_iforest.py
18.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
# Authors: Nicolas Goix <nicolas.goix@telecom-paristech.fr>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# License: BSD 3 clause
import numbers
import numpy as np
from scipy.sparse import issparse
from warnings import warn
from ..tree import ExtraTreeRegressor
from ..utils import (
check_random_state,
check_array,
gen_batches,
get_chunk_n_rows,
)
from ..utils.fixes import _joblib_parallel_args
from ..utils.validation import check_is_fitted, _num_samples
from ..utils.validation import _deprecate_positional_args
from ..base import OutlierMixin
from ._bagging import BaseBagging
__all__ = ["IsolationForest"]
class IsolationForest(OutlierMixin, BaseBagging):
"""
Isolation Forest Algorithm.
Return the anomaly score of each sample using the IsolationForest algorithm
The IsolationForest 'isolates' observations by randomly selecting a feature
and then randomly selecting a split value between the maximum and minimum
values of the selected feature.
Since recursive partitioning can be represented by a tree structure, the
number of splittings required to isolate a sample is equivalent to the path
length from the root node to the terminating node.
This path length, averaged over a forest of such random trees, is a
measure of normality and our decision function.
Random partitioning produces noticeably shorter paths for anomalies.
Hence, when a forest of random trees collectively produce shorter path
lengths for particular samples, they are highly likely to be anomalies.
Read more in the :ref:`User Guide <isolation_forest>`.
.. versionadded:: 0.18
Parameters
----------
n_estimators : int, default=100
The number of base estimators in the ensemble.
max_samples : "auto", int or float, default="auto"
The number of samples to draw from X to train each base estimator.
- If int, then draw `max_samples` samples.
- If float, then draw `max_samples * X.shape[0]` samples.
- If "auto", then `max_samples=min(256, n_samples)`.
If max_samples is larger than the number of samples provided,
all samples will be used for all trees (no sampling).
contamination : 'auto' or float, default='auto'
The amount of contamination of the data set, i.e. the proportion
of outliers in the data set. Used when fitting to define the threshold
on the scores of the samples.
- If 'auto', the threshold is determined as in the
original paper.
- If float, the contamination should be in the range [0, 0.5].
.. versionchanged:: 0.22
The default value of ``contamination`` changed from 0.1
to ``'auto'``.
max_features : int or float, default=1.0
The number of features to draw from X to train each base estimator.
- If int, then draw `max_features` features.
- If float, then draw `max_features * X.shape[1]` features.
bootstrap : bool, default=False
If True, individual trees are fit on random subsets of the training
data sampled with replacement. If False, sampling without replacement
is performed.
n_jobs : int, default=None
The number of jobs to run in parallel for both :meth:`fit` and
:meth:`predict`. ``None`` means 1 unless in a
:obj:`joblib.parallel_backend` context. ``-1`` means using all
processors. See :term:`Glossary <n_jobs>` for more details.
behaviour : str, default='deprecated'
This parameter has no effect, is deprecated, and will be removed.
.. versionadded:: 0.20
``behaviour`` is added in 0.20 for back-compatibility purpose.
.. deprecated:: 0.20
``behaviour='old'`` is deprecated in 0.20 and will not be possible
in 0.22.
.. deprecated:: 0.22
``behaviour`` parameter is deprecated in 0.22 and removed in
0.24.
random_state : int or RandomState, default=None
Controls the pseudo-randomness of the selection of the feature
and split values for each branching step and each tree in the forest.
Pass an int for reproducible results across multiple function calls.
See :term:`Glossary <random_state>`.
verbose : int, default=0
Controls the verbosity of the tree building process.
warm_start : bool, default=False
When set to ``True``, reuse the solution of the previous call to fit
and add more estimators to the ensemble, otherwise, just fit a whole
new forest. See :term:`the Glossary <warm_start>`.
.. versionadded:: 0.21
Attributes
----------
estimators_ : list of DecisionTreeClassifier
The collection of fitted sub-estimators.
estimators_samples_ : list of arrays
The subset of drawn samples (i.e., the in-bag samples) for each base
estimator.
max_samples_ : int
The actual number of samples.
offset_ : float
Offset used to define the decision function from the raw scores. We
have the relation: ``decision_function = score_samples - offset_``.
``offset_`` is defined as follows. When the contamination parameter is
set to "auto", the offset is equal to -0.5 as the scores of inliers are
close to 0 and the scores of outliers are close to -1. When a
contamination parameter different than "auto" is provided, the offset
is defined in such a way we obtain the expected number of outliers
(samples with decision function < 0) in training.
.. versionadded:: 0.20
estimators_features_ : list of arrays
The subset of drawn features for each base estimator.
