_gb.py 68.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
"""Gradient Boosted Regression Trees

This module contains methods for fitting gradient boosted regression trees for
both classification and regression.

The module structure is the following:

- The ``BaseGradientBoosting`` base class implements a common ``fit`` method
  for all the estimators in the module. Regression and classification
  only differ in the concrete ``LossFunction`` used.

- ``GradientBoostingClassifier`` implements gradient boosting for
  classification problems.

- ``GradientBoostingRegressor`` implements gradient boosting for
  regression problems.
"""

# Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti,
#          Arnaud Joly, Jacob Schreiber
# License: BSD 3 clause

from abc import ABCMeta
from abc import abstractmethod
import warnings

from ._base import BaseEnsemble
from ..base import ClassifierMixin
from ..base import RegressorMixin
from ..base import BaseEstimator
from ..base import is_classifier

from ._gradient_boosting import predict_stages
from ._gradient_boosting import predict_stage
from ._gradient_boosting import _random_sample_mask

import numbers
import numpy as np

from scipy.sparse import csc_matrix
from scipy.sparse import csr_matrix
from scipy.sparse import issparse

from time import time
from ..model_selection import train_test_split
from ..tree import DecisionTreeRegressor
from ..tree._tree import DTYPE, DOUBLE
from . import _gb_losses

from ..utils import check_random_state
from ..utils import check_array
from ..utils import column_or_1d
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils.multiclass import check_classification_targets
from ..exceptions import NotFittedError
from ..utils.validation import _deprecate_positional_args


class VerboseReporter:
    """Reports verbose output to stdout.

    Parameters
    ----------
    verbose : int
        Verbosity level. If ``verbose==1`` output is printed once in a while
        (when iteration mod verbose_mod is zero).; if larger than 1 then output
        is printed for each update.
    """
    def __init__(self, verbose):
        self.verbose = verbose

    def init(self, est, begin_at_stage=0):
        """Initialize reporter

        Parameters
        ----------
        est : Estimator
            The estimator

        begin_at_stage : int, default=0
            stage at which to begin reporting
        """
        # header fields and line format str
        header_fields = ['Iter', 'Train Loss']
        verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}']
        # do oob?
        if est.subsample < 1:
            header_fields.append('OOB Improve')
            verbose_fmt.append('{oob_impr:>16.4f}')
        header_fields.append('Remaining Time')
        verbose_fmt.append('{remaining_time:>16s}')

        # print the header line
        print(('%10s ' + '%16s ' *
               (len(header_fields) - 1)) % tuple(header_fields))

        self.verbose_fmt = ' '.join(verbose_fmt)
        # plot verbose info each time i % verbose_mod == 0
        self.verbose_mod = 1
        self.start_time = time()
        self.begin_at_stage = begin_at_stage

    def update(self, j, est):
        """Update reporter with new iteration.

        Parameters
        ----------
        j : int
            The new iteration
        est : Estimator
            The estimator
        """
        do_oob = est.subsample < 1
        # we need to take into account if we fit additional estimators.
        i = j - self.begin_at_stage  # iteration relative to the start iter
        if (i + 1) % self.verbose_mod == 0:
            oob_impr = est.oob_improvement_[j] if do_oob else 0
            remaining_time = ((est.n_estimators - (j + 1)) *
                              (time() - self.start_time) / float(i + 1))
            if remaining_time > 60:
                remaining_time = '{0:.2f}m'.format(remaining_time / 60.0)
            else:
                remaining_time = '{0:.2f}s'.format(remaining_time)
            print(self.verbose_fmt.format(iter=j + 1,
                                          train_score=est.train_score_[j],
                                          oob_impr=oob_impr,
                                          remaining_time=remaining_time))
            if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0):
                # adjust verbose frequency (powers of 10)
                self.verbose_mod *= 10


class BaseGradientBoosting(BaseEnsemble, metaclass=ABCMeta):
    """Abstract base class for Gradient Boosting. """

    @abstractmethod
    def __init__(self, *, loss, learning_rate, n_estimators, criterion,
                 min_samples_split, min_samples_leaf, min_weight_fraction_leaf,
                 max_depth, min_impurity_decrease, min_impurity_split,
                 init, subsample, max_features, ccp_alpha,
                 random_state, alpha=0.9, verbose=0, max_leaf_nodes=None,
                 warm_start=False, presort='deprecated',
                 validation_fraction=0.1, n_iter_no_change=None,
                 tol=1e-4):

        self.n_estimators = n_estimators
        self.learning_rate = learning_rate
        self.loss = loss
        self.criterion = criterion
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.subsample = subsample
        self.max_features = max_features
        self.max_depth = max_depth
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.ccp_alpha = ccp_alpha
        self.init = init
        self.random_state = random_state
        self.alpha = alpha
        self.verbose = verbose
        self.max_leaf_nodes = max_leaf_nodes
        self.warm_start = warm_start
        self.presort = presort
        self.validation_fraction = validation_fraction
        self.n_iter_no_change = n_iter_no_change
        self.tol = tol

    def _fit_stage(self, i, X, y, raw_predictions, sample_weight, sample_mask,
                   random_state, X_idx_sorted, X_csc=None, X_csr=None):
        """Fit another stage of ``n_classes_`` trees to the boosting model. """

        assert sample_mask.dtype == np.bool
        loss = self.loss_
        original_y = y

