_pca.py 23 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
""" Principal Component Analysis
"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Olivier Grisel <olivier.grisel@ensta.org>
#         Mathieu Blondel <mathieu@mblondel.org>
#         Denis A. Engemann <denis-alexander.engemann@inria.fr>
#         Michael Eickenberg <michael.eickenberg@inria.fr>
#         Giorgio Patrini <giorgio.patrini@anu.edu.au>
#
# License: BSD 3 clause

from math import log, sqrt
import numbers

import numpy as np
from scipy import linalg
from scipy.special import gammaln
from scipy.sparse import issparse
from scipy.sparse.linalg import svds

from ._base import _BasePCA
from ..utils import check_random_state
from ..utils import check_array
from ..utils.extmath import fast_logdet, randomized_svd, svd_flip
from ..utils.extmath import stable_cumsum
from ..utils.validation import check_is_fitted
from ..utils.validation import _deprecate_positional_args


def _assess_dimension(spectrum, rank, n_samples):
    """Compute the log-likelihood of a rank ``rank`` dataset.

    The dataset is assumed to be embedded in gaussian noise of shape(n,
    dimf) having spectrum ``spectrum``.

    Parameters
    ----------
    spectrum : array of shape (n_features)
        Data spectrum.
    rank : int
        Tested rank value. It should be strictly lower than n_features,
        otherwise the method isn't specified (division by zero in equation
        (31) from the paper).
    n_samples : int
        Number of samples.

    Returns
    -------
    ll : float,
        The log-likelihood

    Notes
    -----
    This implements the method of `Thomas P. Minka:
    Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
    """

    n_features = spectrum.shape[0]
    if not 1 <= rank < n_features:
        raise ValueError("the tested rank should be in [1, n_features - 1]")

    eps = 1e-15

    if spectrum[rank - 1] < eps:
        # When the tested rank is associated with a small eigenvalue, there's
        # no point in computing the log-likelihood: it's going to be very
        # small and won't be the max anyway. Also, it can lead to numerical
        # issues below when computing pa, in particular in log((spectrum[i] -
        # spectrum[j]) because this will take the log of something very small.
        return -np.inf

    pu = -rank * log(2.)
    for i in range(1, rank + 1):
        pu += (gammaln((n_features - i + 1) / 2.) -
               log(np.pi) * (n_features - i + 1) / 2.)

    pl = np.sum(np.log(spectrum[:rank]))
    pl = -pl * n_samples / 2.

    v = max(eps, np.sum(spectrum[rank:]) / (n_features - rank))
    pv = -np.log(v) * n_samples * (n_features - rank) / 2.

    m = n_features * rank - rank * (rank + 1.) / 2.
    pp = log(2. * np.pi) * (m + rank) / 2.

    pa = 0.
    spectrum_ = spectrum.copy()
    spectrum_[rank:n_features] = v
    for i in range(rank):
        for j in range(i + 1, len(spectrum)):
            pa += log((spectrum[i] - spectrum[j]) *
                      (1. / spectrum_[j] - 1. / spectrum_[i])) + log(n_samples)

    ll = pu + pl + pv + pp - pa / 2. - rank * log(n_samples) / 2.

    return ll


def _infer_dimension(spectrum, n_samples):
    """Infers the dimension of a dataset with a given spectrum.

    The returned value will be in [1, n_features - 1].
    """
    ll = np.empty_like(spectrum)
    ll[0] = -np.inf  # we don't want to return n_components = 0
    for rank in range(1, spectrum.shape[0]):
        ll[rank] = _assess_dimension(spectrum, rank, n_samples)
    return ll.argmax()


class PCA(_BasePCA):
    """Principal component analysis (PCA).

    Linear dimensionality reduction using Singular Value Decomposition of the
    data to project it to a lower dimensional space. The input data is centered
    but not scaled for each feature before applying the SVD.

    It uses the LAPACK implementation of the full SVD or a randomized truncated
    SVD by the method of Halko et al. 2009, depending on the shape of the input
    data and the number of components to extract.

