_robust_covariance.py 31.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
"""
Robust location and covariance estimators.

Here are implemented estimators that are resistant to outliers.

"""
# Author: Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD 3 clause

import warnings
import numbers
import numpy as np
from scipy import linalg
from scipy.stats import chi2

from . import empirical_covariance, EmpiricalCovariance
from ..utils.extmath import fast_logdet
from ..utils import check_random_state, check_array
from ..utils.validation import _deprecate_positional_args


# Minimum Covariance Determinant
#   Implementing of an algorithm by Rousseeuw & Van Driessen described in
#   (A Fast Algorithm for the Minimum Covariance Determinant Estimator,
#   1999, American Statistical Association and the American Society
#   for Quality, TECHNOMETRICS)
# XXX Is this really a public function? It's not listed in the docs or
# exported by sklearn.covariance. Deprecate?
def c_step(X, n_support, remaining_iterations=30, initial_estimates=None,
           verbose=False, cov_computation_method=empirical_covariance,
           random_state=None):
    """C_step procedure described in [Rouseeuw1984]_ aiming at computing MCD.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data set in which we look for the n_support observations whose
        scatter matrix has minimum determinant.

    n_support : int,
        Number of observations to compute the robust estimates of location
        and covariance from. This parameter must be greater than
        `n_samples / 2`.

    remaining_iterations : int, default=30
        Number of iterations to perform.
        According to [Rouseeuw1999]_, two iterations are sufficient to get
        close to the minimum, and we never need more than 30 to reach
        convergence.

    initial_estimates : tuple of shape (2,), default=None
        Initial estimates of location and shape from which to run the c_step
        procedure:
        - initial_estimates[0]: an initial location estimate
        - initial_estimates[1]: an initial covariance estimate

    verbose : bool, defaut=False
        Verbose mode.

    cov_computation_method : callable, \
            default=:func:`sklearn.covariance.empirical_covariance`
        The function which will be used to compute the covariance.
        Must return array of shape (n_features, n_features).

    random_state : int or RandomState instance, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    Returns
    -------
    location : ndarray of shape (n_features,)
        Robust location estimates.

    covariance : ndarray of shape (n_features, n_features)
        Robust covariance estimates.

    support : ndarray of shape (n_samples,)
        A mask for the `n_support` observations whose scatter matrix has
        minimum determinant.

    References
    ----------
    .. [Rouseeuw1999] A Fast Algorithm for the Minimum Covariance Determinant
        Estimator, 1999, American Statistical Association and the American
        Society for Quality, TECHNOMETRICS
    """
    X = np.asarray(X)
    random_state = check_random_state(random_state)
    return _c_step(X, n_support, remaining_iterations=remaining_iterations,
                   initial_estimates=initial_estimates, verbose=verbose,
                   cov_computation_method=cov_computation_method,
                   random_state=random_state)


def _c_step(X, n_support, random_state, remaining_iterations=30,
            initial_estimates=None, verbose=False,
            cov_computation_method=empirical_covariance):
    n_samples, n_features = X.shape
    dist = np.inf

    # Initialisation
    support = np.zeros(n_samples, dtype=bool)
    if initial_estimates is None:
        # compute initial robust estimates from a random subset
        support[random_state.permutation(n_samples)[:n_support]] = True
    else:
        # get initial robust estimates from the function parameters
        location = initial_estimates[0]
        covariance = initial_estimates[1]
        # run a special iteration for that case (to get an initial support)
        precision = linalg.pinvh(covariance)
        X_centered = X - location
        dist = (np.dot(X_centered, precision) * X_centered).sum(1)
        # compute new estimates
        support[np.argsort(dist)[:n_support]] = True

    X_support = X[support]
    location = X_support.mean(0)
    covariance = cov_computation_method(X_support)

    # Iterative procedure for Minimum Covariance Determinant computation
    det = fast_logdet(covariance)
    # If the data already has singular covariance, calculate the precision,
    # as the loop below will not be entered.
    if np.isinf(det):
        precision = linalg.pinvh(covariance)

    previous_det = np.inf
    while (det < previous_det and remaining_iterations > 0
            and not np.isinf(det)):
        # save old estimates values
        previous_location = location
        previous_covariance = covariance
        previous_det = det
        previous_support = support
        # compute a new support from the full data set mahalanobis distances
        precision = linalg.pinvh(covariance)
        X_centered = X - location
        dist = (np.dot(X_centered, precision) * X_centered).sum(axis=1)
        # compute new estimates
        support = np.zeros(n_samples, dtype=bool)
        support[np.argsort(dist)[:n_support]] = True
        X_support = X[support]
        location = X_support.mean(axis=0)
        covariance = cov_computation_method(X_support)
        det = fast_logdet(covariance)
        # update remaining iterations for early stopping
        remaining_iterations -= 1

