_base.py
9.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""Base class for ensemble-based estimators."""
# Authors: Gilles Louppe
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
import numbers
import warnings
from typing import List
import numpy as np
from joblib import effective_n_jobs
from ..base import clone
from ..base import is_classifier, is_regressor
from ..base import BaseEstimator
from ..base import MetaEstimatorMixin
from ..utils import Bunch, _print_elapsed_time
from ..utils import check_random_state
from ..utils.metaestimators import _BaseComposition
def _fit_single_estimator(estimator, X, y, sample_weight=None,
message_clsname=None, message=None):
"""Private function used to fit an estimator within a job."""
if sample_weight is not None:
try:
with _print_elapsed_time(message_clsname, message):
estimator.fit(X, y, sample_weight=sample_weight)
except TypeError as exc:
if "unexpected keyword argument 'sample_weight'" in str(exc):
raise TypeError(
"Underlying estimator {} does not support sample weights."
.format(estimator.__class__.__name__)
) from exc
raise
else:
with _print_elapsed_time(message_clsname, message):
estimator.fit(X, y)
return estimator
def _set_random_states(estimator, random_state=None):
"""Set fixed random_state parameters for an estimator.
Finds all parameters ending ``random_state`` and sets them to integers
derived from ``random_state``.
Parameters
----------
estimator : estimator supporting get/set_params
Estimator with potential randomness managed by random_state
parameters.
random_state : int or RandomState, default=None
Pseudo-random number generator to control the generation of the random
integers. Pass an int for reproducible output across multiple function
calls.
See :term:`Glossary <random_state>`.
Notes
-----
This does not necessarily set *all* ``random_state`` attributes that
control an estimator's randomness, only those accessible through
``estimator.get_params()``. ``random_state``s not controlled include
those belonging to:
* cross-validation splitters
* ``scipy.stats`` rvs
"""
random_state = check_random_state(random_state)
to_set = {}
for key in sorted(estimator.get_params(deep=True)):
if key == 'random_state' or key.endswith('__random_state'):
to_set[key] = random_state.randint(np.iinfo(np.int32).max)
if to_set:
estimator.set_params(**to_set)
class BaseEnsemble(MetaEstimatorMixin, BaseEstimator, metaclass=ABCMeta):
"""Base class for all ensemble classes.
Warning: This class should not be used directly. Use derived classes
instead.
Parameters
----------
base_estimator : object
The base estimator from which the ensemble is built.
n_estimators : int, default=10
The number of estimators in the ensemble.
estimator_params : list of str, default=tuple()
The list of attributes to use as parameters when instantiating a
new base estimator. If none are given, default parameters are used.
Attributes
----------
base_estimator_ : estimator
The base estimator from which the ensemble is grown.
estimators_ : list of estimators
The collection of fitted base estimators.
"""
# overwrite _required_parameters from MetaEstimatorMixin
_required_parameters: List[str] = []
@abstractmethod
def __init__(self, base_estimator, *, n_estimators=10,
estimator_params=tuple()):
# Set parameters
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.estimator_params = estimator_params
# Don't instantiate estimators now! Parameters of base_estimator might
# still change. Eg., when grid-searching with the nested object syntax.
# self.estimators_ needs to be filled by the derived classes in fit.
def _validate_estimator(self, default=None):
"""Check the estimator and the n_estimator attribute.
Sets the base_estimator_` attributes.
"""
if not isinstance(self.n_estimators, numbers.Integral):
raise ValueError("n_estimators must be an integer, "
"got {0}.".format(type(self.n_estimators)))
if self.n_estimators <= 0:
raise ValueError("n_estimators must be greater than zero, "
"got {0}.".format(self.n_estimators))
if self.base_estimator is not None:
self.base_estimator_ = self.base_estimator
else:
self.base_estimator_ = default
if self.base_estimator_ is None:
raise ValueError("base_estimator cannot be None")
def _make_estimator(self, append=True, random_state=None):
"""Make and configure a copy of the `base_estimator_` attribute.
