `estimators_` are fitted on the full `X` while `final_estimator_`
    is trained using cross-validated predictions of the base estimators using
    `cross_val_predict`.

    .. versionadded:: 0.22

    Read more in the :ref:`User Guide <stacking>`.

    Parameters
    ----------
    estimators : list of (str, estimator)
        Base estimators which will be stacked together. Each element of the
        list is defined as a tuple of string (i.e. name) and an estimator
        instance. An estimator can be set to 'drop' using `set_params`.

    final_estimator : estimator, default=None
        A classifier which will be used to combine the base estimators.
        The default classifier is a `LogisticRegression`.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy used in
        `cross_val_predict` to train `final_estimator`. Possible inputs for
        cv are:

        * None, to use the default 5-fold cross validation,
        * integer, to specify the number of folds in a (Stratified) KFold,
        * An object to be used as a cross-validation generator,
        * An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and y is
        either binary or multiclass, `StratifiedKFold` is used. In all other
        cases, `KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. note::
           A larger number of split will provide no benefits if the number
           of training samples is large enough. Indeed, the training time
           will increase. ``cv`` is not used for model evaluation but for
           prediction.

    stack_method : {'auto', 'predict_proba', 'decision_function', 'predict'}, \
            default='auto'
        Methods called for each base estimator. It can be:

        * if 'auto', it will try to invoke, for each estimator,
          `'predict_proba'`, `'decision_function'` or `'predict'` in that
          order.
        * otherwise, one of `'predict_proba'`, `'decision_function'` or
          `'predict'`. If the method is not implemented by the estimator, it
          will raise an error.

    n_jobs : int, default=None
        The number of jobs to run in parallel all `estimators` `fit`.
        `None` means 1 unless in a `joblib.parallel_backend` context. -1 means
        using all processors. See Glossary for more details.

    passthrough : bool, default=False
        When False, only the predictions of estimators will be used as
        training data for `final_estimator`. When True, the
        `final_estimator` is trained on the predictions as well as the
        original training data.

    verbose : int, default=0
        Verbosity level.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Class labels.

    estimators_ : list of estimators
        The elements of the estimators parameter, having been fitted on the
        training data. If an estimator has been set to `'drop'`, it
        will not appear in `estimators_`.

    named_estimators_ : :class:`~sklearn.utils.Bunch`
        Attribute to access any fitted sub-estimators by name.

    final_estimator_ : estimator
        The classifier which predicts given the output of `estimators_`.

    stack_method_ : list of str
        The method used by each base estimator.

    Notes
    -----
    When `predict_proba` is used by each estimator (i.e. most of the time for
    `stack_method='auto'` or specifically for `stack_method='predict_proba'`),
    The first column predicted by each estimator will be dropped in the case
    of a binary classification problem. Indeed, both feature will be perfectly
    collinear.

    References
    ----------
    .. [1] Wolpert, David H. "Stacked generalization." Neural networks 5.2
       (1992): 241-259.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.ensemble import RandomForestClassifier
    >>> from sklearn.svm import LinearSVC
    >>> from sklearn.linear_model import LogisticRegression
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.pipeline import make_pipeline
    >>> from sklearn.ensemble import StackingClassifier
    >>> X, y = load_iris(return_X_y=True)
    >>> estimators = [
    ...     ('rf', RandomForestClassifier(n_estimators=10, random_state=42)),
    ...     ('svr', make_pipeline(StandardScaler(),
    ...                           LinearSVC(random_state=42)))
    ... ]
    >>> clf = StackingClassifier(
    ...     estimators=estimators, final_estimator=LogisticRegression()
    ... )
    >>> from sklearn.model_selection import train_test_split
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, stratify=y, random_state=42
    ... )
    >>> clf.fit(X_train, y_train).score(X_test, y_test)
    0.9...