    It can also use the scipy.sparse.linalg ARPACK implementation of the
    truncated SVD.

    Notice that this class does not support sparse input. See
    :class:`TruncatedSVD` for an alternative with sparse data.

    Read more in the :ref:`User Guide <PCA>`.

    Parameters
    ----------
    n_components : int, float, None or str
        Number of components to keep.
        if n_components is not set all components are kept::

            n_components == min(n_samples, n_features)

        If ``n_components == 'mle'`` and ``svd_solver == 'full'``, Minka's
        MLE is used to guess the dimension. Use of ``n_components == 'mle'``
        will interpret ``svd_solver == 'auto'`` as ``svd_solver == 'full'``.

        If ``0 < n_components < 1`` and ``svd_solver == 'full'``, select the
        number of components such that the amount of variance that needs to be
        explained is greater than the percentage specified by n_components.

        If ``svd_solver == 'arpack'``, the number of components must be
        strictly less than the minimum of n_features and n_samples.

        Hence, the None case results in::

            n_components == min(n_samples, n_features) - 1

    copy : bool, default=True
        If False, data passed to fit are overwritten and running
        fit(X).transform(X) will not yield the expected results,
        use fit_transform(X) instead.

    whiten : bool, optional (default False)
        When True (False by default) the `components_` vectors are multiplied
        by the square root of n_samples and then divided by the singular values
        to ensure uncorrelated outputs with unit component-wise variances.

        Whitening will remove some information from the transformed signal
        (the relative variance scales of the components) but can sometime
        improve the predictive accuracy of the downstream estimators by
        making their data respect some hard-wired assumptions.

    svd_solver : str {'auto', 'full', 'arpack', 'randomized'}
        If auto :
            The solver is selected by a default policy based on `X.shape` and
            `n_components`: if the input data is larger than 500x500 and the
            number of components to extract is lower than 80% of the smallest
            dimension of the data, then the more efficient 'randomized'
            method is enabled. Otherwise the exact full SVD is computed and
            optionally truncated afterwards.
        If full :
            run exact full SVD calling the standard LAPACK solver via
            `scipy.linalg.svd` and select the components by postprocessing
        If arpack :
            run SVD truncated to n_components calling ARPACK solver via
            `scipy.sparse.linalg.svds`. It requires strictly
            0 < n_components < min(X.shape)
        If randomized :
            run randomized SVD by the method of Halko et al.

        .. versionadded:: 0.18.0

    tol : float >= 0, optional (default .0)
        Tolerance for singular values computed by svd_solver == 'arpack'.

        .. versionadded:: 0.18.0

    iterated_power : int >= 0, or 'auto', (default 'auto')
        Number of iterations for the power method computed by
        svd_solver == 'randomized'.

        .. versionadded:: 0.18.0

    random_state : int, RandomState instance, default=None
        Used when ``svd_solver`` == 'arpack' or 'randomized'. Pass an int
        for reproducible results across multiple function calls.
        See :term:`Glossary <random_state>`.

        .. versionadded:: 0.18.0

    Attributes
    ----------
    components_ : array, shape (n_components, n_features)
        Principal axes in feature space, representing the directions of
        maximum variance in the data. The components are sorted by
        ``explained_variance_``.

    explained_variance_ : array, shape (n_components,)
        The amount of variance explained by each of the selected components.

        Equal to n_components largest eigenvalues
        of the covariance matrix of X.

        .. versionadded:: 0.18

    explained_variance_ratio_ : array, shape (n_components,)
        Percentage of variance explained by each of the selected components.

        If ``n_components`` is not set then all components are stored and the
        sum of the ratios is equal to 1.0.

    singular_values_ : array, shape (n_components,)
        The singular values corresponding to each of the selected components.
        The singular values are equal to the 2-norms of the ``n_components``
        variables in the lower-dimensional space.

        .. versionadded:: 0.19

    mean_ : array, shape (n_features,)
        Per-feature empirical mean, estimated from the training set.