        # Need to pass a copy of raw_predictions to negative_gradient()
        # because raw_predictions is partially updated at the end of the loop
        # in update_terminal_regions(), and gradients need to be evaluated at
        # iteration i - 1.
        raw_predictions_copy = raw_predictions.copy()

        for k in range(loss.K):
            if loss.is_multi_class:
                y = np.array(original_y == k, dtype=np.float64)

            residual = loss.negative_gradient(y, raw_predictions_copy, k=k,
                                              sample_weight=sample_weight)

            # induce regression tree on residuals
            tree = DecisionTreeRegressor(
                criterion=self.criterion,
                splitter='best',
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                min_impurity_decrease=self.min_impurity_decrease,
                min_impurity_split=self.min_impurity_split,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=random_state,
                ccp_alpha=self.ccp_alpha)

            if self.subsample < 1.0:
                # no inplace multiplication!
                sample_weight = sample_weight * sample_mask.astype(np.float64)

            X = X_csr if X_csr is not None else X
            tree.fit(X, residual, sample_weight=sample_weight,
                     check_input=False, X_idx_sorted=X_idx_sorted)

            # update tree leaves
            loss.update_terminal_regions(
                tree.tree_, X, y, residual, raw_predictions, sample_weight,
                sample_mask, learning_rate=self.learning_rate, k=k)

            # add tree to ensemble
            self.estimators_[i, k] = tree

        return raw_predictions

    def _check_params(self):
        """Check validity of parameters and raise ValueError if not valid. """
        if self.n_estimators <= 0:
            raise ValueError("n_estimators must be greater than 0 but "
                             "was %r" % self.n_estimators)

        if self.learning_rate <= 0.0:
            raise ValueError("learning_rate must be greater than 0 but "
                             "was %r" % self.learning_rate)

        if (self.loss not in self._SUPPORTED_LOSS
                or self.loss not in _gb_losses.LOSS_FUNCTIONS):
            raise ValueError("Loss '{0:s}' not supported. ".format(self.loss))

        if self.loss == 'deviance':
            loss_class = (_gb_losses.MultinomialDeviance
                          if len(self.classes_) > 2
                          else _gb_losses.BinomialDeviance)
        else:
            loss_class = _gb_losses.LOSS_FUNCTIONS[self.loss]

        if self.loss in ('huber', 'quantile'):
            self.loss_ = loss_class(self.n_classes_, self.alpha)
        else:
            self.loss_ = loss_class(self.n_classes_)

        if not (0.0 < self.subsample <= 1.0):
            raise ValueError("subsample must be in (0,1] but "
                             "was %r" % self.subsample)

        if self.init is not None:
            # init must be an estimator or 'zero'
            if isinstance(self.init, BaseEstimator):
                self.loss_.check_init_estimator(self.init)
            elif not (isinstance(self.init, str) and self.init == 'zero'):
                raise ValueError(
                    "The init parameter must be an estimator or 'zero'. "
                    "Got init={}".format(self.init)
                )

        if not (0.0 < self.alpha < 1.0):
            raise ValueError("alpha must be in (0.0, 1.0) but "
                             "was %r" % self.alpha)

        if isinstance(self.max_features, str):
            if self.max_features == "auto":
                # if is_classification
                if self.n_classes_ > 1:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    # is regression
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError("Invalid value for max_features: %r. "
                                 "Allowed string values are 'auto', 'sqrt' "
                                 "or 'log2'." % self.max_features)
        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, numbers.Integral):
            max_features = self.max_features
        else:  # float
            if 0. < self.max_features <= 1.:
                max_features = max(int(self.max_features *
                                       self.n_features_), 1)
            else:
                raise ValueError("max_features must be in (0, n_features]")

        self.max_features_ = max_features

        if not isinstance(self.n_iter_no_change,
                          (numbers.Integral, type(None))):
            raise ValueError("n_iter_no_change should either be None or an "
                             "integer. %r was passed"
                             % self.n_iter_no_change)

        if self.presort != 'deprecated':
            warnings.warn("The parameter 'presort' is deprecated and has no "
                          "effect. It will be removed in v0.24. You can "
                          "suppress this warning by not passing any value "
                          "to the 'presort' parameter. We also recommend "
                          "using HistGradientBoosting models instead.",
                          FutureWarning)

    def _init_state(self):
        """Initialize model state and allocate model state data structures. """

        self.init_ = self.init
        if self.init_ is None:
            self.init_ = self.loss_.init_estimator()

        self.estimators_ = np.empty((self.n_estimators, self.loss_.K),
                                    dtype=np.object)
        self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64)
        # do oob?
        if self.subsample < 1.0:
            self.oob_improvement_ = np.zeros((self.n_estimators),
                                             dtype=np.float64)