    previous_dist = dist
    dist = (np.dot(X - location, precision) * (X - location)).sum(axis=1)
    # Check if best fit already found (det => 0, logdet => -inf)
    if np.isinf(det):
        results = location, covariance, det, support, dist
    # Check convergence
    if np.allclose(det, previous_det):
        # c_step procedure converged
        if verbose:
            print("Optimal couple (location, covariance) found before"
                  " ending iterations (%d left)" % (remaining_iterations))
        results = location, covariance, det, support, dist
    elif det > previous_det:
        # determinant has increased (should not happen)
        warnings.warn("Determinant has increased; this should not happen: "
                      "log(det) > log(previous_det) (%.15f > %.15f). "
                      "You may want to try with a higher value of "
                      "support_fraction (current value: %.3f)."
                      % (det, previous_det, n_support / n_samples),
                      RuntimeWarning)
        results = previous_location, previous_covariance, \
            previous_det, previous_support, previous_dist

    # Check early stopping
    if remaining_iterations == 0:
        if verbose:
            print('Maximum number of iterations reached')
        results = location, covariance, det, support, dist

    return results


def select_candidates(X, n_support, n_trials, select=1, n_iter=30,
                      verbose=False,
                      cov_computation_method=empirical_covariance,
                      random_state=None):
    """Finds the best pure subset of observations to compute MCD from it.

    The purpose of this function is to find the best sets of n_support
    observations with respect to a minimization of their covariance
    matrix determinant. Equivalently, it removes n_samples-n_support
    observations to construct what we call a pure data set (i.e. not
    containing outliers). The list of the observations of the pure
    data set is referred to as the `support`.

    Starting from a random support, the pure data set is found by the
    c_step procedure introduced by Rousseeuw and Van Driessen in
    [RV]_.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data (sub)set in which we look for the n_support purest observations.

    n_support : int
        The number of samples the pure data set must contain.
        This parameter must be in the range `[(n + p + 1)/2] < n_support < n`.

    n_trials : int or tuple of shape (2,)
        Number of different initial sets of observations from which to
        run the algorithm. This parameter should be a strictly positive
        integer.
        Instead of giving a number of trials to perform, one can provide a
        list of initial estimates that will be used to iteratively run
        c_step procedures. In this case:
        - n_trials[0]: array-like, shape (n_trials, n_features)
          is the list of `n_trials` initial location estimates
        - n_trials[1]: array-like, shape (n_trials, n_features, n_features)
          is the list of `n_trials` initial covariances estimates

    select : int, default=1
        Number of best candidates results to return. This parameter must be
        a strictly positive integer.

    n_iter : int, default=30
        Maximum number of iterations for the c_step procedure.
        (2 is enough to be close to the final solution. "Never" exceeds 20).
        This parameter must be a strictly positive integer.

    verbose : bool, default False
        Control the output verbosity.

    cov_computation_method : callable, \
            default=:func:`sklearn.covariance.empirical_covariance`
        The function which will be used to compute the covariance.
        Must return an array of shape (n_features, n_features).

    random_state : int or RandomState instance, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    See Also
    ---------
    c_step

    Returns
    -------
    best_locations : ndarray of shape (select, n_features)
        The `select` location estimates computed from the `select` best
        supports found in the data set (`X`).

    best_covariances : ndarray of shape (select, n_features, n_features)
        The `select` covariance estimates computed from the `select`
        best supports found in the data set (`X`).

    best_supports : ndarray of shape (select, n_samples)
        The `select` best supports found in the data set (`X`).

