base.py 27.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
"""
Base classes for all estimators.

Used for VotingClassifier
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import copy
import warnings
from collections import defaultdict
import platform
import inspect
import re

import numpy as np

from . import __version__
from ._config import get_config
from .utils import _IS_32BIT
from .utils.validation import check_X_y
from .utils.validation import check_array
from .utils._estimator_html_repr import estimator_html_repr
from .utils.validation import _deprecate_positional_args

_DEFAULT_TAGS = {
    'non_deterministic': False,
    'requires_positive_X': False,
    'requires_positive_y': False,
    'X_types': ['2darray'],
    'poor_score': False,
    'no_validation': False,
    'multioutput': False,
    "allow_nan": False,
    'stateless': False,
    'multilabel': False,
    '_skip_test': False,
    '_xfail_checks': False,
    'multioutput_only': False,
    'binary_only': False,
    'requires_fit': True,
    'requires_y': False,
    }


@_deprecate_positional_args
def clone(estimator, *, safe=True):
    """Constructs a new estimator with the same parameters.

    Clone does a deep copy of the model in an estimator
    without actually copying attached data. It yields a new estimator
    with the same parameters that has not been fit on any data.

    Parameters
    ----------
    estimator : {list, tuple, set} of estimator objects or estimator object
        The estimator or group of estimators to be cloned.

    safe : bool, default=True
        If safe is false, clone will fall back to a deep copy on objects
        that are not estimators.

    """
    estimator_type = type(estimator)
    # XXX: not handling dictionaries
    if estimator_type in (list, tuple, set, frozenset):
        return estimator_type([clone(e, safe=safe) for e in estimator])
    elif not hasattr(estimator, 'get_params') or isinstance(estimator, type):
        if not safe:
            return copy.deepcopy(estimator)
        else:
            if isinstance(estimator, type):
                raise TypeError("Cannot clone object. " +
                                "You should provide an instance of " +
                                "scikit-learn estimator instead of a class.")
            else:
                raise TypeError("Cannot clone object '%s' (type %s): "
                                "it does not seem to be a scikit-learn "
                                "estimator as it does not implement a "
                                "'get_params' method."
                                % (repr(estimator), type(estimator)))

    klass = estimator.__class__
    new_object_params = estimator.get_params(deep=False)
    for name, param in new_object_params.items():
        new_object_params[name] = clone(param, safe=False)
    new_object = klass(**new_object_params)
    params_set = new_object.get_params(deep=False)

    # quick sanity check of the parameters of the clone
    for name in new_object_params:
        param1 = new_object_params[name]
        param2 = params_set[name]
        if param1 is not param2:
            raise RuntimeError('Cannot clone object %s, as the constructor '
                               'either does not set or modifies parameter %s' %
                               (estimator, name))
    return new_object


def _pprint(params, offset=0, printer=repr):
    """Pretty print the dictionary 'params'

    Parameters
    ----------
    params : dict
        The dictionary to pretty print

    offset : int, default=0
        The offset in characters to add at the begin of each line.

    printer : callable, default=repr
        The function to convert entries to strings, typically
        the builtin str or repr

    """
    # Do a multi-line justified repr:
    options = np.get_printoptions()
    np.set_printoptions(precision=5, threshold=64, edgeitems=2)
    params_list = list()
    this_line_length = offset
    line_sep = ',\n' + (1 + offset // 2) * ' '
    for i, (k, v) in enumerate(sorted(params.items())):
        if type(v) is float:
            # use str for representing floating point numbers
            # this way we get consistent representation across
            # architectures and versions.
            this_repr = '%s=%s' % (k, str(v))
        else:
            # use repr of the rest
            this_repr = '%s=%s' % (k, printer(v))
        if len(this_repr) > 500:
            this_repr = this_repr[:300] + '...' + this_repr[-100:]
        if i > 0:
            if (this_line_length + len(this_repr) >= 75 or '\n' in this_repr):
                params_list.append(line_sep)
                this_line_length = len(line_sep)
            else:
                params_list.append(', ')
                this_line_length += 2
        params_list.append(this_repr)
        this_line_length += len(this_repr)

    np.set_printoptions(**options)
    lines = ''.join(params_list)
    # Strip trailing space to avoid nightmare in doctests
    lines = '\n'.join(l.rstrip(' ') for l in lines.split('\n'))
    return lines


class BaseEstimator:
    """Base class for all estimators in scikit-learn

    Notes
    -----
    All estimators should specify all the parameters that can be set
    at the class level in their ``__init__`` as explicit keyword
    arguments (no ``*args`` or ``**kwargs``).
    """

