_optics.py 36.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
# -*- coding: utf-8 -*-
"""Ordering Points To Identify the Clustering Structure (OPTICS)

These routines execute the OPTICS algorithm, and implement various
cluster extraction methods of the ordered list.

Authors: Shane Grigsby <refuge@rocktalus.com>
         Adrin Jalali <adrinjalali@gmail.com>
         Erich Schubert <erich@debian.org>
         Hanmin Qin <qinhanmin2005@sina.com>
License: BSD 3 clause
"""

import warnings
import numpy as np

from ..utils import gen_batches, get_chunk_n_rows
from ..utils.validation import _deprecate_positional_args
from ..neighbors import NearestNeighbors
from ..base import BaseEstimator, ClusterMixin
from ..metrics import pairwise_distances


class OPTICS(ClusterMixin, BaseEstimator):
    """Estimate clustering structure from vector array.

    OPTICS (Ordering Points To Identify the Clustering Structure), closely
    related to DBSCAN, finds core sample of high density and expands clusters
    from them [1]_. Unlike DBSCAN, keeps cluster hierarchy for a variable
    neighborhood radius. Better suited for usage on large datasets than the
    current sklearn implementation of DBSCAN.

    Clusters are then extracted using a DBSCAN-like method
    (cluster_method = 'dbscan') or an automatic
    technique proposed in [1]_ (cluster_method = 'xi').

    This implementation deviates from the original OPTICS by first performing
    k-nearest-neighborhood searches on all points to identify core sizes, then
    computing only the distances to unprocessed points when constructing the
    cluster order. Note that we do not employ a heap to manage the expansion
    candidates, so the time complexity will be O(n^2).

    Read more in the :ref:`User Guide <optics>`.

    Parameters
    ----------
    min_samples : int > 1 or float between 0 and 1 (default=5)
        The number of samples in a neighborhood for a point to be considered as
        a core point. Also, up and down steep regions can't have more then
        ``min_samples`` consecutive non-steep points. Expressed as an absolute
        number or a fraction of the number of samples (rounded to be at least
        2).

    max_eps : float, optional (default=np.inf)
        The maximum distance between two samples for one to be considered as
        in the neighborhood of the other. Default value of ``np.inf`` will
        identify clusters across all scales; reducing ``max_eps`` will result
        in shorter run times.

    metric : str or callable, optional (default='minkowski')
        Metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string. If metric is
        "precomputed", X is assumed to be a distance matrix and must be square.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

    p : int, optional (default=2)
        Parameter for the Minkowski metric from
        :class:`sklearn.metrics.pairwise_distances`. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, optional (default=None)
        Additional keyword arguments for the metric function.

    cluster_method : str, optional (default='xi')
        The extraction method used to extract clusters using the calculated
        reachability and ordering. Possible values are "xi" and "dbscan".

    eps : float, optional (default=None)
        The maximum distance between two samples for one to be considered as
        in the neighborhood of the other. By default it assumes the same value
        as ``max_eps``.
        Used only when ``cluster_method='dbscan'``.

    xi : float, between 0 and 1, optional (default=0.05)
        Determines the minimum steepness on the reachability plot that
        constitutes a cluster boundary. For example, an upwards point in the
        reachability plot is defined by the ratio from one point to its
        successor being at most 1-xi.
        Used only when ``cluster_method='xi'``.

    predecessor_correction : bool, optional (default=True)
        Correct clusters according to the predecessors calculated by OPTICS
        [2]_. This parameter has minimal effect on most datasets.
        Used only when ``cluster_method='xi'``.

    min_cluster_size : int > 1 or float between 0 and 1 (default=None)
        Minimum number of samples in an OPTICS cluster, expressed as an
        absolute number or a fraction of the number of samples (rounded to be
        at least 2). If ``None``, the value of ``min_samples`` is used instead.
        Used only when ``cluster_method='xi'``.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method. (default)

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, optional (default=30)
        Leaf size passed to :class:`BallTree` or :class:`KDTree`. This can
        affect the speed of the construction and query, as well as the memory
        required to store the tree. The optimal value depends on the
        nature of the problem.

    n_jobs : int or None, optional (default=None)
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    labels_ : array, shape (n_samples,)
        Cluster labels for each point in the dataset given to fit().
        Noisy samples and points which are not included in a leaf cluster
        of ``cluster_hierarchy_`` are labeled as -1.