    References
    ----------
    .. [RV] A Fast Algorithm for the Minimum Covariance Determinant
        Estimator, 1999, American Statistical Association and the American
        Society for Quality, TECHNOMETRICS
    """
    random_state = check_random_state(random_state)

    if isinstance(n_trials, numbers.Integral):
        run_from_estimates = False
    elif isinstance(n_trials, tuple):
        run_from_estimates = True
        estimates_list = n_trials
        n_trials = estimates_list[0].shape[0]
    else:
        raise TypeError("Invalid 'n_trials' parameter, expected tuple or "
                        " integer, got %s (%s)" % (n_trials, type(n_trials)))

    # compute `n_trials` location and shape estimates candidates in the subset
    all_estimates = []
    if not run_from_estimates:
        # perform `n_trials` computations from random initial supports
        for j in range(n_trials):
            all_estimates.append(
                _c_step(
                    X, n_support, remaining_iterations=n_iter, verbose=verbose,
                    cov_computation_method=cov_computation_method,
                    random_state=random_state))
    else:
        # perform computations from every given initial estimates
        for j in range(n_trials):
            initial_estimates = (estimates_list[0][j], estimates_list[1][j])
            all_estimates.append(_c_step(
                X, n_support, remaining_iterations=n_iter,
                initial_estimates=initial_estimates, verbose=verbose,
                cov_computation_method=cov_computation_method,
                random_state=random_state))
    all_locs_sub, all_covs_sub, all_dets_sub, all_supports_sub, all_ds_sub = \
        zip(*all_estimates)
    # find the `n_best` best results among the `n_trials` ones
    index_best = np.argsort(all_dets_sub)[:select]
    best_locations = np.asarray(all_locs_sub)[index_best]
    best_covariances = np.asarray(all_covs_sub)[index_best]
    best_supports = np.asarray(all_supports_sub)[index_best]
    best_ds = np.asarray(all_ds_sub)[index_best]

    return best_locations, best_covariances, best_supports, best_ds


def fast_mcd(X, support_fraction=None,
             cov_computation_method=empirical_covariance,
             random_state=None):
    """Estimates the Minimum Covariance Determinant matrix.

    Read more in the :ref:`User Guide <robust_covariance>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        The data matrix, with p features and n samples.

    support_fraction : float, default=None
        The proportion of points to be included in the support of the raw
        MCD estimate. Default is `None`, which implies that the minimum
        value of `support_fraction` will be used within the algorithm:
        `(n_sample + n_features + 1) / 2`. This parameter must be in the
        range (0, 1).

    cov_computation_method : callable, \
            default=:func:`sklearn.covariance.empirical_covariance`
        The function which will be used to compute the covariance.
        Must return an array of shape (n_features, n_features).

    random_state : int or RandomState instance, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    Returns
    -------
    location : ndarray of shape (n_features,)
        Robust location of the data.

    covariance : ndarray of shape (n_features, n_features)
        Robust covariance of the features.

    support : ndarray of shape (n_samples,), dtype=bool
        A mask of the observations that have been used to compute
        the robust location and covariance estimates of the data set.

    Notes
    -----
    The FastMCD algorithm has been introduced by Rousseuw and Van Driessen
    in "A Fast Algorithm for the Minimum Covariance Determinant Estimator,
    1999, American Statistical Association and the American Society
    for Quality, TECHNOMETRICS".
    The principle is to compute robust estimates and random subsets before
    pooling them into a larger subsets, and finally into the full data set.
    Depending on the size of the initial sample, we have one, two or three
    such computation levels.

    Note that only raw estimates are returned. If one is interested in
    the correction and reweighting steps described in [RouseeuwVan]_,
    see the MinCovDet object.

    References
    ----------

    .. [RouseeuwVan] A Fast Algorithm for the Minimum Covariance
        Determinant Estimator, 1999, American Statistical Association
        and the American Society for Quality, TECHNOMETRICS

    .. [Butler1993] R. W. Butler, P. L. Davies and M. Jhun,
        Asymptotics For The Minimum Covariance Determinant Estimator,
        The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400
    """
    random_state = check_random_state(random_state)

    X = check_array(X, ensure_min_samples=2, estimator='fast_mcd')
    n_samples, n_features = X.shape

    # minimum breakdown value
    if support_fraction is None:
        n_support = int(np.ceil(0.5 * (n_samples + n_features + 1)))
    else:
        n_support = int(support_fraction * n_samples)