Warning: This method should be used to properly instantiate new
sub-estimators.
"""
estimator = clone(self.base_estimator_)
estimator.set_params(**{p: getattr(self, p)
for p in self.estimator_params})
if random_state is not None:
_set_random_states(estimator, random_state)
if append:
self.estimators_.append(estimator)
return estimator
def __len__(self):
"""Return the number of estimators in the ensemble."""
return len(self.estimators_)
def __getitem__(self, index):
"""Return the index'th estimator in the ensemble."""
return self.estimators_[index]
def __iter__(self):
"""Return iterator over estimators in the ensemble."""
return iter(self.estimators_)
def _partition_estimators(n_estimators, n_jobs):
"""Private function used to partition estimators between jobs."""
# Compute the number of jobs
n_jobs = min(effective_n_jobs(n_jobs), n_estimators)
# Partition estimators between jobs
n_estimators_per_job = np.full(n_jobs, n_estimators // n_jobs,
dtype=np.int)
n_estimators_per_job[:n_estimators % n_jobs] += 1
starts = np.cumsum(n_estimators_per_job)
return n_jobs, n_estimators_per_job.tolist(), [0] + starts.tolist()
class _BaseHeterogeneousEnsemble(MetaEstimatorMixin, _BaseComposition,
metaclass=ABCMeta):
"""Base class for heterogeneous ensemble of learners.
Parameters
----------
estimators : list of (str, estimator) tuples
The ensemble of estimators to use in the ensemble. Each element of the
list is defined as a tuple of string (i.e. name of the estimator) and
an estimator instance. An estimator can be set to `'drop'` using
`set_params`.
Attributes
----------
estimators_ : list of estimators
The elements of the estimators parameter, having been fitted on the
training data. If an estimator has been set to `'drop'`, it will not
appear in `estimators_`.
"""
_required_parameters = ['estimators']
@property
def named_estimators(self):
return Bunch(**dict(self.estimators))
@abstractmethod
def __init__(self, estimators):
self.estimators = estimators
def _validate_estimators(self):
if self.estimators is None or len(self.estimators) == 0:
raise ValueError(
"Invalid 'estimators' attribute, 'estimators' should be a list"
" of (string, estimator) tuples."
)
names, estimators = zip(*self.estimators)
# defined by MetaEstimatorMixin
self._validate_names(names)
# FIXME: deprecate the usage of None to drop an estimator from the
# ensemble. Remove in 0.24
if any(est is None for est in estimators):
warnings.warn(
"Using 'None' to drop an estimator from the ensemble is "
"deprecated in 0.22 and support will be dropped in 0.24. "
"Use the string 'drop' instead.", FutureWarning
)
has_estimator = any(est not in (None, 'drop') for est in estimators)
if not has_estimator:
raise ValueError(
"All estimators are dropped. At least one is required "
"to be an estimator."
)
is_estimator_type = (is_classifier if is_classifier(self)
else is_regressor)
for est in estimators:
if est not in (None, 'drop') and not is_estimator_type(est):
raise ValueError(
"The estimator {} should be a {}.".format(
est.__class__.__name__, is_estimator_type.__name__[3:]
)
)
return names, estimators
def set_params(self, **params):
"""
Set the parameters of an estimator from the ensemble.
Valid parameter keys can be listed with `get_params()`.
Parameters
----------
**params : keyword arguments
Specific parameters using e.g.
`set_params(parameter_name=new_value)`. In addition, to setting the
parameters of the stacking estimator, the individual estimator of
the stacking estimators can also be set, or can be removed by
setting them to 'drop'.
"""
super()._set_params('estimators', **params)
return self
def get_params(self, deep=True):
"""
Get the parameters of an estimator from the ensemble.
Parameters
----------
deep : bool, default=True
Setting it to True gets the various classifiers and the parameters
of the classifiers as well.
"""
return super()._get_params('estimators', deep=deep)