    def _clear_state(self):
        """Clear the state of the gradient boosting model. """
        if hasattr(self, 'estimators_'):
            self.estimators_ = np.empty((0, 0), dtype=np.object)
        if hasattr(self, 'train_score_'):
            del self.train_score_
        if hasattr(self, 'oob_improvement_'):
            del self.oob_improvement_
        if hasattr(self, 'init_'):
            del self.init_
        if hasattr(self, '_rng'):
            del self._rng

    def _resize_state(self):
        """Add additional ``n_estimators`` entries to all attributes. """
        # self.n_estimators is the number of additional est to fit
        total_n_estimators = self.n_estimators
        if total_n_estimators < self.estimators_.shape[0]:
            raise ValueError('resize with smaller n_estimators %d < %d' %
                             (total_n_estimators, self.estimators_[0]))

        self.estimators_ = np.resize(self.estimators_,
                                     (total_n_estimators, self.loss_.K))
        self.train_score_ = np.resize(self.train_score_, total_n_estimators)
        if (self.subsample < 1 or hasattr(self, 'oob_improvement_')):
            # if do oob resize arrays or create new if not available
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_ = np.resize(self.oob_improvement_,
                                                  total_n_estimators)
            else:
                self.oob_improvement_ = np.zeros((total_n_estimators,),
                                                 dtype=np.float64)

    def _is_initialized(self):
        return len(getattr(self, 'estimators_', [])) > 0

    def _check_initialized(self):
        """Check that the estimator is initialized, raising an error if not."""
        check_is_fitted(self)

    def fit(self, X, y, sample_weight=None, monitor=None):
        """Fit the gradient boosting model.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        y : array-like of shape (n_samples,)
            Target values (strings or integers in classification, real numbers
            in regression)
            For classification, labels must correspond to classes.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        monitor : callable, default=None
            The monitor is called after each iteration with the current
            iteration, a reference to the estimator and the local variables of
            ``_fit_stages`` as keyword arguments ``callable(i, self,
            locals())``. If the callable returns ``True`` the fitting procedure
            is stopped. The monitor can be used for various things such as
            computing held-out estimates, early stopping, model introspect, and
            snapshoting.

        Returns
        -------
        self : object
        """
        # if not warmstart - clear the estimator state
        if not self.warm_start:
            self._clear_state()

        # Check input
        # Since check_array converts both X and y to the same dtype, but the
        # trees use different types for X and y, checking them separately.

        X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc', 'coo'],
                                   dtype=DTYPE, multi_output=True)
        n_samples, self.n_features_ = X.shape

        sample_weight_is_none = sample_weight is None

        sample_weight = _check_sample_weight(sample_weight, X)

        y = column_or_1d(y, warn=True)
        y = self._validate_y(y, sample_weight)

        if self.n_iter_no_change is not None:
            stratify = y if is_classifier(self) else None
            X, X_val, y, y_val, sample_weight, sample_weight_val = (
                train_test_split(X, y, sample_weight,
                                 random_state=self.random_state,
                                 test_size=self.validation_fraction,
                                 stratify=stratify))
            if is_classifier(self):
                if self.n_classes_ != np.unique(y).shape[0]:
                    # We choose to error here. The problem is that the init
                    # estimator would be trained on y, which has some missing
                    # classes now, so its predictions would not have the
                    # correct shape.
                    raise ValueError(
                        'The training data after the early stopping split '
                        'is missing some classes. Try using another random '
                        'seed.'
                    )
        else:
            X_val = y_val = sample_weight_val = None

        self._check_params()

        if not self._is_initialized():
            # init state
            self._init_state()

            # fit initial model and initialize raw predictions
            if self.init_ == 'zero':
                raw_predictions = np.zeros(shape=(X.shape[0], self.loss_.K),
                                           dtype=np.float64)
            else:
                # XXX clean this once we have a support_sample_weight tag
                if sample_weight_is_none:
                    self.init_.fit(X, y)
                else:
                    msg = ("The initial estimator {} does not support sample "
                           "weights.".format(self.init_.__class__.__name__))
                    try:
                        self.init_.fit(X, y, sample_weight=sample_weight)
                    except TypeError:  # regular estimator without SW support
                        raise ValueError(msg)
                    except ValueError as e:
                        if "pass parameters to specific steps of "\
                           "your pipeline using the "\
                           "stepname__parameter" in str(e):  # pipeline
                            raise ValueError(msg) from e
                        else:  # regular estimator whose input checking failed
                            raise

                raw_predictions = \
                    self.loss_.get_init_raw_predictions(X, self.init_)

            begin_at_stage = 0

            # The rng state must be preserved if warm_start is True
            self._rng = check_random_state(self.random_state)

        else:
            # add more estimators to fitted model
            # invariant: warm_start = True
            if self.n_estimators < self.estimators_.shape[0]:
                raise ValueError('n_estimators=%d must be larger or equal to '
                                 'estimators_.shape[0]=%d when '
                                 'warm_start==True'
                                 % (self.n_estimators,
                                    self.estimators_.shape[0]))
            begin_at_stage = self.estimators_.shape[0]
            # The requirements of _decision_function (called in two lines
            # below) are more constrained than fit. It accepts only CSR
            # matrices.
            X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
            raw_predictions = self._raw_predict(X)
            self._resize_state()