    # 1-dimensional case quick computation
    # (Rousseeuw, P. J. and Leroy, A. M. (2005) References, in Robust
    #  Regression and Outlier Detection, John Wiley & Sons, chapter 4)
    if n_features == 1:
        if n_support < n_samples:
            # find the sample shortest halves
            X_sorted = np.sort(np.ravel(X))
            diff = X_sorted[n_support:] - X_sorted[:(n_samples - n_support)]
            halves_start = np.where(diff == np.min(diff))[0]
            # take the middle points' mean to get the robust location estimate
            location = 0.5 * (X_sorted[n_support + halves_start] +
                              X_sorted[halves_start]).mean()
            support = np.zeros(n_samples, dtype=bool)
            X_centered = X - location
            support[np.argsort(np.abs(X_centered), 0)[:n_support]] = True
            covariance = np.asarray([[np.var(X[support])]])
            location = np.array([location])
            # get precision matrix in an optimized way
            precision = linalg.pinvh(covariance)
            dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1)
        else:
            support = np.ones(n_samples, dtype=bool)
            covariance = np.asarray([[np.var(X)]])
            location = np.asarray([np.mean(X)])
            X_centered = X - location
            # get precision matrix in an optimized way
            precision = linalg.pinvh(covariance)
            dist = (np.dot(X_centered, precision) * (X_centered)).sum(axis=1)
    # Starting FastMCD algorithm for p-dimensional case
    if (n_samples > 500) and (n_features > 1):
        # 1. Find candidate supports on subsets
        # a. split the set in subsets of size ~ 300
        n_subsets = n_samples // 300
        n_samples_subsets = n_samples // n_subsets
        samples_shuffle = random_state.permutation(n_samples)
        h_subset = int(np.ceil(n_samples_subsets *
                       (n_support / float(n_samples))))
        # b. perform a total of 500 trials
        n_trials_tot = 500
        # c. select 10 best (location, covariance) for each subset
        n_best_sub = 10
        n_trials = max(10, n_trials_tot // n_subsets)
        n_best_tot = n_subsets * n_best_sub
        all_best_locations = np.zeros((n_best_tot, n_features))
        try:
            all_best_covariances = np.zeros((n_best_tot, n_features,
                                             n_features))
        except MemoryError:
            # The above is too big. Let's try with something much small
            # (and less optimal)
            n_best_tot = 10
            all_best_covariances = np.zeros((n_best_tot, n_features,
                                             n_features))
            n_best_sub = 2
        for i in range(n_subsets):
            low_bound = i * n_samples_subsets
            high_bound = low_bound + n_samples_subsets
            current_subset = X[samples_shuffle[low_bound:high_bound]]
            best_locations_sub, best_covariances_sub, _, _ = select_candidates(
                current_subset, h_subset, n_trials,
                select=n_best_sub, n_iter=2,
                cov_computation_method=cov_computation_method,
                random_state=random_state)
            subset_slice = np.arange(i * n_best_sub, (i + 1) * n_best_sub)
            all_best_locations[subset_slice] = best_locations_sub
            all_best_covariances[subset_slice] = best_covariances_sub
        # 2. Pool the candidate supports into a merged set
        # (possibly the full dataset)
        n_samples_merged = min(1500, n_samples)
        h_merged = int(np.ceil(n_samples_merged *
                       (n_support / float(n_samples))))
        if n_samples > 1500:
            n_best_merged = 10
        else:
            n_best_merged = 1
        # find the best couples (location, covariance) on the merged set
        selection = random_state.permutation(n_samples)[:n_samples_merged]
        locations_merged, covariances_merged, supports_merged, d = \
            select_candidates(
                X[selection], h_merged,
                n_trials=(all_best_locations, all_best_covariances),
                select=n_best_merged,
                cov_computation_method=cov_computation_method,
                random_state=random_state)
        # 3. Finally get the overall best (locations, covariance) couple
        if n_samples < 1500:
            # directly get the best couple (location, covariance)
            location = locations_merged[0]
            covariance = covariances_merged[0]
            support = np.zeros(n_samples, dtype=bool)
            dist = np.zeros(n_samples)
            support[selection] = supports_merged[0]
            dist[selection] = d[0]
        else:
            # select the best couple on the full dataset
            locations_full, covariances_full, supports_full, d = \
                select_candidates(
                    X, n_support,
                    n_trials=(locations_merged, covariances_merged),
                    select=1,
                    cov_computation_method=cov_computation_method,
                    random_state=random_state)
            location = locations_full[0]
            covariance = covariances_full[0]
            support = supports_full[0]
            dist = d[0]
    elif n_features > 1:
        # 1. Find the 10 best couples (location, covariance)
        # considering two iterations
        n_trials = 30
        n_best = 10
        locations_best, covariances_best, _, _ = select_candidates(
            X, n_support, n_trials=n_trials, select=n_best, n_iter=2,
            cov_computation_method=cov_computation_method,
            random_state=random_state)
        # 2. Select the best couple on the full dataset amongst the 10
        locations_full, covariances_full, supports_full, d = select_candidates(
            X, n_support, n_trials=(locations_best, covariances_best),
            select=1, cov_computation_method=cov_computation_method,
            random_state=random_state)
        location = locations_full[0]
        covariance = covariances_full[0]
        support = supports_full[0]
        dist = d[0]

    return location, covariance, support, dist


class MinCovDet(EmpiricalCovariance):
    """Minimum Covariance Determinant (MCD): robust estimator of covariance.

