_gb_losses.py 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
"""Losses and corresponding default initial estimators for gradient boosting
decision trees.
"""

from abc import ABCMeta
from abc import abstractmethod

import numpy as np
from scipy.special import expit, logsumexp

from ..tree._tree import TREE_LEAF
from ..utils.stats import _weighted_percentile
from ..dummy import DummyClassifier
from ..dummy import DummyRegressor


class LossFunction(metaclass=ABCMeta):
    """Abstract base class for various loss functions.

    Parameters
    ----------
    n_classes : int
        Number of classes.

    Attributes
    ----------
    K : int
        The number of regression trees to be induced;
        1 for regression and binary classification;
        ``n_classes`` for multi-class classification.
    """

    is_multi_class = False

    def __init__(self, n_classes):
        self.K = n_classes

    def init_estimator(self):
        """Default ``init`` estimator for loss function. """
        raise NotImplementedError()

    @abstractmethod
    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the loss.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves).

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """

    @abstractmethod
    def negative_gradient(self, y, raw_predictions, **kargs):
        """Compute the negative gradient.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            The target labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        """

    def update_terminal_regions(self, tree, X, y, residual, raw_predictions,
                                sample_weight, sample_mask,
                                learning_rate=0.1, k=0):
        """Update the terminal regions (=leaves) of the given tree and
        updates the current predictions of the model. Traverses tree
        and invokes template method `_update_terminal_region`.

        Parameters
        ----------
        tree : tree.Tree
            The tree object.
        X : ndarray of shape (n_samples, n_features)
            The data array.
        y : ndarray of shape (n_samples,)
            The target labels.
        residual : ndarray of shape (n_samples,)
            The residuals (usually the negative gradient).
        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        sample_weight : ndarray of shape (n_samples,)
            The weight of each sample.
        sample_mask : ndarray of shape (n_samples,)
            The sample mask to be used.
        learning_rate : float, default=0.1
            Learning rate shrinks the contribution of each tree by
             ``learning_rate``.
        k : int, default=0
            The index of the estimator being updated.

        """
        # compute leaf for each sample in ``X``.
        terminal_regions = tree.apply(X)

        # mask all which are not in sample mask.
        masked_terminal_regions = terminal_regions.copy()
        masked_terminal_regions[~sample_mask] = -1

        # update each leaf (= perform line search)
        for leaf in np.where(tree.children_left == TREE_LEAF)[0]:
            self._update_terminal_region(tree, masked_terminal_regions,
                                         leaf, X, y, residual,
                                         raw_predictions[:, k], sample_weight)

        # update predictions (both in-bag and out-of-bag)
        raw_predictions[:, k] += \
            learning_rate * tree.value[:, 0, 0].take(terminal_regions, axis=0)

    @abstractmethod
    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        """Template method for updating terminal regions (i.e., leaves)."""

    @abstractmethod
    def get_init_raw_predictions(self, X, estimator):
        """Return the initial raw predictions.

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            The data array.
        estimator : object
            The estimator to use to compute the predictions.

        Returns
        -------
        raw_predictions : ndarray of shape (n_samples, K)
            The initial raw predictions. K is equal to 1 for binary
            classification and regression, and equal to the number of classes
            for multiclass classification. ``raw_predictions`` is casted
            into float64.
        """
        pass


class RegressionLossFunction(LossFunction, metaclass=ABCMeta):
    """Base class for regression loss functions.

    Parameters
    ----------
    n_classes : int
        Number of classes.
    """
    def __init__(self, n_classes):
        if n_classes != 1:
            raise ValueError("``n_classes`` must be 1 for regression but "
                             "was %r" % n_classes)
        super().__init__(n_classes)

    def check_init_estimator(self, estimator):
        """Make sure estimator has the required fit and predict methods.

        Parameters
        ----------
        estimator : object
            The init estimator to check.
        """
        if not (hasattr(estimator, 'fit') and hasattr(estimator, 'predict')):
            raise ValueError(
                "The init parameter must be a valid estimator and "
                "support both fit and predict."
            )

    def get_init_raw_predictions(self, X, estimator):
        predictions = estimator.predict(X)
        return predictions.reshape(-1, 1).astype(np.float64)


class LeastSquaresError(RegressionLossFunction):
    """Loss function for least squares (LS) estimation.
    Terminal regions do not need to be updated for least squares.

