_affinity_propagation.py 16.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
"""Affinity Propagation clustering algorithm."""

# Author: Alexandre Gramfort alexandre.gramfort@inria.fr
#        Gael Varoquaux gael.varoquaux@normalesup.org

# License: BSD 3 clause

import numpy as np
import warnings

from ..exceptions import ConvergenceWarning
from ..base import BaseEstimator, ClusterMixin
from ..utils import as_float_array, check_array, check_random_state
from ..utils.validation import check_is_fitted, _deprecate_positional_args
from ..metrics import euclidean_distances
from ..metrics import pairwise_distances_argmin


def _equal_similarities_and_preferences(S, preference):
    def all_equal_preferences():
        return np.all(preference == preference.flat[0])

    def all_equal_similarities():
        # Create mask to ignore diagonal of S
        mask = np.ones(S.shape, dtype=bool)
        np.fill_diagonal(mask, 0)

        return np.all(S[mask].flat == S[mask].flat[0])

    return all_equal_preferences() and all_equal_similarities()


@_deprecate_positional_args
def affinity_propagation(S, *, preference=None, convergence_iter=15,
                         max_iter=200, damping=0.5, copy=True, verbose=False,
                         return_n_iter=False, random_state='warn'):
    """Perform Affinity Propagation Clustering of data

    Read more in the :ref:`User Guide <affinity_propagation>`.

    Parameters
    ----------

    S : array-like, shape (n_samples, n_samples)
        Matrix of similarities between points

    preference : array-like, shape (n_samples,) or float, optional
        Preferences for each point - points with larger values of
        preferences are more likely to be chosen as exemplars. The number of
        exemplars, i.e. of clusters, is influenced by the input preferences
        value. If the preferences are not passed as arguments, they will be
        set to the median of the input similarities (resulting in a moderate
        number of clusters). For a smaller amount of clusters, this can be set
        to the minimum value of the similarities.

    convergence_iter : int, optional, default: 15
        Number of iterations with no change in the number
        of estimated clusters that stops the convergence.

    max_iter : int, optional, default: 200
        Maximum number of iterations

    damping : float, optional, default: 0.5
        Damping factor between 0.5 and 1.

    copy : boolean, optional, default: True
        If copy is False, the affinity matrix is modified inplace by the
        algorithm, for memory efficiency

    verbose : boolean, optional, default: False
        The verbosity level

    return_n_iter : bool, default False
        Whether or not to return the number of iterations.

    random_state : int or np.random.RandomStateInstance, default: 0
        Pseudo-random number generator to control the starting state.
        Use an int for reproducible results across function calls.
        See the :term:`Glossary <random_state>`.

        .. versionadded:: 0.23
            this parameter was previously hardcoded as 0.

    Returns
    -------

    cluster_centers_indices : array, shape (n_clusters,)
        index of clusters centers

    labels : array, shape (n_samples,)
        cluster labels for each point

    n_iter : int
        number of iterations run. Returned only if `return_n_iter` is
        set to True.

    Notes
    -----
    For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
    <sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.

    When the algorithm does not converge, it returns an empty array as
    ``cluster_center_indices`` and ``-1`` as label for each training sample.

    When all training samples have equal similarities and equal preferences,
    the assignment of cluster centers and labels depends on the preference.
    If the preference is smaller than the similarities, a single cluster center
    and label ``0`` for every sample will be returned. Otherwise, every
    training sample becomes its own cluster center and is assigned a unique
    label.

    References
    ----------
    Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
    Between Data Points", Science Feb. 2007
    """
    S = as_float_array(S, copy=copy)
    n_samples = S.shape[0]

    if S.shape[0] != S.shape[1]:
        raise ValueError("S must be a square array (shape=%s)" % repr(S.shape))

    if preference is None:
        preference = np.median(S)
    if damping < 0.5 or damping >= 1:
        raise ValueError('damping must be >= 0.5 and < 1')

    preference = np.array(preference)

    if (n_samples == 1 or
            _equal_similarities_and_preferences(S, preference)):
        # It makes no sense to run the algorithm in this case, so return 1 or
        # n_samples clusters, depending on preferences
        warnings.warn("All samples have mutually equal similarities. "
                      "Returning arbitrary cluster center(s).")
        if preference.flat[0] >= S.flat[n_samples - 1]:
            return ((np.arange(n_samples), np.arange(n_samples), 0)
                    if return_n_iter
                    else (np.arange(n_samples), np.arange(n_samples)))
        else:
            return ((np.array([0]), np.array([0] * n_samples), 0)
                    if return_n_iter
                    else (np.array([0]), np.array([0] * n_samples)))

    if random_state == 'warn':
        warnings.warn(("'random_state' has been introduced in 0.23. "
                       "It will be set to None starting from 0.25 which "
                       "means that results will differ at every function "
                       "call. Set 'random_state' to None to silence this "
                       "warning, or to 0 to keep the behavior of versions "
                       "<0.23."),
                      FutureWarning)
        random_state = 0
    random_state = check_random_state(random_state)