    The Minimum Covariance Determinant covariance estimator is to be applied
    on Gaussian-distributed data, but could still be relevant on data
    drawn from a unimodal, symmetric distribution. It is not meant to be used
    with multi-modal data (the algorithm used to fit a MinCovDet object is
    likely to fail in such a case).
    One should consider projection pursuit methods to deal with multi-modal
    datasets.

    Read more in the :ref:`User Guide <robust_covariance>`.

    Parameters
    ----------
    store_precision : bool, default=True
        Specify if the estimated precision is stored.

    assume_centered : bool, default=False
        If True, the support of the robust location and the covariance
        estimates is computed, and a covariance estimate is recomputed from
        it, without centering the data.
        Useful to work with data whose mean is significantly equal to
        zero but is not exactly zero.
        If False, the robust location and covariance are directly computed
        with the FastMCD algorithm without additional treatment.

    support_fraction : float, default=None
        The proportion of points to be included in the support of the raw
        MCD estimate. Default is None, which implies that the minimum
        value of support_fraction will be used within the algorithm:
        `(n_sample + n_features + 1) / 2`. The parameter must be in the range
        (0, 1).

    random_state : int or RandomState instance, default=None
        Determines the pseudo random number generator for shuffling the data.
        Pass an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    Attributes
    ----------
    raw_location_ : ndarray of shape (n_features,)
        The raw robust estimated location before correction and re-weighting.

    raw_covariance_ : ndarray of shape (n_features, n_features)
        The raw robust estimated covariance before correction and re-weighting.

    raw_support_ : ndarray of shape (n_samples,)
        A mask of the observations that have been used to compute
        the raw robust estimates of location and shape, before correction
        and re-weighting.

    location_ : ndarray of shape (n_features,)
        Estimated robust location.

    covariance_ : ndarray of shape (n_features, n_features)
        Estimated robust covariance matrix.

    precision_ : ndarray of shape (n_features, n_features)
        Estimated pseudo inverse matrix.
        (stored only if store_precision is True)

    support_ : ndarray of shape (n_samples,)
        A mask of the observations that have been used to compute
        the robust estimates of location and shape.

    dist_ : ndarray of shape (n_samples,)
        Mahalanobis distances of the training set (on which :meth:`fit` is
        called) observations.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import MinCovDet
    >>> from sklearn.datasets import make_gaussian_quantiles
    >>> real_cov = np.array([[.8, .3],
    ...                      [.3, .4]])
    >>> rng = np.random.RandomState(0)
    >>> X = rng.multivariate_normal(mean=[0, 0],
    ...                                   cov=real_cov,
    ...                                   size=500)
    >>> cov = MinCovDet(random_state=0).fit(X)
    >>> cov.covariance_
    array([[0.7411..., 0.2535...],
           [0.2535..., 0.3053...]])
    >>> cov.location_
    array([0.0813... , 0.0427...])

    References
    ----------

    .. [Rouseeuw1984] P. J. Rousseeuw. Least median of squares regression.
        J. Am Stat Ass, 79:871, 1984.
    .. [Rousseeuw] A Fast Algorithm for the Minimum Covariance Determinant
        Estimator, 1999, American Statistical Association and the American
        Society for Quality, TECHNOMETRICS
    .. [ButlerDavies] R. W. Butler, P. L. Davies and M. Jhun,
        Asymptotics For The Minimum Covariance Determinant Estimator,
        The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400
    """
    _nonrobust_covariance = staticmethod(empirical_covariance)

    @_deprecate_positional_args
    def __init__(self, *, store_precision=True, assume_centered=False,
                 support_fraction=None, random_state=None):
        self.store_precision = store_precision
        self.assume_centered = assume_centered
        self.support_fraction = support_fraction
        self.random_state = random_state

    def fit(self, X, y=None):
        """Fits a Minimum Covariance Determinant with the FastMCD algorithm.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y: Ignored
            Not used, present for API consistence purpose.