        X_idx_sorted = None

        # fit the boosting stages
        n_stages = self._fit_stages(
            X, y, raw_predictions, sample_weight, self._rng, X_val, y_val,
            sample_weight_val, begin_at_stage, monitor, X_idx_sorted)

        # change shape of arrays after fit (early-stopping or additional ests)
        if n_stages != self.estimators_.shape[0]:
            self.estimators_ = self.estimators_[:n_stages]
            self.train_score_ = self.train_score_[:n_stages]
            if hasattr(self, 'oob_improvement_'):
                self.oob_improvement_ = self.oob_improvement_[:n_stages]

        self.n_estimators_ = n_stages
        return self

    def _fit_stages(self, X, y, raw_predictions, sample_weight, random_state,
                    X_val, y_val, sample_weight_val,
                    begin_at_stage=0, monitor=None, X_idx_sorted=None):
        """Iteratively fits the stages.

        For each stage it computes the progress (OOB, train score)
        and delegates to ``_fit_stage``.
        Returns the number of stages fit; might differ from ``n_estimators``
        due to early stopping.
        """
        n_samples = X.shape[0]
        do_oob = self.subsample < 1.0
        sample_mask = np.ones((n_samples, ), dtype=np.bool)
        n_inbag = max(1, int(self.subsample * n_samples))
        loss_ = self.loss_

        if self.verbose:
            verbose_reporter = VerboseReporter(verbose=self.verbose)
            verbose_reporter.init(self, begin_at_stage)

        X_csc = csc_matrix(X) if issparse(X) else None
        X_csr = csr_matrix(X) if issparse(X) else None

        if self.n_iter_no_change is not None:
            loss_history = np.full(self.n_iter_no_change, np.inf)
            # We create a generator to get the predictions for X_val after
            # the addition of each successive stage
            y_val_pred_iter = self._staged_raw_predict(X_val)

        # perform boosting iterations
        i = begin_at_stage
        for i in range(begin_at_stage, self.n_estimators):

            # subsampling
            if do_oob:
                sample_mask = _random_sample_mask(n_samples, n_inbag,
                                                  random_state)
                # OOB score before adding this stage
                old_oob_score = loss_(y[~sample_mask],
                                      raw_predictions[~sample_mask],
                                      sample_weight[~sample_mask])

            # fit next stage of trees
            raw_predictions = self._fit_stage(
                i, X, y, raw_predictions, sample_weight, sample_mask,
                random_state, X_idx_sorted, X_csc, X_csr)

            # track deviance (= loss)
            if do_oob:
                self.train_score_[i] = loss_(y[sample_mask],
                                             raw_predictions[sample_mask],
                                             sample_weight[sample_mask])
                self.oob_improvement_[i] = (
                    old_oob_score - loss_(y[~sample_mask],
                                          raw_predictions[~sample_mask],
                                          sample_weight[~sample_mask]))
            else:
                # no need to fancy index w/ no subsampling
                self.train_score_[i] = loss_(y, raw_predictions, sample_weight)

            if self.verbose > 0:
                verbose_reporter.update(i, self)

            if monitor is not None:
                early_stopping = monitor(i, self, locals())
                if early_stopping:
                    break

            # We also provide an early stopping based on the score from
            # validation set (X_val, y_val), if n_iter_no_change is set
            if self.n_iter_no_change is not None:
                # By calling next(y_val_pred_iter), we get the predictions
                # for X_val after the addition of the current stage
                validation_loss = loss_(y_val, next(y_val_pred_iter),
                                        sample_weight_val)

                # Require validation_score to be better (less) than at least
                # one of the last n_iter_no_change evaluations
                if np.any(validation_loss + self.tol < loss_history):
                    loss_history[i % len(loss_history)] = validation_loss
                else:
                    break

        return i + 1

    def _make_estimator(self, append=True):
        # we don't need _make_estimator
        raise NotImplementedError()

    def _raw_predict_init(self, X):
        """Check input and compute raw predictions of the init estimator."""
        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)
        if X.shape[1] != self.n_features_:
            raise ValueError("X.shape[1] should be {0:d}, not {1:d}.".format(
                self.n_features_, X.shape[1]))
        if self.init_ == 'zero':
            raw_predictions = np.zeros(shape=(X.shape[0], self.loss_.K),
                                       dtype=np.float64)
        else:
            raw_predictions = self.loss_.get_init_raw_predictions(
                X, self.init_).astype(np.float64)
        return raw_predictions

    def _raw_predict(self, X):
        """Return the sum of the trees raw predictions (+ init estimator)."""
        raw_predictions = self._raw_predict_init(X)
        predict_stages(self.estimators_, X, self.learning_rate,
                       raw_predictions)
        return raw_predictions

    def _staged_raw_predict(self, X):
        """Compute raw predictions of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        raw_predictions : generator of ndarray of shape (n_samples, k)
            The raw predictions of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
        raw_predictions = self._raw_predict_init(X)
        for i in range(self.estimators_.shape[0]):
            predict_stage(self.estimators_, i, X, self.learning_rate,
                          raw_predictions)
            yield raw_predictions.copy()

    @property
    def feature_importances_(self):
        """The impurity-based feature importances.