    Parameters
    ----------
    n_classes : int
        Number of classes.
    """

    def init_estimator(self):
        return DummyRegressor(strategy='mean')

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the least squares loss.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves).

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        if sample_weight is None:
            return np.mean((y - raw_predictions.ravel()) ** 2)
        else:
            return (1 / sample_weight.sum() * np.sum(
                sample_weight * ((y - raw_predictions.ravel()) ** 2)))

    def negative_gradient(self, y, raw_predictions, **kargs):
        """Compute the negative gradient.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            The target labels.

        raw_predictions : ndarray of shape (n_samples,)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        """
        return y - raw_predictions.ravel()

    def update_terminal_regions(self, tree, X, y, residual, raw_predictions,
                                sample_weight, sample_mask,
                                learning_rate=0.1, k=0):
        """Least squares does not need to update terminal regions.

        But it has to update the predictions.

        Parameters
        ----------
        tree : tree.Tree
            The tree object.
        X : ndarray of shape (n_samples, n_features)
            The data array.
        y : ndarray of shape (n_samples,)
            The target labels.
        residual : ndarray of shape (n_samples,)
            The residuals (usually the negative gradient).
        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        sample_weight : ndarray of shape (n,)
            The weight of each sample.
        sample_mask : ndarray of shape (n,)
            The sample mask to be used.
        learning_rate : float, default=0.1
            Learning rate shrinks the contribution of each tree by
             ``learning_rate``.
        k : int, default=0
            The index of the estimator being updated.
        """
        # update predictions
        raw_predictions[:, k] += learning_rate * tree.predict(X).ravel()

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        pass


class LeastAbsoluteError(RegressionLossFunction):
    """Loss function for least absolute deviation (LAD) regression.

    Parameters
    ----------
    n_classes : int
        Number of classes
    """
    def init_estimator(self):
        return DummyRegressor(strategy='quantile', quantile=.5)

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the least absolute error.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves).

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        if sample_weight is None:
            return np.abs(y - raw_predictions.ravel()).mean()
        else:
            return (1 / sample_weight.sum() * np.sum(
                sample_weight * np.abs(y - raw_predictions.ravel())))

    def negative_gradient(self, y, raw_predictions, **kargs):
        """Compute the negative gradient.

        1.0 if y - raw_predictions > 0.0 else -1.0

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            The target labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        """
        raw_predictions = raw_predictions.ravel()
        return 2 * (y - raw_predictions > 0) - 1

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        """LAD updates terminal regions to median estimates."""
        terminal_region = np.where(terminal_regions == leaf)[0]
        sample_weight = sample_weight.take(terminal_region, axis=0)
        diff = (y.take(terminal_region, axis=0) -
                raw_predictions.take(terminal_region, axis=0))
        tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight,
                                                      percentile=50)


class HuberLossFunction(RegressionLossFunction):
    """Huber loss function for robust regression.

    M-Regression proposed in Friedman 2001.

    Parameters
    ----------
    n_classes : int
        Number of classes.

    alpha : float, default=0.9
        Percentile at which to extract score.

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.
    """

    def __init__(self, n_classes, alpha=0.9):
        super().__init__(n_classes)
        self.alpha = alpha
        self.gamma = None

    def init_estimator(self):
        return DummyRegressor(strategy='quantile', quantile=.5)

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the Huber loss.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        raw_predictions = raw_predictions.ravel()
        diff = y - raw_predictions
        gamma = self.gamma
        if gamma is None:
            if sample_weight is None:
                gamma = np.percentile(np.abs(diff), self.alpha * 100)
            else:
                gamma = _weighted_percentile(np.abs(diff), sample_weight,
                                             self.alpha * 100)

        gamma_mask = np.abs(diff) <= gamma
        if sample_weight is None:
            sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2)
            lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) -
                                       gamma / 2))
            loss = (sq_loss + lin_loss) / y.shape[0]
        else:
            sq_loss = np.sum(0.5 * sample_weight[gamma_mask] *
                             diff[gamma_mask] ** 2)
            lin_loss = np.sum(gamma * sample_weight[~gamma_mask] *
                              (np.abs(diff[~gamma_mask]) - gamma / 2))
            loss = (sq_loss + lin_loss) / sample_weight.sum()
        return loss

    def negative_gradient(self, y, raw_predictions, sample_weight=None,
                          **kargs):
        """Compute the negative gradient.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            The target labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        raw_predictions = raw_predictions.ravel()
        diff = y - raw_predictions
        if sample_weight is None:
            gamma = np.percentile(np.abs(diff), self.alpha * 100)
        else:
            gamma = _weighted_percentile(np.abs(diff), sample_weight,
                                         self.alpha * 100)
        gamma_mask = np.abs(diff) <= gamma
        residual = np.zeros((y.shape[0],), dtype=np.float64)
        residual[gamma_mask] = diff[gamma_mask]
        residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask])
        self.gamma = gamma
        return residual