        Returns
        -------
        self : object
        """
        X = self._validate_data(X, ensure_min_samples=2, estimator='MinCovDet')
        random_state = check_random_state(self.random_state)
        n_samples, n_features = X.shape
        # check that the empirical covariance is full rank
        if (linalg.svdvals(np.dot(X.T, X)) > 1e-8).sum() != n_features:
            warnings.warn("The covariance matrix associated to your dataset "
                          "is not full rank")
        # compute and store raw estimates
        raw_location, raw_covariance, raw_support, raw_dist = fast_mcd(
            X, support_fraction=self.support_fraction,
            cov_computation_method=self._nonrobust_covariance,
            random_state=random_state)
        if self.assume_centered:
            raw_location = np.zeros(n_features)
            raw_covariance = self._nonrobust_covariance(X[raw_support],
                                                        assume_centered=True)
            # get precision matrix in an optimized way
            precision = linalg.pinvh(raw_covariance)
            raw_dist = np.sum(np.dot(X, precision) * X, 1)
        self.raw_location_ = raw_location
        self.raw_covariance_ = raw_covariance
        self.raw_support_ = raw_support
        self.location_ = raw_location
        self.support_ = raw_support
        self.dist_ = raw_dist
        # obtain consistency at normal models
        self.correct_covariance(X)
        # re-weight estimator
        self.reweight_covariance(X)

        return self

    def correct_covariance(self, data):
        """Apply a correction to raw Minimum Covariance Determinant estimates.

        Correction using the empirical correction factor suggested
        by Rousseeuw and Van Driessen in [RVD]_.

        Parameters
        ----------
        data : array-like of shape (n_samples, n_features)
            The data matrix, with p features and n samples.
            The data set must be the one which was used to compute
            the raw estimates.

        Returns
        -------
        covariance_corrected : ndarray of shape (n_features, n_features)
            Corrected robust covariance estimate.

        References
        ----------

        .. [RVD] A Fast Algorithm for the Minimum Covariance
            Determinant Estimator, 1999, American Statistical Association
            and the American Society for Quality, TECHNOMETRICS
        """

        # Check that the covariance of the support data is not equal to 0.
        # Otherwise self.dist_ = 0 and thus correction = 0.
        n_samples = len(self.dist_)
        n_support = np.sum(self.support_)
        if n_support < n_samples and np.allclose(self.raw_covariance_, 0):
            raise ValueError('The covariance matrix of the support data '
                             'is equal to 0, try to increase support_fraction')
        correction = np.median(self.dist_) / chi2(data.shape[1]).isf(0.5)
        covariance_corrected = self.raw_covariance_ * correction
        self.dist_ /= correction
        return covariance_corrected

    def reweight_covariance(self, data):
        """Re-weight raw Minimum Covariance Determinant estimates.

        Re-weight observations using Rousseeuw's method (equivalent to
        deleting outlying observations from the data set before
        computing location and covariance estimates) described
        in [RVDriessen]_.

        Parameters
        ----------
        data : array-like of shape (n_samples, n_features)
            The data matrix, with p features and n samples.
            The data set must be the one which was used to compute
            the raw estimates.

        Returns
        -------
        location_reweighted : ndarray of shape (n_features,)
            Re-weighted robust location estimate.

        covariance_reweighted : ndarray of shape (n_features, n_features)
            Re-weighted robust covariance estimate.

        support_reweighted : ndarray of shape (n_samples,), dtype=bool
            A mask of the observations that have been used to compute
            the re-weighted robust location and covariance estimates.

        References
        ----------

        .. [RVDriessen] A Fast Algorithm for the Minimum Covariance
            Determinant Estimator, 1999, American Statistical Association
            and the American Society for Quality, TECHNOMETRICS
        """
        n_samples, n_features = data.shape
        mask = self.dist_ < chi2(n_features).isf(0.025)
        if self.assume_centered:
            location_reweighted = np.zeros(n_features)
        else:
            location_reweighted = data[mask].mean(0)
        covariance_reweighted = self._nonrobust_covariance(
            data[mask], assume_centered=self.assume_centered)
        support_reweighted = np.zeros(n_samples, dtype=bool)
        support_reweighted[mask] = True
        self._set_covariance(covariance_reweighted)
        self.location_ = location_reweighted
        self.support_ = support_reweighted
        X_centered = data - self.location_
        self.dist_ = np.sum(
            np.dot(X_centered, self.get_precision()) * X_centered, 1)
        return location_reweighted, covariance_reweighted, support_reweighted