test_optics.py
17.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# Authors: Shane Grigsby <refuge@rocktalus.com>
# Adrin Jalali <adrin.jalali@gmail.com>
# License: BSD 3 clause
import numpy as np
import pytest
from sklearn.datasets import make_blobs
from sklearn.cluster import OPTICS
from sklearn.cluster._optics import _extend_region, _extract_xi_labels
from sklearn.metrics.cluster import contingency_matrix
from sklearn.metrics.pairwise import pairwise_distances
from sklearn.cluster import DBSCAN
from sklearn.utils import shuffle
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_allclose
from sklearn.cluster.tests.common import generate_clustered_data
rng = np.random.RandomState(0)
n_points_per_cluster = 10
C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2)
C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2)
C5 = [3, -2] + 1.6 * rng.randn(n_points_per_cluster, 2)
C6 = [5, 6] + 2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, C6))
@pytest.mark.parametrize(
('r_plot', 'end'),
[[[10, 8.9, 8.8, 8.7, 7, 10], 3],
[[10, 8.9, 8.8, 8.7, 8.6, 7, 10], 0],
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
[[10, 8.9, 8.8, 8.7, 7, 6, np.inf], 4],
])
def test_extend_downward(r_plot, end):
r_plot = np.array(r_plot)
ratio = r_plot[:-1] / r_plot[1:]
steep_downward = ratio >= 1 / .9
upward = ratio < 1
e = _extend_region(steep_downward, upward, 0, 2)
assert e == end
@pytest.mark.parametrize(
('r_plot', 'end'),
[[[1, 2, 2.1, 2.2, 4, 8, 8, np.inf], 6],
[[1, 2, 2.1, 2.2, 2.3, 4, 8, 8, np.inf], 0],
[[1, 2, 2.1, 2, np.inf], 0],
[[1, 2, 2.1, np.inf], 2],
])
def test_extend_upward(r_plot, end):
r_plot = np.array(r_plot)
ratio = r_plot[:-1] / r_plot[1:]
steep_upward = ratio <= .9
downward = ratio > 1
e = _extend_region(steep_upward, downward, 0, 2)
assert e == end
@pytest.mark.parametrize(
('ordering', 'clusters', 'expected'),
[[[0, 1, 2, 3], [[0, 1], [2, 3]], [0, 0, 1, 1]],
[[0, 1, 2, 3], [[0, 1], [3, 3]], [0, 0, -1, 1]],
[[0, 1, 2, 3], [[0, 1], [3, 3], [0, 3]], [0, 0, -1, 1]],
[[3, 1, 2, 0], [[0, 1], [3, 3], [0, 3]], [1, 0, -1, 0]],
])
def test_the_extract_xi_labels(ordering, clusters, expected):
labels = _extract_xi_labels(ordering, clusters)
assert_array_equal(labels, expected)
def test_extract_xi():
# small and easy test (no clusters around other clusters)
# but with a clear noise data.
rng = np.random.RandomState(0)
n_points_per_cluster = 5
C1 = [-5, -2] + .8 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + .1 * rng.randn(n_points_per_cluster, 2)
C3 = [1, -2] + .2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + .3 * rng.randn(n_points_per_cluster, 2)
C5 = [3, -2] + .6 * rng.randn(n_points_per_cluster, 2)
C6 = [5, 6] + .2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]]), C6))
expected_labels = np.r_[[2] * 5, [0] * 5, [1] * 5, [3] * 5, [1] * 5,
-1, [4] * 5]
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
clust = OPTICS(min_samples=3, min_cluster_size=2,
max_eps=20, cluster_method='xi',
xi=0.4).fit(X)
assert_array_equal(clust.labels_, expected_labels)
# check float min_samples and min_cluster_size
clust = OPTICS(min_samples=0.1, min_cluster_size=0.08,
max_eps=20, cluster_method='xi',
xi=0.4).fit(X)
assert_array_equal(clust.labels_, expected_labels)
X = np.vstack((C1, C2, C3, C4, C5, np.array([[100, 100]] * 2), C6))
expected_labels = np.r_[[1] * 5, [3] * 5, [2] * 5, [0] * 5, [2] * 5,
-1, -1, [4] * 5]
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
clust = OPTICS(min_samples=3, min_cluster_size=3,
max_eps=20, cluster_method='xi',
xi=0.3).fit(X)