    reachability_ : array, shape (n_samples,)
        Reachability distances per sample, indexed by object order. Use
        ``clust.reachability_[clust.ordering_]`` to access in cluster order.

    ordering_ : array, shape (n_samples,)
        The cluster ordered list of sample indices.

    core_distances_ : array, shape (n_samples,)
        Distance at which each sample becomes a core point, indexed by object
        order. Points which will never be core have a distance of inf. Use
        ``clust.core_distances_[clust.ordering_]`` to access in cluster order.

    predecessor_ : array, shape (n_samples,)
        Point that a sample was reached from, indexed by object order.
        Seed points have a predecessor of -1.

    cluster_hierarchy_ : array, shape (n_clusters, 2)
        The list of clusters in the form of ``[start, end]`` in each row, with
        all indices inclusive. The clusters are ordered according to
        ``(end, -start)`` (ascending) so that larger clusters encompassing
        smaller clusters come after those smaller ones. Since ``labels_`` does
        not reflect the hierarchy, usually
        ``len(cluster_hierarchy_) > np.unique(optics.labels_)``. Please also
        note that these indices are of the ``ordering_``, i.e.
        ``X[ordering_][start:end + 1]`` form a cluster.
        Only available when ``cluster_method='xi'``.

    See Also
    --------
    DBSCAN
        A similar clustering for a specified neighborhood radius (eps).
        Our implementation is optimized for runtime.

    References
    ----------
    .. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
       and Jörg Sander. "OPTICS: ordering points to identify the clustering
       structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.

    .. [2] Schubert, Erich, Michael Gertz.
       "Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
       the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.

    Examples
    --------
    >>> from sklearn.cluster import OPTICS
    >>> import numpy as np
    >>> X = np.array([[1, 2], [2, 5], [3, 6],
    ...               [8, 7], [8, 8], [7, 3]])
    >>> clustering = OPTICS(min_samples=2).fit(X)
    >>> clustering.labels_
    array([0, 0, 0, 1, 1, 1])
    """
    @_deprecate_positional_args
    def __init__(self, *, min_samples=5, max_eps=np.inf, metric='minkowski',
                 p=2, metric_params=None, cluster_method='xi', eps=None,
                 xi=0.05, predecessor_correction=True, min_cluster_size=None,
                 algorithm='auto', leaf_size=30, n_jobs=None):
        self.max_eps = max_eps
        self.min_samples = min_samples
        self.min_cluster_size = min_cluster_size
        self.algorithm = algorithm
        self.metric = metric
        self.metric_params = metric_params
        self.p = p
        self.leaf_size = leaf_size
        self.cluster_method = cluster_method
        self.eps = eps
        self.xi = xi
        self.predecessor_correction = predecessor_correction
        self.n_jobs = n_jobs

    def fit(self, X, y=None):
        """Perform OPTICS clustering.

        Extracts an ordered list of points and reachability distances, and
        performs initial clustering using ``max_eps`` distance specified at
        OPTICS object instantiation.

        Parameters
        ----------
        X : array, shape (n_samples, n_features), or (n_samples, n_samples)  \
        if metric=’precomputed’
            A feature array, or array of distances between samples if
            metric='precomputed'.

        y : ignored
            Ignored.

        Returns
        -------
        self : instance of OPTICS
            The instance.
        """
        X = self._validate_data(X, dtype=np.float)

        if self.cluster_method not in ['dbscan', 'xi']:
            raise ValueError("cluster_method should be one of"
                             " 'dbscan' or 'xi' but is %s" %
                             self.cluster_method)

        (self.ordering_, self.core_distances_, self.reachability_,
         self.predecessor_) = compute_optics_graph(
             X=X, min_samples=self.min_samples, algorithm=self.algorithm,
             leaf_size=self.leaf_size, metric=self.metric,
             metric_params=self.metric_params, p=self.p, n_jobs=self.n_jobs,
             max_eps=self.max_eps)