    """
    @_deprecate_positional_args
    def __init__(self, estimators, final_estimator=None, *, cv=None,
                 stack_method='auto', n_jobs=None, passthrough=False,
                 verbose=0):
        super().__init__(
            estimators=estimators,
            final_estimator=final_estimator,
            cv=cv,
            stack_method=stack_method,
            n_jobs=n_jobs,
            passthrough=passthrough,
            verbose=verbose
        )

    def _validate_final_estimator(self):
        self._clone_final_estimator(default=LogisticRegression())
        if not is_classifier(self.final_estimator_):
            raise ValueError(
                "'final_estimator' parameter should be a classifier. Got {}"
                .format(self.final_estimator_)
            )

    def fit(self, X, y, sample_weight=None):
        """Fit the estimators.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if all underlying estimators
            support sample weights.

        Returns
        -------
        self : object
        """
        check_classification_targets(y)
        self._le = LabelEncoder().fit(y)
        self.classes_ = self._le.classes_
        return super().fit(X, self._le.transform(y), sample_weight)

    @if_delegate_has_method(delegate='final_estimator_')
    def predict(self, X, **predict_params):
        """Predict target for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        **predict_params : dict of str -> obj
            Parameters to the `predict` called by the `final_estimator`. Note
            that this may be used to return uncertainties from some estimators
            with `return_std` or `return_cov`. Be aware that it will only
            accounts for uncertainty in the final estimator.

        Returns
        -------
        y_pred : ndarray of shape (n_samples,) or (n_samples, n_output)
            Predicted targets.
        """
        y_pred = super().predict(X, **predict_params)
        return self._le.inverse_transform(y_pred)

    @if_delegate_has_method(delegate='final_estimator_')
    def predict_proba(self, X):
        """Predict class probabilities for X using
        `final_estimator_.predict_proba`.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        Returns
        -------
        probabilities : ndarray of shape (n_samples, n_classes) or \
            list of ndarray of shape (n_output,)
            The class probabilities of the input samples.
        """
        check_is_fitted(self)
        return self.final_estimator_.predict_proba(self.transform(X))

    @if_delegate_has_method(delegate='final_estimator_')
    def decision_function(self, X):
        """Predict decision function for samples in X using
        `final_estimator_.decision_function`.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        Returns
        -------
        decisions : ndarray of shape (n_samples,), (n_samples, n_classes), \
            or (n_samples, n_classes * (n_classes-1) / 2)
            The decision function computed the final estimator.
        """
        check_is_fitted(self)
        return self.final_estimator_.decision_function(self.transform(X))

    def transform(self, X):
        """Return class labels or probabilities for X for each estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        y_preds : ndarray of shape (n_samples, n_estimators) or \
                (n_samples, n_classes * n_estimators)
            Prediction outputs for each estimator.
        """
        return self._transform(X)

    def _sk_visual_block_(self):
        # If final_estimator's default changes then this should be
        # updated.
        if self.final_estimator is None:
            final_estimator = LogisticRegression()
        else:
            final_estimator = self.final_estimator
        return super()._sk_visual_block_(final_estimator)


class StackingRegressor(RegressorMixin, _BaseStacking):
    """Stack of estimators with a final regressor.

    Stacked generalization consists in stacking the output of individual
    estimator and use a regressor to compute the final prediction. Stacking
    allows to use the strength of each individual estimator by using their
    output as input of a final estimator.

    Note that `estimators_` are fitted on the full `X` while `final_estimator_`
    is trained using cross-validated predictions of the base estimators using
    `cross_val_predict`.

    .. versionadded:: 0.22

    Read more in the :ref:`User Guide <stacking>`.