        Equal to `X.mean(axis=0)`.

    n_components_ : int
        The estimated number of components. When n_components is set
        to 'mle' or a number between 0 and 1 (with svd_solver == 'full') this
        number is estimated from input data. Otherwise it equals the parameter
        n_components, or the lesser value of n_features and n_samples
        if n_components is None.

    n_features_ : int
        Number of features in the training data.

    n_samples_ : int
        Number of samples in the training data.

    noise_variance_ : float
        The estimated noise covariance following the Probabilistic PCA model
        from Tipping and Bishop 1999. See "Pattern Recognition and
        Machine Learning" by C. Bishop, 12.2.1 p. 574 or
        http://www.miketipping.com/papers/met-mppca.pdf. It is required to
        compute the estimated data covariance and score samples.

        Equal to the average of (min(n_features, n_samples) - n_components)
        smallest eigenvalues of the covariance matrix of X.

    See Also
    --------
    KernelPCA : Kernel Principal Component Analysis.
    SparsePCA : Sparse Principal Component Analysis.
    TruncatedSVD : Dimensionality reduction using truncated SVD.
    IncrementalPCA : Incremental Principal Component Analysis.

    References
    ----------
    For n_components == 'mle', this class uses the method of *Minka, T. P.
    "Automatic choice of dimensionality for PCA". In NIPS, pp. 598-604*

    Implements the probabilistic PCA model from:
    Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
    component analysis". Journal of the Royal Statistical Society:
    Series B (Statistical Methodology), 61(3), 611-622.
    via the score and score_samples methods.
    See http://www.miketipping.com/papers/met-mppca.pdf

    For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.

    For svd_solver == 'randomized', see:
    *Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
    "Finding structure with randomness: Probabilistic algorithms for
    constructing approximate matrix decompositions".
    SIAM review, 53(2), 217-288.* and also
    *Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
    "A randomized algorithm for the decomposition of matrices".
    Applied and Computational Harmonic Analysis, 30(1), 47-68.*

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.decomposition import PCA
    >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    >>> pca = PCA(n_components=2)
    >>> pca.fit(X)
    PCA(n_components=2)
    >>> print(pca.explained_variance_ratio_)
    [0.9924... 0.0075...]
    >>> print(pca.singular_values_)
    [6.30061... 0.54980...]

    >>> pca = PCA(n_components=2, svd_solver='full')
    >>> pca.fit(X)
    PCA(n_components=2, svd_solver='full')
    >>> print(pca.explained_variance_ratio_)
    [0.9924... 0.00755...]
    >>> print(pca.singular_values_)
    [6.30061... 0.54980...]

    >>> pca = PCA(n_components=1, svd_solver='arpack')
    >>> pca.fit(X)
    PCA(n_components=1, svd_solver='arpack')
    >>> print(pca.explained_variance_ratio_)
    [0.99244...]
    >>> print(pca.singular_values_)
    [6.30061...]
    """
    @_deprecate_positional_args
    def __init__(self, n_components=None, *, copy=True, whiten=False,
                 svd_solver='auto', tol=0.0, iterated_power='auto',
                 random_state=None):
        self.n_components = n_components
        self.copy = copy
        self.whiten = whiten
        self.svd_solver = svd_solver
        self.tol = tol
        self.iterated_power = iterated_power
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fit the model with X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : None
            Ignored variable.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        self._fit(X)
        return self

    def fit_transform(self, X, y=None):
        """Fit the model with X and apply the dimensionality reduction on X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : None
            Ignored variable.

        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
            Transformed values.

        Notes
        -----
        This method returns a Fortran-ordered array. To convert it to a
        C-ordered array, use 'np.ascontiguousarray'.
        """
        U, S, V = self._fit(X)
        U = U[:, :self.n_components_]

        if self.whiten:
            # X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
            U *= sqrt(X.shape[0] - 1)
        else:
            # X_new = X * V = U * S * V^T * V = U * S
            U *= S[:self.n_components_]

        return U

    def _fit(self, X):
        """Dispatch to the right submethod depending on the chosen solver."""