        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : array, shape (n_features,)
            The values of this array sum to 1, unless all trees are single node
            trees consisting of only the root node, in which case it will be an
            array of zeros.
        """
        self._check_initialized()

        relevant_trees = [tree
                          for stage in self.estimators_ for tree in stage
                          if tree.tree_.node_count > 1]
        if not relevant_trees:
            # degenerate case where all trees have only one node
            return np.zeros(shape=self.n_features_, dtype=np.float64)

        relevant_feature_importances = [
            tree.tree_.compute_feature_importances(normalize=False)
            for tree in relevant_trees
        ]
        avg_feature_importances = np.mean(relevant_feature_importances,
                                          axis=0, dtype=np.float64)
        return avg_feature_importances / np.sum(avg_feature_importances)

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features,)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape \
                (n_trees_per_iteration, n_samples)
            The value of the partial dependence function on each grid point.
        """
        if self.init is not None:
            warnings.warn(
                'Using recursion method with a non-constant init predictor '
                'will lead to incorrect partial dependence values. '
                'Got init=%s.' % self.init,
                UserWarning
            )
        grid = np.asarray(grid, dtype=DTYPE, order='C')
        n_estimators, n_trees_per_stage = self.estimators_.shape
        averaged_predictions = np.zeros((n_trees_per_stage, grid.shape[0]),
                                        dtype=np.float64, order='C')
        for stage in range(n_estimators):
            for k in range(n_trees_per_stage):
                tree = self.estimators_[stage, k].tree_
                tree.compute_partial_dependence(grid, target_features,
                                                averaged_predictions[k])
        averaged_predictions *= self.learning_rate

        return averaged_predictions

    def _validate_y(self, y, sample_weight):
        # 'sample_weight' is not utilised but is used for
        # consistency with similar method _validate_y of GBC
        self.n_classes_ = 1
        if y.dtype.kind == 'O':
            y = y.astype(DOUBLE)
        # Default implementation
        return y

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will
            be converted to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array-like of shape (n_samples, n_estimators, n_classes)
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in each estimator.
            In the case of binary classification n_classes is 1.
        """

        self._check_initialized()
        X = self.estimators_[0, 0]._validate_X_predict(X, check_input=True)

        # n_classes will be equal to 1 in the binary classification or the
        # regression case.
        n_estimators, n_classes = self.estimators_.shape
        leaves = np.zeros((X.shape[0], n_estimators, n_classes))

        for i in range(n_estimators):
            for j in range(n_classes):
                estimator = self.estimators_[i, j]
                leaves[:, i, j] = estimator.apply(X, check_input=False)

        return leaves


class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):
    """Gradient Boosting for classification.

    GB builds an additive model in a
    forward stage-wise fashion; it allows for the optimization of
    arbitrary differentiable loss functions. In each stage ``n_classes_``
    regression trees are fit on the negative gradient of the
    binomial or multinomial deviance loss function. Binary classification
    is a special case where only a single regression tree is induced.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'deviance', 'exponential'}, default='deviance'
        loss function to be optimized. 'deviance' refers to
        deviance (= logistic regression) for classification
        with probabilistic outputs. For loss 'exponential' gradient
        boosting recovers the AdaBoost algorithm.

    learning_rate : float, default=0.1
        learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.

    n_estimators : int, default=100
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.

    subsample : float, default=1.0
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.

    criterion : {'friedman_mse', 'mse', 'mae'}, default='friedman_mse'
        The function to measure the quality of a split. Supported criteria
        are 'friedman_mse' for the mean squared error with improvement
        score by Friedman, 'mse' for mean squared error, and 'mae' for
        the mean absolute error. The default value of 'friedman_mse' is
        generally the best as it can provide a better approximation in
        some cases.

        .. versionadded:: 0.18

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_depth : int, default=3
        maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    init : estimator or 'zero', default=None
        An estimator object that is used to compute the initial predictions.
        ``init`` has to provide :meth:`fit` and :meth:`predict_proba`. If
        'zero', the initial raw predictions are set to zero. By default, a
        ``DummyEstimator`` predicting the classes priors is used.

    random_state : int or RandomState, default=None
        Controls the random seed given to each Tree estimator at each
        boosting iteration.
        In addition, it controls the random permutation of the features at
        each split (see Notes for more details).
        It also controls the random spliting of the training data to obtain a
        validation set if `n_iter_no_change` is not None.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_features : {'auto', 'sqrt', 'log2'}, int or float, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If 'auto', then `max_features=sqrt(n_features)`.
        - If 'sqrt', then `max_features=sqrt(n_features)`.
        - If 'log2', then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    verbose : int, default=0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    presort : deprecated, default='deprecated'
        This parameter is deprecated and will be removed in v0.24.