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        terminal_region = np.where(terminal_regions == leaf)[0]
        sample_weight = sample_weight.take(terminal_region, axis=0)
        gamma = self.gamma
        diff = (y.take(terminal_region, axis=0)
                - raw_predictions.take(terminal_region, axis=0))
        median = _weighted_percentile(diff, sample_weight, percentile=50)
        diff_minus_median = diff - median
        tree.value[leaf, 0] = median + np.mean(
            np.sign(diff_minus_median) *
            np.minimum(np.abs(diff_minus_median), gamma))


class QuantileLossFunction(RegressionLossFunction):
    """Loss function for quantile regression.

    Quantile regression allows to estimate the percentiles
    of the conditional distribution of the target.

    Parameters
    ----------
    n_classes : int
        Number of classes.

    alpha : float, default=0.9
        The percentile.
    """
    def __init__(self, n_classes, alpha=0.9):
        super().__init__(n_classes)
        self.alpha = alpha
        self.percentile = alpha * 100

    def init_estimator(self):
        return DummyRegressor(strategy='quantile', quantile=self.alpha)

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the Quantile loss.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        raw_predictions = raw_predictions.ravel()
        diff = y - raw_predictions
        alpha = self.alpha

        mask = y > raw_predictions
        if sample_weight is None:
            loss = (alpha * diff[mask].sum() -
                    (1 - alpha) * diff[~mask].sum()) / y.shape[0]
        else:
            loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) -
                    (1 - alpha) * np.sum(sample_weight[~mask] *
                                         diff[~mask])) / sample_weight.sum())
        return loss

    def negative_gradient(self, y, raw_predictions, **kargs):
        """Compute the negative gradient.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            The target labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        """
        alpha = self.alpha
        raw_predictions = raw_predictions.ravel()
        mask = y > raw_predictions
        return (alpha * mask) - ((1 - alpha) * ~mask)

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        terminal_region = np.where(terminal_regions == leaf)[0]
        diff = (y.take(terminal_region, axis=0)
                - raw_predictions.take(terminal_region, axis=0))
        sample_weight = sample_weight.take(terminal_region, axis=0)

        val = _weighted_percentile(diff, sample_weight, self.percentile)
        tree.value[leaf, 0] = val


class ClassificationLossFunction(LossFunction, metaclass=ABCMeta):
    """Base class for classification loss functions. """

    def _raw_prediction_to_proba(self, raw_predictions):
        """Template method to convert raw predictions into probabilities.

        Parameters
        ----------
        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        Returns
        -------
        probas : ndarray of shape (n_samples, K)
            The predicted probabilities.
        """

    @abstractmethod
    def _raw_prediction_to_decision(self, raw_predictions):
        """Template method to convert raw predictions to decisions.

        Parameters
        ----------
        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        Returns
        -------
        encoded_predictions : ndarray of shape (n_samples, K)
            The predicted encoded labels.
        """

    def check_init_estimator(self, estimator):
        """Make sure estimator has fit and predict_proba methods.

        Parameters
        ----------
        estimator : object
            The init estimator to check.
        """
        if not (hasattr(estimator, 'fit') and
                hasattr(estimator, 'predict_proba')):
            raise ValueError(
                "The init parameter must be a valid estimator "
                "and support both fit and predict_proba."
            )


class BinomialDeviance(ClassificationLossFunction):
    """Binomial deviance loss function for binary classification.

    Binary classification is a special case; here, we only need to
    fit one tree instead of ``n_classes`` trees.

    Parameters
    ----------
    n_classes : int
        Number of classes.
    """
    def __init__(self, n_classes):
        if n_classes != 2:
            raise ValueError("{0:s} requires 2 classes; got {1:d} class(es)"
                             .format(self.__class__.__name__, n_classes))
        # we only need to fit one tree for binary clf.
        super().__init__(n_classes=1)

    def init_estimator(self):
        # return the most common class, taking into account the samples
        # weights
        return DummyClassifier(strategy='prior')

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the deviance (= 2 * negative log-likelihood).