        # Extract clusters from the calculated orders and reachability
        if self.cluster_method == 'xi':
            labels_, clusters_ = cluster_optics_xi(
                reachability=self.reachability_,
                predecessor=self.predecessor_,
                ordering=self.ordering_,
                min_samples=self.min_samples,
                min_cluster_size=self.min_cluster_size,
                xi=self.xi,
                predecessor_correction=self.predecessor_correction)
            self.cluster_hierarchy_ = clusters_
        elif self.cluster_method == 'dbscan':
            if self.eps is None:
                eps = self.max_eps
            else:
                eps = self.eps

            if eps > self.max_eps:
                raise ValueError('Specify an epsilon smaller than %s. Got %s.'
                                 % (self.max_eps, eps))

            labels_ = cluster_optics_dbscan(
                reachability=self.reachability_,
                core_distances=self.core_distances_,
                ordering=self.ordering_, eps=eps)

        self.labels_ = labels_
        return self


def _validate_size(size, n_samples, param_name):
    if size <= 0 or (size !=
                     int(size)
                     and size > 1):
        raise ValueError('%s must be a positive integer '
                         'or a float between 0 and 1. Got %r' %
                         (param_name, size))
    elif size > n_samples:
        raise ValueError('%s must be no greater than the'
                         ' number of samples (%d). Got %d' %
                         (param_name, n_samples, size))


# OPTICS helper functions
def _compute_core_distances_(X, neighbors, min_samples, working_memory):
    """Compute the k-th nearest neighbor of each sample

    Equivalent to neighbors.kneighbors(X, self.min_samples)[0][:, -1]
    but with more memory efficiency.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        The data.
    neighbors : NearestNeighbors instance
        The fitted nearest neighbors estimator.
    working_memory : int, optional
        The sought maximum memory for temporary distance matrix chunks.
        When None (default), the value of
        ``sklearn.get_config()['working_memory']`` is used.

    Returns
    -------
    core_distances : array, shape (n_samples,)
        Distance at which each sample becomes a core point.
        Points which will never be core have a distance of inf.
    """
    n_samples = X.shape[0]
    core_distances = np.empty(n_samples)
    core_distances.fill(np.nan)

    chunk_n_rows = get_chunk_n_rows(row_bytes=16 * min_samples,
                                    max_n_rows=n_samples,
                                    working_memory=working_memory)
    slices = gen_batches(n_samples, chunk_n_rows)
    for sl in slices:
        core_distances[sl] = neighbors.kneighbors(
            X[sl], min_samples)[0][:, -1]
    return core_distances


@_deprecate_positional_args
def compute_optics_graph(X, *, min_samples, max_eps, metric, p, metric_params,
                         algorithm, leaf_size, n_jobs):
    """Computes the OPTICS reachability graph.

    Read more in the :ref:`User Guide <optics>`.

    Parameters
    ----------
    X : array, shape (n_samples, n_features), or (n_samples, n_samples)  \
if metric=’precomputed’.
        A feature array, or array of distances between samples if
        metric='precomputed'

    min_samples : int > 1 or float between 0 and 1
        The number of samples in a neighborhood for a point to be considered
        as a core point. Expressed as an absolute number or a fraction of the
        number of samples (rounded to be at least 2).

    max_eps : float, optional (default=np.inf)
        The maximum distance between two samples for one to be considered as
        in the neighborhood of the other. Default value of ``np.inf`` will
        identify clusters across all scales; reducing ``max_eps`` will result
        in shorter run times.

    metric : string or callable, optional (default='minkowski')
        Metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string. If metric is
        "precomputed", X is assumed to be a distance matrix and must be square.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

    p : integer, optional (default=2)
        Parameter for the Minkowski metric from
        :class:`sklearn.metrics.pairwise_distances`. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, optional (default=None)
        Additional keyword arguments for the metric function.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method. (default)

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, optional (default=30)
        Leaf size passed to :class:`BallTree` or :class:`KDTree`. This can
        affect the speed of the construction and query, as well as the memory
        required to store the tree. The optimal value depends on the
        nature of the problem.

    n_jobs : int or None, optional (default=None)
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Returns
    -------
    ordering_ : array, shape (n_samples,)
        The cluster ordered list of sample indices.

    core_distances_ : array, shape (n_samples,)
        Distance at which each sample becomes a core point, indexed by object
        order. Points which will never be core have a distance of inf. Use
        ``clust.core_distances_[clust.ordering_]`` to access in cluster order.

    reachability_ : array, shape (n_samples,)
        Reachability distances per sample, indexed by object order. Use
        ``clust.reachability_[clust.ordering_]`` to access in cluster order.

    predecessor_ : array, shape (n_samples,)
        Point that a sample was reached from, indexed by object order.
        Seed points have a predecessor of -1.