        .. deprecated :: 0.22

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if ``n_iter_no_change`` is set to an integer.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=None
        ``n_iter_no_change`` is used to decide if early stopping will be used
        to terminate training when validation score is not improving. By
        default it is set to None to disable early stopping. If set to a
        number, it will set aside ``validation_fraction`` size of the training
        data as validation and terminate training when validation score is not
        improving in all of the previous ``n_iter_no_change`` numbers of
        iterations. The split is stratified.

        .. versionadded:: 0.20

    tol : float, default=1e-4
        Tolerance for the early stopping. When the loss is not improving
        by at least tol for ``n_iter_no_change`` iterations (if set to a
        number), the training stops.

        .. versionadded:: 0.20

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    n_estimators_ : int
        The number of estimators as selected by early stopping (if
        ``n_iter_no_change`` is specified). Otherwise it is set to
        ``n_estimators``.

        .. versionadded:: 0.20

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_improvement_ : ndarray of shape (n_estimators,)
        The improvement in loss (= deviance) on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.
        Only available if ``subsample < 1.0``

    train_score_ : ndarray of shape (n_estimators,)
        The i-th score ``train_score_[i]`` is the deviance (= loss) of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the deviance on the training data.

    loss_ : LossFunction
        The concrete ``LossFunction`` object.

    init_ : estimator
        The estimator that provides the initial predictions.
        Set via the ``init`` argument or ``loss.init_estimator``.

    estimators_ : ndarray of DecisionTreeRegressor of \
shape (n_estimators, ``loss_.K``)
        The collection of fitted sub-estimators. ``loss_.K`` is 1 for binary
        classification, otherwise n_classes.

    classes_ : ndarray of shape (n_classes,)
        The classes labels.

    n_features_ : int
        The number of data features.

    n_classes_ : int
        The number of classes.

    max_features_ : int
        The inferred value of max_features.

    Notes
    -----
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data and
    ``max_features=n_features``, if the improvement of the criterion is
    identical for several splits enumerated during the search of the best
    split. To obtain a deterministic behaviour during fitting,
    ``random_state`` has to be fixed.

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.ensemble import GradientBoostingClassifier
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> clf = GradientBoostingClassifier(random_state=0)
    >>> clf.fit(X_train, y_train)
    GradientBoostingClassifier(random_state=0)
    >>> clf.predict(X_test[:2])
    array([1, 0])
    >>> clf.score(X_test, y_test)
    0.88

    See also
    --------
    sklearn.ensemble.HistGradientBoostingClassifier,
    sklearn.tree.DecisionTreeClassifier, RandomForestClassifier
    AdaBoostClassifier

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.
    """

    _SUPPORTED_LOSS = ('deviance', 'exponential')

    @_deprecate_positional_args
    def __init__(self, *, loss='deviance', learning_rate=0.1, n_estimators=100,
                 subsample=1.0, criterion='friedman_mse', min_samples_split=2,
                 min_samples_leaf=1, min_weight_fraction_leaf=0.,
                 max_depth=3, min_impurity_decrease=0.,
                 min_impurity_split=None, init=None,
                 random_state=None, max_features=None, verbose=0,
                 max_leaf_nodes=None, warm_start=False,
                 presort='deprecated', validation_fraction=0.1,
                 n_iter_no_change=None, tol=1e-4, ccp_alpha=0.0):

        super().__init__(
            loss=loss, learning_rate=learning_rate, n_estimators=n_estimators,
            criterion=criterion, min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth, init=init, subsample=subsample,
            max_features=max_features,
            random_state=random_state, verbose=verbose,
            max_leaf_nodes=max_leaf_nodes,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            warm_start=warm_start, presort=presort,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, tol=tol, ccp_alpha=ccp_alpha)

    def _validate_y(self, y, sample_weight):
        check_classification_targets(y)
        self.classes_, y = np.unique(y, return_inverse=True)
        n_trim_classes = np.count_nonzero(np.bincount(y, sample_weight))
        if n_trim_classes < 2:
            raise ValueError("y contains %d class after sample_weight "
                             "trimmed classes with zero weights, while a "
                             "minimum of 2 classes are required."
                             % n_trim_classes)
        self.n_classes_ = len(self.classes_)
        return y

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        score : ndarray of shape (n_samples, n_classes) or (n_samples,)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            order of the classes corresponds to that in the attribute
            :term:`classes_`. Regression and binary classification produce an
            array of shape [n_samples].
        """
        X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
        raw_predictions = self._raw_predict(X)
        if raw_predictions.shape[1] == 1:
            return raw_predictions.ravel()
        return raw_predictions