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        # logaddexp(0, v) == log(1.0 + exp(v))
        raw_predictions = raw_predictions.ravel()
        if sample_weight is None:
            return -2 * np.mean((y * raw_predictions) -
                                np.logaddexp(0, raw_predictions))
        else:
            return (-2 / sample_weight.sum() * np.sum(
                sample_weight * ((y * raw_predictions) -
                                 np.logaddexp(0, raw_predictions))))

    def negative_gradient(self, y, raw_predictions, **kargs):
        """Compute the residual (= negative gradient).

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        """
        return y - expit(raw_predictions.ravel())

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        """Make a single Newton-Raphson step.

        our node estimate is given by:

            sum(w * (y - prob)) / sum(w * prob * (1 - prob))

        we take advantage that: y - prob = residual
        """
        terminal_region = np.where(terminal_regions == leaf)[0]
        residual = residual.take(terminal_region, axis=0)
        y = y.take(terminal_region, axis=0)
        sample_weight = sample_weight.take(terminal_region, axis=0)

        numerator = np.sum(sample_weight * residual)
        denominator = np.sum(sample_weight *
                             (y - residual) * (1 - y + residual))

        # prevents overflow and division by zero
        if abs(denominator) < 1e-150:
            tree.value[leaf, 0, 0] = 0.0
        else:
            tree.value[leaf, 0, 0] = numerator / denominator

    def _raw_prediction_to_proba(self, raw_predictions):
        proba = np.ones((raw_predictions.shape[0], 2), dtype=np.float64)
        proba[:, 1] = expit(raw_predictions.ravel())
        proba[:, 0] -= proba[:, 1]
        return proba

    def _raw_prediction_to_decision(self, raw_predictions):
        proba = self._raw_prediction_to_proba(raw_predictions)
        return np.argmax(proba, axis=1)

    def get_init_raw_predictions(self, X, estimator):
        probas = estimator.predict_proba(X)
        proba_pos_class = probas[:, 1]
        eps = np.finfo(np.float32).eps
        proba_pos_class = np.clip(proba_pos_class, eps, 1 - eps)
        # log(x / (1 - x)) is the inverse of the sigmoid (expit) function
        raw_predictions = np.log(proba_pos_class / (1 - proba_pos_class))
        return raw_predictions.reshape(-1, 1).astype(np.float64)


class MultinomialDeviance(ClassificationLossFunction):
    """Multinomial deviance loss function for multi-class classification.

    For multi-class classification we need to fit ``n_classes`` trees at
    each stage.

    Parameters
    ----------
    n_classes : int
        Number of classes.
    """

    is_multi_class = True

    def __init__(self, n_classes):
        if n_classes < 3:
            raise ValueError("{0:s} requires more than 2 classes.".format(
                self.__class__.__name__))
        super().__init__(n_classes)

    def init_estimator(self):
        return DummyClassifier(strategy='prior')

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the Multinomial deviance.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        # create one-hot label encoding
        Y = np.zeros((y.shape[0], self.K), dtype=np.float64)
        for k in range(self.K):
            Y[:, k] = y == k

        return np.average(
            -1 * (Y * raw_predictions).sum(axis=1) +
            logsumexp(raw_predictions, axis=1),
            weights=sample_weight
        )

    def negative_gradient(self, y, raw_predictions, k=0, **kwargs):
        """Compute negative gradient for the ``k``-th class.

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            The target labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.

        k : int, default=0
            The index of the class.
        """
        return y - np.nan_to_num(np.exp(raw_predictions[:, k] -
                                        logsumexp(raw_predictions, axis=1)))

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        """Make a single Newton-Raphson step. """
        terminal_region = np.where(terminal_regions == leaf)[0]
        residual = residual.take(terminal_region, axis=0)
        y = y.take(terminal_region, axis=0)
        sample_weight = sample_weight.take(terminal_region, axis=0)

        numerator = np.sum(sample_weight * residual)
        numerator *= (self.K - 1) / self.K

        denominator = np.sum(sample_weight * (y - residual) *
                             (1 - y + residual))