    References
    ----------
    .. [1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel,
       and Jörg Sander. "OPTICS: ordering points to identify the clustering
       structure." ACM SIGMOD Record 28, no. 2 (1999): 49-60.
    """
    n_samples = X.shape[0]
    _validate_size(min_samples, n_samples, 'min_samples')
    if min_samples <= 1:
        min_samples = max(2, int(min_samples * n_samples))

    # Start all points as 'unprocessed' ##
    reachability_ = np.empty(n_samples)
    reachability_.fill(np.inf)
    predecessor_ = np.empty(n_samples, dtype=int)
    predecessor_.fill(-1)

    nbrs = NearestNeighbors(n_neighbors=min_samples,
                            algorithm=algorithm,
                            leaf_size=leaf_size,
                            metric=metric,
                            metric_params=metric_params,
                            p=p,
                            n_jobs=n_jobs)

    nbrs.fit(X)
    # Here we first do a kNN query for each point, this differs from
    # the original OPTICS that only used epsilon range queries.
    # TODO: handle working_memory somehow?
    core_distances_ = _compute_core_distances_(X=X, neighbors=nbrs,
                                               min_samples=min_samples,
                                               working_memory=None)
    # OPTICS puts an upper limit on these, use inf for undefined.
    core_distances_[core_distances_ > max_eps] = np.inf

    # Main OPTICS loop. Not parallelizable. The order that entries are
    # written to the 'ordering_' list is important!
    # Note that this implementation is O(n^2) theoretically, but
    # supposedly with very low constant factors.
    processed = np.zeros(X.shape[0], dtype=bool)
    ordering = np.zeros(X.shape[0], dtype=int)
    for ordering_idx in range(X.shape[0]):
        # Choose next based on smallest reachability distance
        # (And prefer smaller ids on ties, possibly np.inf!)
        index = np.where(processed == 0)[0]
        point = index[np.argmin(reachability_[index])]

        processed[point] = True
        ordering[ordering_idx] = point
        if core_distances_[point] != np.inf:
            _set_reach_dist(core_distances_=core_distances_,
                            reachability_=reachability_,
                            predecessor_=predecessor_,
                            point_index=point,
                            processed=processed, X=X, nbrs=nbrs,
                            metric=metric, metric_params=metric_params,
                            p=p, max_eps=max_eps)
    if np.all(np.isinf(reachability_)):
        warnings.warn("All reachability values are inf. Set a larger"
                      " max_eps or all data will be considered outliers.",
                      UserWarning)
    return ordering, core_distances_, reachability_, predecessor_


def _set_reach_dist(core_distances_, reachability_, predecessor_,
                    point_index, processed, X, nbrs, metric, metric_params,
                    p, max_eps):
    P = X[point_index:point_index + 1]
    # Assume that radius_neighbors is faster without distances
    # and we don't need all distances, nevertheless, this means
    # we may be doing some work twice.
    indices = nbrs.radius_neighbors(P, radius=max_eps,
                                    return_distance=False)[0]

    # Getting indices of neighbors that have not been processed
    unproc = np.compress(~np.take(processed, indices), indices)
    # Neighbors of current point are already processed.
    if not unproc.size:
        return

    # Only compute distances to unprocessed neighbors:
    if metric == 'precomputed':
        dists = X[point_index, unproc]
    else:
        _params = dict() if metric_params is None else metric_params.copy()
        if metric == 'minkowski' and 'p' not in _params:
            # the same logic as neighbors, p is ignored if explicitly set
            # in the dict params
            _params['p'] = p
        dists = pairwise_distances(P, np.take(X, unproc, axis=0),
                                   metric=metric, n_jobs=None,
                                   **_params).ravel()

    rdists = np.maximum(dists, core_distances_[point_index])
    improved = np.where(rdists < np.take(reachability_, unproc))
    reachability_[unproc[improved]] = rdists[improved]
    predecessor_[unproc[improved]] = point_index


@_deprecate_positional_args
def cluster_optics_dbscan(*, reachability, core_distances, ordering, eps):
    """Performs DBSCAN extraction for an arbitrary epsilon.