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        score : generator of ndarray of shape (n_samples, k)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            classes corresponds to that in the attribute :term:`classes_`.
            Regression and binary classification are special cases with
            ``k == 1``, otherwise ``k==n_classes``.
        """
        yield from self._staged_raw_predict(X)

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        raw_predictions = self.decision_function(X)
        encoded_labels = \
            self.loss_._raw_prediction_to_decision(raw_predictions)
        return self.classes_.take(encoded_labels, axis=0)

    def staged_predict(self, X):
        """Predict class at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        for raw_predictions in self._staged_raw_predict(X):
            encoded_labels = \
                self.loss_._raw_prediction_to_decision(raw_predictions)
            yield self.classes_.take(encoded_labels, axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        raw_predictions = self.decision_function(X)
        try:
            return self.loss_._raw_prediction_to_proba(raw_predictions)
        except NotFittedError:
            raise
        except AttributeError:
            raise AttributeError('loss=%r does not support predict_proba' %
                                 self.loss)

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Raises
        ------
        AttributeError
            If the ``loss`` does not support probabilities.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        proba = self.predict_proba(X)
        return np.log(proba)

    def staged_predict_proba(self, X):
        """Predict class probabilities at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        try:
            for raw_predictions in self._staged_raw_predict(X):
                yield self.loss_._raw_prediction_to_proba(raw_predictions)
        except NotFittedError:
            raise
        except AttributeError:
            raise AttributeError('loss=%r does not support predict_proba' %
                                 self.loss)


class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
    """Gradient Boosting for regression.

    GB builds an additive model in a forward stage-wise fashion;
    it allows for the optimization of arbitrary differentiable loss functions.
    In each stage a regression tree is fit on the negative gradient of the
    given loss function.

    Read more in the :ref:`User Guide <gradient_boosting>`.

    Parameters
    ----------
    loss : {'ls', 'lad', 'huber', 'quantile'}, default='ls'
        loss function to be optimized. 'ls' refers to least squares
        regression. 'lad' (least absolute deviation) is a highly robust
        loss function solely based on order information of the input
        variables. 'huber' is a combination of the two. 'quantile'
        allows quantile regression (use `alpha` to specify the quantile).

    learning_rate : float, default=0.1
        learning rate shrinks the contribution of each tree by `learning_rate`.
        There is a trade-off between learning_rate and n_estimators.

    n_estimators : int, default=100
        The number of boosting stages to perform. Gradient boosting
        is fairly robust to over-fitting so a large number usually
        results in better performance.

    subsample : float, default=1.0
        The fraction of samples to be used for fitting the individual base
        learners. If smaller than 1.0 this results in Stochastic Gradient
        Boosting. `subsample` interacts with the parameter `n_estimators`.
        Choosing `subsample < 1.0` leads to a reduction of variance
        and an increase in bias.

    criterion : {'friedman_mse', 'mse', 'mae'}, default='friedman_mse'
        The function to measure the quality of a split. Supported criteria
        are "friedman_mse" for the mean squared error with improvement
        score by Friedman, "mse" for mean squared error, and "mae" for
        the mean absolute error. The default value of "friedman_mse" is
        generally the best as it can provide a better approximation in
        some cases.

        .. versionadded:: 0.18

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_depth : int, default=3
        maximum depth of the individual regression estimators. The maximum
        depth limits the number of nodes in the tree. Tune this parameter
        for best performance; the best value depends on the interaction
        of the input variables.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    init : estimator or 'zero', default=None
        An estimator object that is used to compute the initial predictions.
        ``init`` has to provide :term:`fit` and :term:`predict`. If 'zero', the
        initial raw predictions are set to zero. By default a
        ``DummyEstimator`` is used, predicting either the average target value
        (for loss='ls'), or a quantile for the other losses.

    random_state : int or RandomState, default=None
        Controls the random seed given to each Tree estimator at each
        boosting iteration.
        In addition, it controls the random permutation of the features at
        each split (see Notes for more details).
        It also controls the random spliting of the training data to obtain a
        validation set if `n_iter_no_change` is not None.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    max_features : {'auto', 'sqrt', 'log2'}, int or float, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Choosing `max_features < n_features` leads to a reduction of variance
        and an increase in bias.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    alpha : float, default=0.9
        The alpha-quantile of the huber loss function and the quantile
        loss function. Only if ``loss='huber'`` or ``loss='quantile'``.

    verbose : int, default=0
        Enable verbose output. If 1 then it prints progress and performance
        once in a while (the more trees the lower the frequency). If greater
        than 1 then it prints progress and performance for every tree.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just erase the
        previous solution. See :term:`the Glossary <warm_start>`.

    presort : deprecated, default='deprecated'
        This parameter is deprecated and will be removed in v0.24.

        .. deprecated :: 0.22

    validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if ``n_iter_no_change`` is set to an integer.