        # Raise an error for sparse input.
        # This is more informative than the generic one raised by check_array.
        if issparse(X):
            raise TypeError('PCA does not support sparse input. See '
                            'TruncatedSVD for a possible alternative.')

        X = self._validate_data(X, dtype=[np.float64, np.float32],
                                ensure_2d=True, copy=self.copy)

        # Handle n_components==None
        if self.n_components is None:
            if self.svd_solver != 'arpack':
                n_components = min(X.shape)
            else:
                n_components = min(X.shape) - 1
        else:
            n_components = self.n_components

        # Handle svd_solver
        self._fit_svd_solver = self.svd_solver
        if self._fit_svd_solver == 'auto':
            # Small problem or n_components == 'mle', just call full PCA
            if max(X.shape) <= 500 or n_components == 'mle':
                self._fit_svd_solver = 'full'
            elif n_components >= 1 and n_components < .8 * min(X.shape):
                self._fit_svd_solver = 'randomized'
            # This is also the case of n_components in (0,1)
            else:
                self._fit_svd_solver = 'full'

        # Call different fits for either full or truncated SVD
        if self._fit_svd_solver == 'full':
            return self._fit_full(X, n_components)
        elif self._fit_svd_solver in ['arpack', 'randomized']:
            return self._fit_truncated(X, n_components, self._fit_svd_solver)
        else:
            raise ValueError("Unrecognized svd_solver='{0}'"
                             "".format(self._fit_svd_solver))

    def _fit_full(self, X, n_components):
        """Fit the model by computing full SVD on X"""
        n_samples, n_features = X.shape

        if n_components == 'mle':
            if n_samples < n_features:
                raise ValueError("n_components='mle' is only supported "
                                 "if n_samples >= n_features")
        elif not 0 <= n_components <= min(n_samples, n_features):
            raise ValueError("n_components=%r must be between 0 and "
                             "min(n_samples, n_features)=%r with "
                             "svd_solver='full'"
                             % (n_components, min(n_samples, n_features)))
        elif n_components >= 1:
            if not isinstance(n_components, numbers.Integral):
                raise ValueError("n_components=%r must be of type int "
                                 "when greater than or equal to 1, "
                                 "was of type=%r"
                                 % (n_components, type(n_components)))

        # Center data
        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_

        U, S, V = linalg.svd(X, full_matrices=False)
        # flip eigenvectors' sign to enforce deterministic output
        U, V = svd_flip(U, V)

        components_ = V

        # Get variance explained by singular values
        explained_variance_ = (S ** 2) / (n_samples - 1)
        total_var = explained_variance_.sum()
        explained_variance_ratio_ = explained_variance_ / total_var
        singular_values_ = S.copy()  # Store the singular values.

        # Postprocess the number of components required
        if n_components == 'mle':
            n_components = \
                _infer_dimension(explained_variance_, n_samples)
        elif 0 < n_components < 1.0:
            # number of components for which the cumulated explained
            # variance percentage is superior to the desired threshold
            # side='right' ensures that number of features selected
            # their variance is always greater than n_components float
            # passed. More discussion in issue: #15669
            ratio_cumsum = stable_cumsum(explained_variance_ratio_)
            n_components = np.searchsorted(ratio_cumsum, n_components,
                                           side='right') + 1
        # Compute noise covariance using Probabilistic PCA model
        # The sigma2 maximum likelihood (cf. eq. 12.46)
        if n_components < min(n_features, n_samples):
            self.noise_variance_ = explained_variance_[n_components:].mean()
        else:
            self.noise_variance_ = 0.