        # prevents overflow and division by zero
        if abs(denominator) < 1e-150:
            tree.value[leaf, 0, 0] = 0.0
        else:
            tree.value[leaf, 0, 0] = numerator / denominator

    def _raw_prediction_to_proba(self, raw_predictions):
        return np.nan_to_num(
            np.exp(raw_predictions -
                   (logsumexp(raw_predictions, axis=1)[:, np.newaxis])))

    def _raw_prediction_to_decision(self, raw_predictions):
        proba = self._raw_prediction_to_proba(raw_predictions)
        return np.argmax(proba, axis=1)

    def get_init_raw_predictions(self, X, estimator):
        probas = estimator.predict_proba(X)
        eps = np.finfo(np.float32).eps
        probas = np.clip(probas, eps, 1 - eps)
        raw_predictions = np.log(probas).astype(np.float64)
        return raw_predictions


class ExponentialLoss(ClassificationLossFunction):
    """Exponential loss function for binary classification.

    Same loss as AdaBoost.

    Parameters
    ----------
    n_classes : int
        Number of classes.

    References
    ----------
    Greg Ridgeway, Generalized Boosted Models: A guide to the gbm package, 2007
    """
    def __init__(self, n_classes):
        if n_classes != 2:
            raise ValueError("{0:s} requires 2 classes; got {1:d} class(es)"
                             .format(self.__class__.__name__, n_classes))
        # we only need to fit one tree for binary clf.
        super().__init__(n_classes=1)

    def init_estimator(self):
        return DummyClassifier(strategy='prior')

    def __call__(self, y, raw_predictions, sample_weight=None):
        """Compute the exponential loss

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble.

        sample_weight : ndarray of shape (n_samples,), default=None
            Sample weights.
        """
        raw_predictions = raw_predictions.ravel()
        if sample_weight is None:
            return np.mean(np.exp(-(2. * y - 1.) * raw_predictions))
        else:
            return (1.0 / sample_weight.sum() * np.sum(
                sample_weight * np.exp(-(2 * y - 1) * raw_predictions)))

    def negative_gradient(self, y, raw_predictions, **kargs):
        """Compute the residual (= negative gradient).

        Parameters
        ----------
        y : ndarray of shape (n_samples,)
            True labels.

        raw_predictions : ndarray of shape (n_samples, K)
            The raw predictions (i.e. values from the tree leaves) of the
            tree ensemble at iteration ``i - 1``.
        """
        y_ = -(2. * y - 1.)
        return y_ * np.exp(y_ * raw_predictions.ravel())

    def _update_terminal_region(self, tree, terminal_regions, leaf, X, y,
                                residual, raw_predictions, sample_weight):
        terminal_region = np.where(terminal_regions == leaf)[0]
        raw_predictions = raw_predictions.take(terminal_region, axis=0)
        y = y.take(terminal_region, axis=0)
        sample_weight = sample_weight.take(terminal_region, axis=0)

        y_ = 2. * y - 1.

        numerator = np.sum(y_ * sample_weight * np.exp(-y_ * raw_predictions))
        denominator = np.sum(sample_weight * np.exp(-y_ * raw_predictions))

        # prevents overflow and division by zero
        if abs(denominator) < 1e-150:
            tree.value[leaf, 0, 0] = 0.0
        else:
            tree.value[leaf, 0, 0] = numerator / denominator

    def _raw_prediction_to_proba(self, raw_predictions):
        proba = np.ones((raw_predictions.shape[0], 2), dtype=np.float64)
        proba[:, 1] = expit(2.0 * raw_predictions.ravel())
        proba[:, 0] -= proba[:, 1]
        return proba

    def _raw_prediction_to_decision(self, raw_predictions):
        return (raw_predictions.ravel() >= 0).astype(np.int)

    def get_init_raw_predictions(self, X, estimator):
        probas = estimator.predict_proba(X)
        proba_pos_class = probas[:, 1]
        eps = np.finfo(np.float32).eps
        proba_pos_class = np.clip(proba_pos_class, eps, 1 - eps)
        # according to The Elements of Statistical Learning sec. 10.5, the
        # minimizer of the exponential loss is .5 * log odds ratio. So this is
        # the equivalent to .5 * binomial_deviance.get_init_raw_predictions()
        raw_predictions = .5 * np.log(proba_pos_class / (1 - proba_pos_class))
        return raw_predictions.reshape(-1, 1).astype(np.float64)


LOSS_FUNCTIONS = {
    'ls': LeastSquaresError,
    'lad': LeastAbsoluteError,
    'huber': HuberLossFunction,
    'quantile': QuantileLossFunction,
    'deviance': None,  # for both, multinomial and binomial
    'exponential': ExponentialLoss,
}