# this may fail if the predecessor correction is not at work!
assert_array_equal(clust.labels_, expected_labels)
C1 = [[0, 0], [0, 0.1], [0, -.1], [0.1, 0]]
C2 = [[10, 10], [10, 9], [10, 11], [9, 10]]
C3 = [[100, 100], [100, 90], [100, 110], [90, 100]]
X = np.vstack((C1, C2, C3))
expected_labels = np.r_[[0] * 4, [1] * 4, [2] * 4]
X, expected_labels = shuffle(X, expected_labels, random_state=rng)
clust = OPTICS(min_samples=2, min_cluster_size=2,
max_eps=np.inf, cluster_method='xi',
xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
def test_cluster_hierarchy_():
rng = np.random.RandomState(0)
n_points_per_cluster = 100
C1 = [0, 0] + 2 * rng.randn(n_points_per_cluster, 2)
C2 = [0, 0] + 50 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2))
X = shuffle(X, random_state=0)
clusters = OPTICS(min_samples=20, xi=.1).fit(X).cluster_hierarchy_
assert clusters.shape == (2, 2)
diff = np.sum(clusters - np.array([[0, 99], [0, 199]]))
assert diff / len(X) < 0.05
def test_correct_number_of_clusters():
# in 'auto' mode
n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)
# Parameters chosen specifically for this task.
# Compute OPTICS
clust = OPTICS(max_eps=5.0 * 6.0, min_samples=4, xi=.1)
clust.fit(X)
# number of clusters, ignoring noise if present
n_clusters_1 = len(set(clust.labels_)) - int(-1 in clust.labels_)
assert n_clusters_1 == n_clusters
# check attribute types and sizes
assert clust.labels_.shape == (len(X),)
assert clust.labels_.dtype.kind == 'i'
assert clust.reachability_.shape == (len(X),)
assert clust.reachability_.dtype.kind == 'f'
assert clust.core_distances_.shape == (len(X),)
assert clust.core_distances_.dtype.kind == 'f'
assert clust.ordering_.shape == (len(X),)
assert clust.ordering_.dtype.kind == 'i'
assert set(clust.ordering_) == set(range(len(X)))
def test_minimum_number_of_sample_check():
# test that we check a minimum number of samples
msg = "min_samples must be no greater than"
# Compute OPTICS
X = [[1, 1]]
clust = OPTICS(max_eps=5.0 * 0.3, min_samples=10, min_cluster_size=1)
# Run the fit
assert_raise_message(ValueError, msg, clust.fit, X)
def test_bad_extract():
# Test an extraction of eps too close to original eps
msg = "Specify an epsilon smaller than 0.15. Got 0.3."
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers,
cluster_std=0.4, random_state=0)
# Compute OPTICS
clust = OPTICS(max_eps=5.0 * 0.03,
cluster_method='dbscan',
eps=0.3, min_samples=10)
assert_raise_message(ValueError, msg, clust.fit, X)
def test_bad_reachability():
msg = "All reachability values are inf. Set a larger max_eps."
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers,
cluster_std=0.4, random_state=0)
with pytest.warns(UserWarning, match=msg):
clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
clust.fit(X)
def test_close_extract():
# Test extract where extraction eps is close to scaled max_eps
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers,
cluster_std=0.4, random_state=0)
# Compute OPTICS
clust = OPTICS(max_eps=1.0, cluster_method='dbscan',
eps=0.3, min_samples=10).fit(X)
# Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
assert max(clust.labels_) == 2
@pytest.mark.parametrize('eps', [0.1, .3, .5])
@pytest.mark.parametrize('min_samples', [3, 10, 20])
def test_dbscan_optics_parity(eps, min_samples):
# Test that OPTICS clustering labels are <= 5% difference of DBSCAN
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers,
cluster_std=0.4, random_state=0)
# calculate optics with dbscan extract at 0.3 epsilon
op = OPTICS(min_samples=min_samples, cluster_method='dbscan',
eps=eps).fit(X)
# calculate dbscan labels
db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)
contingency = contingency_matrix(db.labels_, op.labels_)
agree = min(np.sum(np.max(contingency, axis=0)),
np.sum(np.max(contingency, axis=1)))
disagree = X.shape[0] - agree
percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)
# verify label mismatch is <= 5% labels
assert percent_mismatch <= 0.05
def test_min_samples_edge_case():
C1 = [[0, 0], [0, 0.1], [0, -.1]]