    Parameters
    ----------
    estimators : list of (str, estimator)
        Base estimators which will be stacked together. Each element of the
        list is defined as a tuple of string (i.e. name) and an estimator
        instance. An estimator can be set to 'drop' using `set_params`.

    final_estimator : estimator, default=None
        A regressor which will be used to combine the base estimators.
        The default regressor is a `RidgeCV`.

    cv : int, cross-validation generator or an iterable, default=None
        Determines the cross-validation splitting strategy used in
        `cross_val_predict` to train `final_estimator`. Possible inputs for
        cv are:

        * None, to use the default 5-fold cross validation,
        * integer, to specify the number of folds in a (Stratified) KFold,
        * An object to be used as a cross-validation generator,
        * An iterable yielding train, test splits.

        For integer/None inputs, if the estimator is a classifier and y is
        either binary or multiclass, `StratifiedKFold` is used. In all other
        cases, `KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. note::
           A larger number of split will provide no benefits if the number
           of training samples is large enough. Indeed, the training time
           will increase. ``cv`` is not used for model evaluation but for
           prediction.

    n_jobs : int, default=None
        The number of jobs to run in parallel for `fit` of all `estimators`.
        `None` means 1 unless in a `joblib.parallel_backend` context. -1 means
        using all processors. See Glossary for more details.

    passthrough : bool, default=False
        When False, only the predictions of estimators will be used as
        training data for `final_estimator`. When True, the
        `final_estimator` is trained on the predictions as well as the
        original training data.

    verbose : int, default=0
        Verbosity level.

    Attributes
    ----------
    estimators_ : list of estimator
        The elements of the estimators parameter, having been fitted on the
        training data. If an estimator has been set to `'drop'`, it
        will not appear in `estimators_`.

    named_estimators_ : :class:`~sklearn.utils.Bunch`
        Attribute to access any fitted sub-estimators by name.


    final_estimator_ : estimator
        The regressor to stacked the base estimators fitted.

    References
    ----------
    .. [1] Wolpert, David H. "Stacked generalization." Neural networks 5.2
       (1992): 241-259.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.linear_model import RidgeCV
    >>> from sklearn.svm import LinearSVR
    >>> from sklearn.ensemble import RandomForestRegressor
    >>> from sklearn.ensemble import StackingRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> estimators = [
    ...     ('lr', RidgeCV()),
    ...     ('svr', LinearSVR(random_state=42))
    ... ]
    >>> reg = StackingRegressor(
    ...     estimators=estimators,
    ...     final_estimator=RandomForestRegressor(n_estimators=10,
    ...                                           random_state=42)
    ... )
    >>> from sklearn.model_selection import train_test_split
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=42
    ... )
    >>> reg.fit(X_train, y_train).score(X_test, y_test)
    0.3...

    """
    @_deprecate_positional_args
    def __init__(self, estimators, final_estimator=None, *, cv=None,
                 n_jobs=None, passthrough=False, verbose=0):
        super().__init__(
            estimators=estimators,
            final_estimator=final_estimator,
            cv=cv,
            stack_method="predict",
            n_jobs=n_jobs,
            passthrough=passthrough,
            verbose=verbose
        )

    def _validate_final_estimator(self):
        self._clone_final_estimator(default=RidgeCV())
        if not is_regressor(self.final_estimator_):
            raise ValueError(
                "'final_estimator' parameter should be a regressor. Got {}"
                .format(self.final_estimator_)
            )

    def fit(self, X, y, sample_weight=None):
        """Fit the estimators.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted.
            Note that this is supported only if all underlying estimators
            support sample weights.

        Returns
        -------
        self : object
        """
        y = column_or_1d(y, warn=True)
        return super().fit(X, y, sample_weight)

    def transform(self, X):
        """Return the predictions for X for each estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training vectors, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        y_preds : ndarray of shape (n_samples, n_estimators)
            Prediction outputs for each estimator.
        """
        return self._transform(X)

    def _sk_visual_block_(self):
        # If final_estimator's default changes then this should be
        # updated.
        if self.final_estimator is None:
            final_estimator = RidgeCV()
        else:
            final_estimator = self.final_estimator
        return super()._sk_visual_block_(final_estimator)