    # Place preference on the diagonal of S
    S.flat[::(n_samples + 1)] = preference

    A = np.zeros((n_samples, n_samples))
    R = np.zeros((n_samples, n_samples))  # Initialize messages
    # Intermediate results
    tmp = np.zeros((n_samples, n_samples))

    # Remove degeneracies
    S += ((np.finfo(S.dtype).eps * S + np.finfo(S.dtype).tiny * 100) *
          random_state.randn(n_samples, n_samples))

    # Execute parallel affinity propagation updates
    e = np.zeros((n_samples, convergence_iter))

    ind = np.arange(n_samples)

    for it in range(max_iter):
        # tmp = A + S; compute responsibilities
        np.add(A, S, tmp)
        I = np.argmax(tmp, axis=1)
        Y = tmp[ind, I]  # np.max(A + S, axis=1)
        tmp[ind, I] = -np.inf
        Y2 = np.max(tmp, axis=1)

        # tmp = Rnew
        np.subtract(S, Y[:, None], tmp)
        tmp[ind, I] = S[ind, I] - Y2

        # Damping
        tmp *= 1 - damping
        R *= damping
        R += tmp

        # tmp = Rp; compute availabilities
        np.maximum(R, 0, tmp)
        tmp.flat[::n_samples + 1] = R.flat[::n_samples + 1]

        # tmp = -Anew
        tmp -= np.sum(tmp, axis=0)
        dA = np.diag(tmp).copy()
        tmp.clip(0, np.inf, tmp)
        tmp.flat[::n_samples + 1] = dA

        # Damping
        tmp *= 1 - damping
        A *= damping
        A -= tmp

        # Check for convergence
        E = (np.diag(A) + np.diag(R)) > 0
        e[:, it % convergence_iter] = E
        K = np.sum(E, axis=0)

        if it >= convergence_iter:
            se = np.sum(e, axis=1)
            unconverged = (np.sum((se == convergence_iter) + (se == 0))
                           != n_samples)
            if (not unconverged and (K > 0)) or (it == max_iter):
                never_converged = False
                if verbose:
                    print("Converged after %d iterations." % it)
                break
    else:
        never_converged = True
        if verbose:
            print("Did not converge")

    I = np.flatnonzero(E)
    K = I.size  # Identify exemplars

    if K > 0 and not never_converged:
        c = np.argmax(S[:, I], axis=1)
        c[I] = np.arange(K)  # Identify clusters
        # Refine the final set of exemplars and clusters and return results
        for k in range(K):
            ii = np.where(c == k)[0]
            j = np.argmax(np.sum(S[ii[:, np.newaxis], ii], axis=0))
            I[k] = ii[j]

        c = np.argmax(S[:, I], axis=1)
        c[I] = np.arange(K)
        labels = I[c]
        # Reduce labels to a sorted, gapless, list
        cluster_centers_indices = np.unique(labels)
        labels = np.searchsorted(cluster_centers_indices, labels)
    else:
        warnings.warn("Affinity propagation did not converge, this model "
                      "will not have any cluster centers.", ConvergenceWarning)
        labels = np.array([-1] * n_samples)
        cluster_centers_indices = []

    if return_n_iter:
        return cluster_centers_indices, labels, it + 1
    else:
        return cluster_centers_indices, labels


###############################################################################

class AffinityPropagation(ClusterMixin, BaseEstimator):
    """Perform Affinity Propagation Clustering of data.

    Read more in the :ref:`User Guide <affinity_propagation>`.

    Parameters
    ----------
    damping : float, default=0.5
        Damping factor (between 0.5 and 1) is the extent to
        which the current value is maintained relative to
        incoming values (weighted 1 - damping). This in order
        to avoid numerical oscillations when updating these
        values (messages).

    max_iter : int, default=200
        Maximum number of iterations.

    convergence_iter : int, default=15
        Number of iterations with no change in the number
        of estimated clusters that stops the convergence.

    copy : bool, default=True
        Make a copy of input data.

    preference : array-like of shape (n_samples,) or float, default=None
        Preferences for each point - points with larger values of
        preferences are more likely to be chosen as exemplars. The number
        of exemplars, ie of clusters, is influenced by the input
        preferences value. If the preferences are not passed as arguments,
        they will be set to the median of the input similarities.

    affinity : {'euclidean', 'precomputed'}, default='euclidean'
        Which affinity to use. At the moment 'precomputed' and
        ``euclidean`` are supported. 'euclidean' uses the
        negative squared euclidean distance between points.

    verbose : bool, default=False
        Whether to be verbose.

    random_state : int or np.random.RandomStateInstance, default: 0
        Pseudo-random number generator to control the starting state.
        Use an int for reproducible results across function calls.
        See the :term:`Glossary <random_state>`.

        .. versionadded:: 0.23
            this parameter was previously hardcoded as 0.