        .. versionadded:: 0.20

    n_iter_no_change : int, default=None
        ``n_iter_no_change`` is used to decide if early stopping will be used
        to terminate training when validation score is not improving. By
        default it is set to None to disable early stopping. If set to a
        number, it will set aside ``validation_fraction`` size of the training
        data as validation and terminate training when validation score is not
        improving in all of the previous ``n_iter_no_change`` numbers of
        iterations.

        .. versionadded:: 0.20

    tol : float, default=1e-4
        Tolerance for the early stopping. When the loss is not improving
        by at least tol for ``n_iter_no_change`` iterations (if set to a
        number), the training stops.

        .. versionadded:: 0.20

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    Attributes
    ----------
    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_improvement_ : ndarray of shape (n_estimators,)
        The improvement in loss (= deviance) on the out-of-bag samples
        relative to the previous iteration.
        ``oob_improvement_[0]`` is the improvement in
        loss of the first stage over the ``init`` estimator.
        Only available if ``subsample < 1.0``

    train_score_ : ndarray of shape (n_estimators,)
        The i-th score ``train_score_[i]`` is the deviance (= loss) of the
        model at iteration ``i`` on the in-bag sample.
        If ``subsample == 1`` this is the deviance on the training data.

    loss_ : LossFunction
        The concrete ``LossFunction`` object.

    init_ : estimator
        The estimator that provides the initial predictions.
        Set via the ``init`` argument or ``loss.init_estimator``.

    estimators_ : ndarray of DecisionTreeRegressor of shape (n_estimators, 1)
        The collection of fitted sub-estimators.

    n_features_ : int
        The number of data features.

    max_features_ : int
        The inferred value of max_features.

    Notes
    -----
    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data and
    ``max_features=n_features``, if the improvement of the criterion is
    identical for several splits enumerated during the search of the best
    split. To obtain a deterministic behaviour during fitting,
    ``random_state`` has to be fixed.

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.ensemble import GradientBoostingRegressor
    >>> from sklearn.model_selection import train_test_split
    >>> X, y = make_regression(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> reg = GradientBoostingRegressor(random_state=0)
    >>> reg.fit(X_train, y_train)
    GradientBoostingRegressor(random_state=0)
    >>> reg.predict(X_test[1:2])
    array([-61...])
    >>> reg.score(X_test, y_test)
    0.4...

    See also
    --------
    sklearn.ensemble.HistGradientBoostingRegressor,
    sklearn.tree.DecisionTreeRegressor, RandomForestRegressor

    References
    ----------
    J. Friedman, Greedy Function Approximation: A Gradient Boosting
    Machine, The Annals of Statistics, Vol. 29, No. 5, 2001.

    J. Friedman, Stochastic Gradient Boosting, 1999

    T. Hastie, R. Tibshirani and J. Friedman.
    Elements of Statistical Learning Ed. 2, Springer, 2009.
    """

    _SUPPORTED_LOSS = ('ls', 'lad', 'huber', 'quantile')

    @_deprecate_positional_args
    def __init__(self, *, loss='ls', learning_rate=0.1, n_estimators=100,
                 subsample=1.0, criterion='friedman_mse', min_samples_split=2,
                 min_samples_leaf=1, min_weight_fraction_leaf=0.,
                 max_depth=3, min_impurity_decrease=0.,
                 min_impurity_split=None, init=None, random_state=None,
                 max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None,
                 warm_start=False, presort='deprecated',
                 validation_fraction=0.1,
                 n_iter_no_change=None, tol=1e-4, ccp_alpha=0.0):

        super().__init__(
            loss=loss, learning_rate=learning_rate, n_estimators=n_estimators,
            criterion=criterion, min_samples_split=min_samples_split,
            min_samples_leaf=min_samples_leaf,
            min_weight_fraction_leaf=min_weight_fraction_leaf,
            max_depth=max_depth, init=init, subsample=subsample,
            max_features=max_features,
            min_impurity_decrease=min_impurity_decrease,
            min_impurity_split=min_impurity_split,
            random_state=random_state, alpha=alpha, verbose=verbose,
            max_leaf_nodes=max_leaf_nodes, warm_start=warm_start,
            presort=presort, validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, tol=tol, ccp_alpha=ccp_alpha)

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            The predicted values.
        """
        X = check_array(X, dtype=DTYPE, order="C", accept_sparse='csr')
        # In regression we can directly return the raw value from the trees.
        return self._raw_predict(X).ravel()

    def staged_predict(self, X):
        """Predict regression target at each stage for X.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csr_matrix``.

        Returns
        -------
        y : generator of ndarray of shape (n_samples,)
            The predicted value of the input samples.
        """
        for raw_predictions in self._staged_raw_predict(X):
            yield raw_predictions.ravel()

    def apply(self, X):
        """Apply trees in the ensemble to X, return leaf indices.

        .. versionadded:: 0.17

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will
            be converted to a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : array-like of shape (n_samples, n_estimators)
            For each datapoint x in X and for each tree in the ensemble,
            return the index of the leaf x ends up in each estimator.
        """

        leaves = super().apply(X)
        leaves = leaves.reshape(X.shape[0], self.estimators_.shape[0])
        return leaves