        self.n_samples_, self.n_features_ = n_samples, n_features
        self.components_ = components_[:n_components]
        self.n_components_ = n_components
        self.explained_variance_ = explained_variance_[:n_components]
        self.explained_variance_ratio_ = \
            explained_variance_ratio_[:n_components]
        self.singular_values_ = singular_values_[:n_components]

        return U, S, V

    def _fit_truncated(self, X, n_components, svd_solver):
        """Fit the model by computing truncated SVD (by ARPACK or randomized)
        on X
        """
        n_samples, n_features = X.shape

        if isinstance(n_components, str):
            raise ValueError("n_components=%r cannot be a string "
                             "with svd_solver='%s'"
                             % (n_components, svd_solver))
        elif not 1 <= n_components <= min(n_samples, n_features):
            raise ValueError("n_components=%r must be between 1 and "
                             "min(n_samples, n_features)=%r with "
                             "svd_solver='%s'"
                             % (n_components, min(n_samples, n_features),
                                svd_solver))
        elif not isinstance(n_components, numbers.Integral):
            raise ValueError("n_components=%r must be of type int "
                             "when greater than or equal to 1, was of type=%r"
                             % (n_components, type(n_components)))
        elif svd_solver == 'arpack' and n_components == min(n_samples,
                                                            n_features):
            raise ValueError("n_components=%r must be strictly less than "
                             "min(n_samples, n_features)=%r with "
                             "svd_solver='%s'"
                             % (n_components, min(n_samples, n_features),
                                svd_solver))

        random_state = check_random_state(self.random_state)

        # Center data
        self.mean_ = np.mean(X, axis=0)
        X -= self.mean_

        if svd_solver == 'arpack':
            # random init solution, as ARPACK does it internally
            v0 = random_state.uniform(-1, 1, size=min(X.shape))
            U, S, V = svds(X, k=n_components, tol=self.tol, v0=v0)
            # svds doesn't abide by scipy.linalg.svd/randomized_svd
            # conventions, so reverse its outputs.
            S = S[::-1]
            # flip eigenvectors' sign to enforce deterministic output
            U, V = svd_flip(U[:, ::-1], V[::-1])

        elif svd_solver == 'randomized':
            # sign flipping is done inside
            U, S, V = randomized_svd(X, n_components=n_components,
                                     n_iter=self.iterated_power,
                                     flip_sign=True,
                                     random_state=random_state)

        self.n_samples_, self.n_features_ = n_samples, n_features
        self.components_ = V
        self.n_components_ = n_components

        # Get variance explained by singular values
        self.explained_variance_ = (S ** 2) / (n_samples - 1)
        total_var = np.var(X, ddof=1, axis=0)
        self.explained_variance_ratio_ = \
            self.explained_variance_ / total_var.sum()
        self.singular_values_ = S.copy()  # Store the singular values.

        if self.n_components_ < min(n_features, n_samples):
            self.noise_variance_ = (total_var.sum() -
                                    self.explained_variance_.sum())
            self.noise_variance_ /= min(n_features, n_samples) - n_components
        else:
            self.noise_variance_ = 0.

        return U, S, V

    def score_samples(self, X):
        """Return the log-likelihood of each sample.

        See. "Pattern Recognition and Machine Learning"
        by C. Bishop, 12.2.1 p. 574
        or http://www.miketipping.com/papers/met-mppca.pdf

        Parameters
        ----------
        X : array, shape(n_samples, n_features)
            The data.

        Returns
        -------
        ll : array, shape (n_samples,)
            Log-likelihood of each sample under the current model.
        """
        check_is_fitted(self)

        X = check_array(X)
        Xr = X - self.mean_
        n_features = X.shape[1]
        precision = self.get_precision()
        log_like = -.5 * (Xr * (np.dot(Xr, precision))).sum(axis=1)
        log_like -= .5 * (n_features * log(2. * np.pi) -
                          fast_logdet(precision))
        return log_like

    def score(self, X, y=None):
        """Return the average log-likelihood of all samples.

        See. "Pattern Recognition and Machine Learning"
        by C. Bishop, 12.2.1 p. 574
        or http://www.miketipping.com/papers/met-mppca.pdf

        Parameters
        ----------
        X : array, shape(n_samples, n_features)
            The data.

        y : None
            Ignored variable.

        Returns
        -------
        ll : float
            Average log-likelihood of the samples under the current model.
        """
        return np.mean(self.score_samples(X))