C2 = [[10, 10], [10, 9], [10, 11]]
C3 = [[100, 100], [100, 96], [100, 106]]
X = np.vstack((C1, C2, C3))
expected_labels = np.r_[[0] * 3, [1] * 3, [2] * 3]
clust = OPTICS(min_samples=3,
max_eps=7, cluster_method='xi',
xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
expected_labels = np.r_[[0] * 3, [1] * 3, [-1] * 3]
clust = OPTICS(min_samples=3,
max_eps=3, cluster_method='xi',
xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
expected_labels = np.r_[[-1] * 9]
with pytest.warns(UserWarning, match="All reachability values"):
clust = OPTICS(min_samples=4,
max_eps=3, cluster_method='xi',
xi=0.04).fit(X)
assert_array_equal(clust.labels_, expected_labels)
# try arbitrary minimum sizes
@pytest.mark.parametrize('min_cluster_size', range(2, X.shape[0] // 10, 23))
def test_min_cluster_size(min_cluster_size):
redX = X[::2] # reduce for speed
clust = OPTICS(min_samples=9, min_cluster_size=min_cluster_size).fit(redX)
cluster_sizes = np.bincount(clust.labels_[clust.labels_ != -1])
if cluster_sizes.size:
assert min(cluster_sizes) >= min_cluster_size
# check behaviour is the same when min_cluster_size is a fraction
clust_frac = OPTICS(min_samples=9,
min_cluster_size=min_cluster_size / redX.shape[0])
clust_frac.fit(redX)
assert_array_equal(clust.labels_, clust_frac.labels_)
@pytest.mark.parametrize('min_cluster_size', [0, -1, 1.1, 2.2])
def test_min_cluster_size_invalid(min_cluster_size):
clust = OPTICS(min_cluster_size=min_cluster_size)
with pytest.raises(ValueError, match="must be a positive integer or a "):
clust.fit(X)
def test_min_cluster_size_invalid2():
clust = OPTICS(min_cluster_size=len(X) + 1)
with pytest.raises(ValueError, match="must be no greater than the "):
clust.fit(X)
def test_processing_order():
# Ensure that we consider all unprocessed points,
# not only direct neighbors. when picking the next point.
Y = [[0], [10], [-10], [25]]
clust = OPTICS(min_samples=3, max_eps=15).fit(Y)
assert_array_equal(clust.reachability_, [np.inf, 10, 10, 15])
assert_array_equal(clust.core_distances_, [10, 15, np.inf, np.inf])
assert_array_equal(clust.ordering_, [0, 1, 2, 3])
def test_compare_to_ELKI():
# Expected values, computed with (future) ELKI 0.7.5 using:
# java -jar elki.jar cli -dbc.in csv -dbc.filter FixedDBIDsFilter
# -algorithm clustering.optics.OPTICSHeap -optics.minpts 5
# where the FixedDBIDsFilter gives 0-indexed ids.
r1 = [np.inf, 1.0574896366427478, 0.7587934993548423, 0.7290174038973836,
0.7290174038973836, 0.7290174038973836, 0.6861627576116127,
0.7587934993548423, 0.9280118450166668, 1.1748022534146194,
3.3355455741292257, 0.49618389254482587, 0.2552805046961355,
0.2552805046961355, 0.24944622248445714, 0.24944622248445714,
0.24944622248445714, 0.2552805046961355, 0.2552805046961355,
0.3086779122185853, 4.163024452756142, 1.623152630340929,
0.45315840475822655, 0.25468325192031926, 0.2254004358159971,
0.18765711877083036, 0.1821471333893275, 0.1821471333893275,
0.18765711877083036, 0.18765711877083036, 0.2240202988740153,
1.154337614548715, 1.342604473837069, 1.323308536402633,
0.8607514948648837, 0.27219111215810565, 0.13260875220533205,
0.13260875220533205, 0.09890587675958984, 0.09890587675958984,
0.13548790801634494, 0.1575483940837384, 0.17515137170530226,
0.17575920159442388, 0.27219111215810565, 0.6101447895405373,
1.3189208094864302, 1.323308536402633, 2.2509184159764577,
2.4517810628594527, 3.675977064404973, 3.8264795626020365,
2.9130735341510614, 2.9130735341510614, 2.9130735341510614,
2.9130735341510614, 2.8459300127258036, 2.8459300127258036,
2.8459300127258036, 3.0321982337972537]
o1 = [0, 3, 6, 4, 7, 8, 2, 9, 5, 1, 31, 30, 32, 34, 33, 38, 39, 35, 37, 36,
44, 21, 23, 24, 22, 25, 27, 29, 26, 28, 20, 40, 45, 46, 10, 15, 11,
13, 17, 19, 18, 12, 16, 14, 47, 49, 43, 48, 42, 41, 53, 57, 51, 52,
56, 59, 54, 55, 58, 50]
p1 = [-1, 0, 3, 6, 6, 6, 8, 3, 7, 5, 1, 31, 30, 30, 34, 34, 34, 32, 32, 37,
36, 44, 21, 23, 24, 22, 25, 25, 22, 22, 22, 21, 40, 45, 46, 10, 15,
15, 13, 13, 15, 11, 19, 15, 10, 47, 12, 45, 14, 43, 42, 53, 57, 57,
57, 57, 59, 59, 59, 58]