    Extracting the clusters runs in linear time. Note that this results in
    ``labels_`` which are close to a :class:`~sklearn.cluster.DBSCAN` with
    similar settings and ``eps``, only if ``eps`` is close to ``max_eps``.

    Parameters
    ----------
    reachability : array, shape (n_samples,)
        Reachability distances calculated by OPTICS (``reachability_``)

    core_distances : array, shape (n_samples,)
        Distances at which points become core (``core_distances_``)

    ordering : array, shape (n_samples,)
        OPTICS ordered point indices (``ordering_``)

    eps : float
        DBSCAN ``eps`` parameter. Must be set to < ``max_eps``. Results
        will be close to DBSCAN algorithm if ``eps`` and ``max_eps`` are close
        to one another.

    Returns
    -------
    labels_ : array, shape (n_samples,)
        The estimated labels.

    """
    n_samples = len(core_distances)
    labels = np.zeros(n_samples, dtype=int)

    far_reach = reachability > eps
    near_core = core_distances <= eps
    labels[ordering] = np.cumsum(far_reach[ordering] & near_core[ordering]) - 1
    labels[far_reach & ~near_core] = -1
    return labels


def cluster_optics_xi(*, reachability, predecessor, ordering, min_samples,
                      min_cluster_size=None, xi=0.05,
                      predecessor_correction=True):
    """Automatically extract clusters according to the Xi-steep method.

    Parameters
    ----------
    reachability : array, shape (n_samples,)
        Reachability distances calculated by OPTICS (`reachability_`)

    predecessor : array, shape (n_samples,)
        Predecessors calculated by OPTICS.

    ordering : array, shape (n_samples,)
        OPTICS ordered point indices (`ordering_`)

    min_samples : int > 1 or float between 0 and 1
        The same as the min_samples given to OPTICS. Up and down steep regions
        can't have more then ``min_samples`` consecutive non-steep points.
        Expressed as an absolute number or a fraction of the number of samples
        (rounded to be at least 2).

    min_cluster_size : int > 1 or float between 0 and 1 (default=None)
        Minimum number of samples in an OPTICS cluster, expressed as an
        absolute number or a fraction of the number of samples (rounded to be
        at least 2). If ``None``, the value of ``min_samples`` is used instead.

    xi : float, between 0 and 1, optional (default=0.05)
        Determines the minimum steepness on the reachability plot that
        constitutes a cluster boundary. For example, an upwards point in the
        reachability plot is defined by the ratio from one point to its
        successor being at most 1-xi.

    predecessor_correction : bool, optional (default=True)
        Correct clusters based on the calculated predecessors.

    Returns
    -------
    labels : array, shape (n_samples)
        The labels assigned to samples. Points which are not included
        in any cluster are labeled as -1.

    clusters : array, shape (n_clusters, 2)
        The list of clusters in the form of ``[start, end]`` in each row, with
        all indices inclusive. The clusters are ordered according to ``(end,
        -start)`` (ascending) so that larger clusters encompassing smaller
        clusters come after such nested smaller clusters. Since ``labels`` does
        not reflect the hierarchy, usually ``len(clusters) >
        np.unique(labels)``.
    """
    n_samples = len(reachability)
    _validate_size(min_samples, n_samples, 'min_samples')
    if min_samples <= 1:
        min_samples = max(2, int(min_samples * n_samples))
    if min_cluster_size is None:
        min_cluster_size = min_samples
    _validate_size(min_cluster_size, n_samples, 'min_cluster_size')
    if min_cluster_size <= 1:
        min_cluster_size = max(2, int(min_cluster_size * n_samples))

    clusters = _xi_cluster(reachability[ordering], predecessor[ordering],
                           ordering, xi,
                           min_samples, min_cluster_size,
                           predecessor_correction)
    labels = _extract_xi_labels(ordering, clusters)
    return labels, clusters


def _extend_region(steep_point, xward_point, start, min_samples):
    """Extend the area until it's maximal.