Notes
-----
The implementation is based on an ensemble of ExtraTreeRegressor. The
maximum depth of each tree is set to ``ceil(log_2(n))`` where
:math:`n` is the number of samples used to build the tree
(see (Liu et al., 2008) for more details).
References
----------
.. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest."
Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on.
.. [2] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation-based
anomaly detection." ACM Transactions on Knowledge Discovery from
Data (TKDD) 6.1 (2012): 3.
See Also
----------
sklearn.covariance.EllipticEnvelope : An object for detecting outliers in a
Gaussian distributed dataset.
sklearn.svm.OneClassSVM : Unsupervised Outlier Detection.
Estimate the support of a high-dimensional distribution.
The implementation is based on libsvm.
sklearn.neighbors.LocalOutlierFactor : Unsupervised Outlier Detection
using Local Outlier Factor (LOF).
Examples
--------
>>> from sklearn.ensemble import IsolationForest
>>> X = [[-1.1], [0.3], [0.5], [100]]
>>> clf = IsolationForest(random_state=0).fit(X)
>>> clf.predict([[0.1], [0], [90]])
array([ 1, 1, -1])
"""
@_deprecate_positional_args
def __init__(self, *,
n_estimators=100,
max_samples="auto",
contamination="auto",
max_features=1.,
bootstrap=False,
n_jobs=None,
behaviour='deprecated',
random_state=None,
verbose=0,
warm_start=False):
super().__init__(
base_estimator=ExtraTreeRegressor(
max_features=1,
splitter='random',
random_state=random_state),
# here above max_features has no links with self.max_features
bootstrap=bootstrap,
bootstrap_features=False,
n_estimators=n_estimators,
max_samples=max_samples,
max_features=max_features,
warm_start=warm_start,
n_jobs=n_jobs,
random_state=random_state,
verbose=verbose)
self.behaviour = behaviour
self.contamination = contamination
def _set_oob_score(self, X, y):
raise NotImplementedError("OOB score not supported by iforest")
def _parallel_args(self):
# ExtraTreeRegressor releases the GIL, so it's more efficient to use
# a thread-based backend rather than a process-based backend so as
# to avoid suffering from communication overhead and extra memory
# copies.
return _joblib_parallel_args(prefer='threads')
def fit(self, X, y=None, sample_weight=None):
"""
Fit estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Use ``dtype=np.float32`` for maximum
efficiency. Sparse matrices are also supported, use sparse
``csc_matrix`` for maximum efficiency.
y : Ignored
Not used, present for API consistency by convention.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, then samples are equally weighted.
Returns
-------
self : object
Fitted estimator.
"""
if self.behaviour != 'deprecated':
if self.behaviour == 'new':
warn(
"'behaviour' is deprecated in 0.22 and will be removed "
"in 0.24. You should not pass or set this parameter.",
FutureWarning
)
else:
raise NotImplementedError(
"The old behaviour of IsolationForest is not implemented "
"anymore. Remove the 'behaviour' parameter."
)
X = check_array(X, accept_sparse=['csc'])
if issparse(X):
# Pre-sort indices to avoid that each individual tree of the
# ensemble sorts the indices.
X.sort_indices()
rnd = check_random_state(self.random_state)
y = rnd.uniform(size=X.shape[0])
# ensure that max_sample is in [1, n_samples]:
n_samples = X.shape[0]
if isinstance(self.max_samples, str):
if self.max_samples == 'auto':
max_samples = min(256, n_samples)
else:
raise ValueError('max_samples (%s) is not supported.'
'Valid choices are: "auto", int or'
'float' % self.max_samples)
elif isinstance(self.max_samples, numbers.Integral):
if self.max_samples > n_samples:
warn("max_samples (%s) is greater than the "
"total number of samples (%s). max_samples "
"will be set to n_samples for estimation."
% (self.max_samples, n_samples))
max_samples = n_samples
else:
max_samples = self.max_samples
else: # float
if not 0. < self.max_samples <= 1.:
raise ValueError("max_samples must be in (0, 1], got %r"
% self.max_samples)
max_samples = int(self.max_samples * X.shape[0])
self.max_samples_ = max_samples
max_depth = int(np.ceil(np.log2(max(max_samples, 2))))
super()._fit(X, y, max_samples,
max_depth=max_depth,
sample_weight=sample_weight)
if self.contamination == "auto":
# 0.5 plays a special role as described in the original paper.
# we take the opposite as we consider the opposite of their score.
self.offset_ = -0.5
return self
# else, define offset_ wrt contamination parameter
self.offset_ = np.percentile(self.score_samples(X),
100. * self.contamination)
return self
def predict(self, X):
"""
Predict if a particular sample is an outlier or not.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
is_inlier : ndarray of shape (n_samples,)
For each observation, tells whether or not (+1 or -1) it should
be considered as an inlier according to the fitted model.