# Tests against known extraction array
# Does NOT work with metric='euclidean', because sklearn euclidean has
# worse numeric precision. 'minkowski' is slower but more accurate.
clust1 = OPTICS(min_samples=5).fit(X)
assert_array_equal(clust1.ordering_, np.array(o1))
assert_array_equal(clust1.predecessor_[clust1.ordering_], np.array(p1))
assert_allclose(clust1.reachability_[clust1.ordering_], np.array(r1))
# ELKI currently does not print the core distances (which are not used much
# in literature, but we can at least ensure to have this consistency:
for i in clust1.ordering_[1:]:
assert (clust1.reachability_[i] >=
clust1.core_distances_[clust1.predecessor_[i]])
# Expected values, computed with (future) ELKI 0.7.5 using
r2 = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
np.inf, np.inf, np.inf, 0.27219111215810565, 0.13260875220533205,
0.13260875220533205, 0.09890587675958984, 0.09890587675958984,
0.13548790801634494, 0.1575483940837384, 0.17515137170530226,
0.17575920159442388, 0.27219111215810565, 0.4928068613197889,
np.inf, 0.2666183922512113, 0.18765711877083036, 0.1821471333893275,
0.1821471333893275, 0.1821471333893275, 0.18715928772277457,
0.18765711877083036, 0.18765711877083036, 0.25468325192031926,
np.inf, 0.2552805046961355, 0.2552805046961355, 0.24944622248445714,
0.24944622248445714, 0.24944622248445714, 0.2552805046961355,
0.2552805046961355, 0.3086779122185853, 0.34466409325984865,
np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
np.inf, np.inf]
o2 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 11, 13, 17, 19, 18, 12, 16, 14,
47, 46, 20, 22, 25, 23, 27, 29, 24, 26, 28, 21, 30, 32, 34, 33, 38,
39, 35, 37, 36, 31, 40, 41, 42, 43, 44, 45, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59]
p2 = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 15, 15, 13, 13, 15,
11, 19, 15, 10, 47, -1, 20, 22, 25, 25, 25, 25, 22, 22, 23, -1, 30,
30, 34, 34, 34, 32, 32, 37, 38, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1]
clust2 = OPTICS(min_samples=5, max_eps=0.5).fit(X)
assert_array_equal(clust2.ordering_, np.array(o2))
assert_array_equal(clust2.predecessor_[clust2.ordering_], np.array(p2))
assert_allclose(clust2.reachability_[clust2.ordering_], np.array(r2))
index = np.where(clust1.core_distances_ <= 0.5)[0]
assert_allclose(clust1.core_distances_[index],
clust2.core_distances_[index])
def test_wrong_cluster_method():
clust = OPTICS(cluster_method='superfancy')
with pytest.raises(ValueError, match="cluster_method should be one of "):
clust.fit(X)
def test_extract_dbscan():
# testing an easy dbscan case. Not including clusters with different
# densities.
rng = np.random.RandomState(0)
n_points_per_cluster = 20
C1 = [-5, -2] + .2 * rng.randn(n_points_per_cluster, 2)
C2 = [4, -1] + .2 * rng.randn(n_points_per_cluster, 2)
C3 = [1, 2] + .2 * rng.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + .2 * rng.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4))
clust = OPTICS(cluster_method='dbscan', eps=.5).fit(X)
assert_array_equal(np.sort(np.unique(clust.labels_)), [0, 1, 2, 3])
def test_precomputed_dists():
redX = X[::2]
dists = pairwise_distances(redX, metric='euclidean')
clust1 = OPTICS(min_samples=10, algorithm='brute',
metric='precomputed').fit(dists)
clust2 = OPTICS(min_samples=10, algorithm='brute',
metric='euclidean').fit(redX)
assert_allclose(clust1.reachability_, clust2.reachability_)
assert_array_equal(clust1.labels_, clust2.labels_)