    It's the same function for both upward and downward reagions, depending on
    the given input parameters. Assuming:

        - steep_{upward/downward}: bool array indicating whether a point is a
          steep {upward/downward};
        - upward/downward: bool array indicating whether a point is
          upward/downward;

    To extend an upward reagion, ``steep_point=steep_upward`` and
    ``xward_point=downward`` are expected, and to extend a downward region,
    ``steep_point=steep_downward`` and ``xward_point=upward``.

    Parameters
    ----------
    steep_point : bool array, shape (n_samples)
        True if the point is steep downward (upward).

    xward_point : bool array, shape (n_samples)
        True if the point is an upward (respectively downward) point.

    start : integer
        The start of the xward region.

    min_samples : integer
       The same as the min_samples given to OPTICS. Up and down steep
       regions can't have more then ``min_samples`` consecutive non-steep
       points.

    Returns
    -------
    index : integer
        The current index iterating over all the samples, i.e. where we are up
        to in our search.

    end : integer
        The end of the region, which can be behind the index. The region
        includes the ``end`` index.
    """
    n_samples = len(steep_point)
    non_xward_points = 0
    index = start
    end = start
    # find a maximal area
    while index < n_samples:
        if steep_point[index]:
            non_xward_points = 0
            end = index
        elif not xward_point[index]:
            # it's not a steep point, but still goes up.
            non_xward_points += 1
            # region should include no more than min_samples consecutive
            # non steep xward points.
            if non_xward_points > min_samples:
                break
        else:
            return end
        index += 1
    return end


def _update_filter_sdas(sdas, mib, xi_complement, reachability_plot):
    """Update steep down areas (SDAs) using the new maximum in between (mib)
    value, and the given complement of xi, i.e. ``1 - xi``.
    """
    if np.isinf(mib):
        return []
    res = [sda for sda in sdas
           if mib <= reachability_plot[sda['start']] * xi_complement]
    for sda in res:
        sda['mib'] = max(sda['mib'], mib)
    return res


def _correct_predecessor(reachability_plot, predecessor_plot, ordering, s, e):
    """Correct for predecessors.

    Applies Algorithm 2 of [1]_.

    Input parameters are ordered by the computer OPTICS ordering.

    .. [1] Schubert, Erich, Michael Gertz.
       "Improving the Cluster Structure Extracted from OPTICS Plots." Proc. of
       the Conference "Lernen, Wissen, Daten, Analysen" (LWDA) (2018): 318-329.
    """
    while s < e:
        if reachability_plot[s] > reachability_plot[e]:
            return s, e
        p_e = ordering[predecessor_plot[e]]
        for i in range(s, e):
            if p_e == ordering[i]:
                return s, e
        e -= 1
    return None, None


def _xi_cluster(reachability_plot, predecessor_plot, ordering, xi, min_samples,
                min_cluster_size, predecessor_correction):
    """Automatically extract clusters according to the Xi-steep method.

    This is rouphly an implementation of Figure 19 of the OPTICS paper.

    Parameters
    ----------
    reachability_plot : array, shape (n_samples)
        The reachability plot, i.e. reachability ordered according to
        the calculated ordering, all computed by OPTICS.

    predecessor_plot : array, shape (n_samples)
        Predecessors ordered according to the calculated ordering.

    xi : float, between 0 and 1
        Determines the minimum steepness on the reachability plot that
        constitutes a cluster boundary. For example, an upwards point in the
        reachability plot is defined by the ratio from one point to its
        successor being at most 1-xi.

    min_samples : int > 1
        The same as the min_samples given to OPTICS. Up and down steep regions
        can't have more then ``min_samples`` consecutive non-steep points.

    min_cluster_size : int > 1
        Minimum number of samples in an OPTICS cluster.

    predecessor_correction : bool
        Correct clusters based on the calculated predecessors.