"""
check_is_fitted(self)
X = check_array(X, accept_sparse='csr')
is_inlier = np.ones(X.shape[0], dtype=int)
is_inlier[self.decision_function(X) < 0] = -1
return is_inlier
def decision_function(self, X):
"""
Average anomaly score of X of the base classifiers.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
The measure of normality of an observation given a tree is the depth
of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this point. In case of
several observations n_left in the leaf, the average path length of
a n_left samples isolation tree is added.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
scores : ndarray of shape (n_samples,)
The anomaly score of the input samples.
The lower, the more abnormal. Negative scores represent outliers,
positive scores represent inliers.
"""
# We subtract self.offset_ to make 0 be the threshold value for being
# an outlier:
return self.score_samples(X) - self.offset_
def score_samples(self, X):
"""
Opposite of the anomaly score defined in the original paper.
The anomaly score of an input sample is computed as
the mean anomaly score of the trees in the forest.
The measure of normality of an observation given a tree is the depth
of the leaf containing this observation, which is equivalent to
the number of splittings required to isolate this point. In case of
several observations n_left in the leaf, the average path length of
a n_left samples isolation tree is added.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
Returns
-------
scores : ndarray of shape (n_samples,)
The anomaly score of the input samples.
The lower, the more abnormal.
"""
# code structure from ForestClassifier/predict_proba
check_is_fitted(self)
# Check data
X = check_array(X, accept_sparse='csr')
if self.n_features_ != X.shape[1]:
raise ValueError("Number of features of the model must "
"match the input. Model n_features is {0} and "
"input n_features is {1}."
"".format(self.n_features_, X.shape[1]))
# Take the opposite of the scores as bigger is better (here less
# abnormal)
return -self._compute_chunked_score_samples(X)
def _compute_chunked_score_samples(self, X):
n_samples = _num_samples(X)
if self._max_features == X.shape[1]:
subsample_features = False
else:
subsample_features = True
# We get as many rows as possible within our working_memory budget
# (defined by sklearn.get_config()['working_memory']) to store
# self._max_features in each row during computation.
#
# Note:
# - this will get at least 1 row, even if 1 row of score will
# exceed working_memory.
# - this does only account for temporary memory usage while loading
# the data needed to compute the scores -- the returned scores
# themselves are 1D.
chunk_n_rows = get_chunk_n_rows(row_bytes=16 * self._max_features,
max_n_rows=n_samples)
slices = gen_batches(n_samples, chunk_n_rows)
scores = np.zeros(n_samples, order="f")
for sl in slices:
# compute score on the slices of test samples:
scores[sl] = self._compute_score_samples(X[sl], subsample_features)
return scores
def _compute_score_samples(self, X, subsample_features):
"""
Compute the score of each samples in X going through the extra trees.
Parameters
----------
X : array-like or sparse matrix
Data matrix.
subsample_features : bool
Whether features should be subsampled.
"""
n_samples = X.shape[0]
depths = np.zeros(n_samples, order="f")
for tree, features in zip(self.estimators_, self.estimators_features_):
X_subset = X[:, features] if subsample_features else X
leaves_index = tree.apply(X_subset)
node_indicator = tree.decision_path(X_subset)
n_samples_leaf = tree.tree_.n_node_samples[leaves_index]
depths += (
np.ravel(node_indicator.sum(axis=1))
+ _average_path_length(n_samples_leaf)
- 1.0
)
scores = 2 ** (
-depths
/ (len(self.estimators_)
* _average_path_length([self.max_samples_]))
)
return scores
def _average_path_length(n_samples_leaf):
"""
The average path length in a n_samples iTree, which is equal to
the average path length of an unsuccessful BST search since the
latter has the same structure as an isolation tree.
Parameters
----------
n_samples_leaf : array-like of shape (n_samples,)
The number of training samples in each test sample leaf, for
each estimators.
Returns
-------
average_path_length : ndarray of shape (n_samples,)
"""
n_samples_leaf = check_array(n_samples_leaf, ensure_2d=False)
n_samples_leaf_shape = n_samples_leaf.shape
n_samples_leaf = n_samples_leaf.reshape((1, -1))
average_path_length = np.zeros(n_samples_leaf.shape)
mask_1 = n_samples_leaf <= 1
mask_2 = n_samples_leaf == 2
not_mask = ~np.logical_or(mask_1, mask_2)
average_path_length[mask_1] = 0.
average_path_length[mask_2] = 1.
average_path_length[not_mask] = (
2.0 * (np.log(n_samples_leaf[not_mask] - 1.0) + np.euler_gamma)
- 2.0 * (n_samples_leaf[not_mask] - 1.0) / n_samples_leaf[not_mask]
)
return average_path_length.reshape(n_samples_leaf_shape)