    Attributes
    ----------
    cluster_centers_indices_ : ndarray of shape (n_clusters,)
        Indices of cluster centers

    cluster_centers_ : ndarray of shape (n_clusters, n_features)
        Cluster centers (if affinity != ``precomputed``).

    labels_ : ndarray of shape (n_samples,)
        Labels of each point

    affinity_matrix_ : ndarray of shape (n_samples, n_samples)
        Stores the affinity matrix used in ``fit``.

    n_iter_ : int
        Number of iterations taken to converge.

    Notes
    -----
    For an example, see :ref:`examples/cluster/plot_affinity_propagation.py
    <sphx_glr_auto_examples_cluster_plot_affinity_propagation.py>`.

    The algorithmic complexity of affinity propagation is quadratic
    in the number of points.

    When ``fit`` does not converge, ``cluster_centers_`` becomes an empty
    array and all training samples will be labelled as ``-1``. In addition,
    ``predict`` will then label every sample as ``-1``.

    When all training samples have equal similarities and equal preferences,
    the assignment of cluster centers and labels depends on the preference.
    If the preference is smaller than the similarities, ``fit`` will result in
    a single cluster center and label ``0`` for every sample. Otherwise, every
    training sample becomes its own cluster center and is assigned a unique
    label.

    References
    ----------

    Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages
    Between Data Points", Science Feb. 2007

    Examples
    --------
    >>> from sklearn.cluster import AffinityPropagation
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [4, 2], [4, 4], [4, 0]])
    >>> clustering = AffinityPropagation(random_state=5).fit(X)
    >>> clustering
    AffinityPropagation(random_state=5)
    >>> clustering.labels_
    array([0, 0, 0, 1, 1, 1])
    >>> clustering.predict([[0, 0], [4, 4]])
    array([0, 1])
    >>> clustering.cluster_centers_
    array([[1, 2],
           [4, 2]])
    """
    @_deprecate_positional_args
    def __init__(self, *, damping=.5, max_iter=200, convergence_iter=15,
                 copy=True, preference=None, affinity='euclidean',
                 verbose=False, random_state='warn'):

        self.damping = damping
        self.max_iter = max_iter
        self.convergence_iter = convergence_iter
        self.copy = copy
        self.verbose = verbose
        self.preference = preference
        self.affinity = affinity
        self.random_state = random_state

    @property
    def _pairwise(self):
        return self.affinity == "precomputed"

    def fit(self, X, y=None):
        """Fit the clustering from features, or affinity matrix.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features), or \
            array-like, shape (n_samples, n_samples)
            Training instances to cluster, or similarities / affinities between
            instances if ``affinity='precomputed'``. If a sparse feature matrix
            is provided, it will be converted into a sparse ``csr_matrix``.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        self

        """
        if self.affinity == "precomputed":
            accept_sparse = False
        else:
            accept_sparse = 'csr'
        X = self._validate_data(X, accept_sparse=accept_sparse)
        if self.affinity == "precomputed":
            self.affinity_matrix_ = X
        elif self.affinity == "euclidean":
            self.affinity_matrix_ = -euclidean_distances(X, squared=True)
        else:
            raise ValueError("Affinity must be 'precomputed' or "
                             "'euclidean'. Got %s instead"
                             % str(self.affinity))

        self.cluster_centers_indices_, self.labels_, self.n_iter_ = \
            affinity_propagation(
                self.affinity_matrix_, preference=self.preference,
                max_iter=self.max_iter,
                convergence_iter=self.convergence_iter, damping=self.damping,
                copy=self.copy, verbose=self.verbose, return_n_iter=True,
                random_state=self.random_state)

        if self.affinity != "precomputed":
            self.cluster_centers_ = X[self.cluster_centers_indices_].copy()

        return self

    def predict(self, X):
        """Predict the closest cluster each sample in X belongs to.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features)
            New data to predict. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        labels : ndarray, shape (n_samples,)
            Cluster labels.
        """
        check_is_fitted(self)
        X = check_array(X)
        if not hasattr(self, "cluster_centers_"):
            raise ValueError("Predict method is not supported when "
                             "affinity='precomputed'.")

        if self.cluster_centers_.shape[0] > 0:
            return pairwise_distances_argmin(X, self.cluster_centers_)
        else:
            warnings.warn("This model does not have any cluster centers "
                          "because affinity propagation did not converge. "
                          "Labeling every sample as '-1'.", ConvergenceWarning)
            return np.array([-1] * X.shape[0])

    def fit_predict(self, X, y=None):
        """Fit the clustering from features or affinity matrix, and return
        cluster labels.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features), or \
            array-like, shape (n_samples, n_samples)
            Training instances to cluster, or similarities / affinities between
            instances if ``affinity='precomputed'``. If a sparse feature matrix
            is provided, it will be converted into a sparse ``csr_matrix``.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        labels : ndarray, shape (n_samples,)
            Cluster labels.
        """
        return super().fit_predict(X, y)