    Returns
    -------
    clusters : array, shape (n_clusters, 2)
        The list of clusters in the form of [start, end] in each row, with all
        indices inclusive. The clusters are ordered in a way that larger
        clusters encompassing smaller clusters come after those smaller
        clusters.
    """

    # Our implementation adds an inf to the end of reachability plot
    # this helps to find potential clusters at the end of the
    # reachability plot even if there's no upward region at the end of it.
    reachability_plot = np.hstack((reachability_plot, np.inf))

    xi_complement = 1 - xi
    sdas = []  # steep down areas, introduced in section 4.3.2 of the paper
    clusters = []
    index = 0
    mib = 0.  # maximum in between, section 4.3.2

    # Our implementation corrects a mistake in the original
    # paper, i.e., in Definition 9 steep downward point,
    # r(p) * (1 - x1) <= r(p + 1) should be
    # r(p) * (1 - x1) >= r(p + 1)
    with np.errstate(invalid='ignore'):
        ratio = reachability_plot[:-1] / reachability_plot[1:]
        steep_upward = ratio <= xi_complement
        steep_downward = ratio >= 1 / xi_complement
        downward = ratio > 1
        upward = ratio < 1

    # the following loop is is almost exactly as Figure 19 of the paper.
    # it jumps over the areas which are not either steep down or up areas
    for steep_index in iter(np.flatnonzero(steep_upward | steep_downward)):
        # just continue if steep_index has been a part of a discovered xward
        # area.
        if steep_index < index:
            continue

        mib = max(mib, np.max(reachability_plot[index:steep_index + 1]))

        # steep downward areas
        if steep_downward[steep_index]:
            sdas = _update_filter_sdas(sdas, mib, xi_complement,
                                       reachability_plot)
            D_start = steep_index
            D_end = _extend_region(steep_downward, upward,
                                   D_start, min_samples)
            D = {'start': D_start, 'end': D_end, 'mib': 0.}
            sdas.append(D)
            index = D_end + 1
            mib = reachability_plot[index]

        # steep upward areas
        else:
            sdas = _update_filter_sdas(sdas, mib, xi_complement,
                                       reachability_plot)
            U_start = steep_index
            U_end = _extend_region(steep_upward, downward, U_start,
                                   min_samples)
            index = U_end + 1
            mib = reachability_plot[index]

            U_clusters = []
            for D in sdas:
                c_start = D['start']
                c_end = U_end

                # line (**), sc2*
                if reachability_plot[c_end + 1] * xi_complement < D['mib']:
                    continue

                # Definition 11: criterion 4
                D_max = reachability_plot[D['start']]
                if D_max * xi_complement >= reachability_plot[c_end + 1]:
                    # Find the first index from the left side which is almost
                    # at the same level as the end of the detected cluster.
                    while (reachability_plot[c_start + 1] >
                           reachability_plot[c_end + 1]
                           and c_start < D['end']):
                        c_start += 1
                elif reachability_plot[c_end + 1] * xi_complement >= D_max:
                    # Find the first index from the right side which is almost
                    # at the same level as the beginning of the detected
                    # cluster.
                    # Our implementation corrects a mistake in the original
                    # paper, i.e., in Definition 11 4c, r(x) < r(sD) should be
                    # r(x) > r(sD).
                    while (reachability_plot[c_end - 1] > D_max
                           and c_end > U_start):
                        c_end -= 1

                # predecessor correction
                if predecessor_correction:
                    c_start, c_end = _correct_predecessor(reachability_plot,
                                                          predecessor_plot,
                                                          ordering,
                                                          c_start,
                                                          c_end)
                if c_start is None:
                    continue

                # Definition 11: criterion 3.a
                if c_end - c_start + 1 < min_cluster_size:
                    continue

                # Definition 11: criterion 1
                if c_start > D['end']:
                    continue

                # Definition 11: criterion 2
                if c_end < U_start:
                    continue

                U_clusters.append((c_start, c_end))

            # add smaller clusters first.
            U_clusters.reverse()
            clusters.extend(U_clusters)

    return np.array(clusters)


def _extract_xi_labels(ordering, clusters):
    """Extracts the labels from the clusters returned by `_xi_cluster`.
    We rely on the fact that clusters are stored
    with the smaller clusters coming before the larger ones.

    Parameters
    ----------
    ordering : array, shape (n_samples)
        The ordering of points calculated by OPTICS

    clusters : array, shape (n_clusters, 2)
        List of clusters i.e. (start, end) tuples,
        as returned by `_xi_cluster`.

    Returns
    -------
    labels : array, shape (n_samples)
    """

    labels = np.full(len(ordering), -1, dtype=int)
    label = 0
    for c in clusters:
        if not np.any(labels[c[0]:(c[1] + 1)] != -1):
            labels[c[0]:(c[1] + 1)] = label
            label += 1
    labels[ordering] = labels.copy()
    return labels