    @classmethod
    def _get_param_names(cls):
        """Get parameter names for the estimator"""
        # fetch the constructor or the original constructor before
        # deprecation wrapping if any
        init = getattr(cls.__init__, 'deprecated_original', cls.__init__)
        if init is object.__init__:
            # No explicit constructor to introspect
            return []

        # introspect the constructor arguments to find the model parameters
        # to represent
        init_signature = inspect.signature(init)
        # Consider the constructor parameters excluding 'self'
        parameters = [p for p in init_signature.parameters.values()
                      if p.name != 'self' and p.kind != p.VAR_KEYWORD]
        for p in parameters:
            if p.kind == p.VAR_POSITIONAL:
                raise RuntimeError("scikit-learn estimators should always "
                                   "specify their parameters in the signature"
                                   " of their __init__ (no varargs)."
                                   " %s with constructor %s doesn't "
                                   " follow this convention."
                                   % (cls, init_signature))
        # Extract and sort argument names excluding 'self'
        return sorted([p.name for p in parameters])

    def get_params(self, deep=True):
        """
        Get parameters for this estimator.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        out = dict()
        for key in self._get_param_names():
            try:
                value = getattr(self, key)
            except AttributeError:
                warnings.warn('From version 0.24, get_params will raise an '
                              'AttributeError if a parameter cannot be '
                              'retrieved as an instance attribute. Previously '
                              'it would return None.',
                              FutureWarning)
                value = None
            if deep and hasattr(value, 'get_params'):
                deep_items = value.get_params().items()
                out.update((key + '__' + k, val) for k, val in deep_items)
            out[key] = value
        return out

    def set_params(self, **params):
        """
        Set the parameters of this estimator.

        The method works on simple estimators as well as on nested objects
        (such as pipelines). The latter have parameters of the form
        ``<component>__<parameter>`` so that it's possible to update each
        component of a nested object.

        Parameters
        ----------
        **params : dict
            Estimator parameters.

        Returns
        -------
        self : object
            Estimator instance.
        """
        if not params:
            # Simple optimization to gain speed (inspect is slow)
            return self
        valid_params = self.get_params(deep=True)

        nested_params = defaultdict(dict)  # grouped by prefix
        for key, value in params.items():
            key, delim, sub_key = key.partition('__')
            if key not in valid_params:
                raise ValueError('Invalid parameter %s for estimator %s. '
                                 'Check the list of available parameters '
                                 'with `estimator.get_params().keys()`.' %
                                 (key, self))

            if delim:
                nested_params[key][sub_key] = value
            else:
                setattr(self, key, value)
                valid_params[key] = value

        for key, sub_params in nested_params.items():
            valid_params[key].set_params(**sub_params)

        return self

    def __repr__(self, N_CHAR_MAX=700):
        # N_CHAR_MAX is the (approximate) maximum number of non-blank
        # characters to render. We pass it as an optional parameter to ease
        # the tests.

        from .utils._pprint import _EstimatorPrettyPrinter

        N_MAX_ELEMENTS_TO_SHOW = 30  # number of elements to show in sequences

        # use ellipsis for sequences with a lot of elements
        pp = _EstimatorPrettyPrinter(
            compact=True, indent=1, indent_at_name=True,
            n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW)

        repr_ = pp.pformat(self)

        # Use bruteforce ellipsis when there are a lot of non-blank characters
        n_nonblank = len(''.join(repr_.split()))
        if n_nonblank > N_CHAR_MAX:
            lim = N_CHAR_MAX // 2  # apprx number of chars to keep on both ends
            regex = r'^(\s*\S){%d}' % lim
            # The regex '^(\s*\S){%d}' % n
            # matches from the start of the string until the nth non-blank
            # character:
            # - ^ matches the start of string
            # - (pattern){n} matches n repetitions of pattern
            # - \s*\S matches a non-blank char following zero or more blanks
            left_lim = re.match(regex, repr_).end()
            right_lim = re.match(regex, repr_[::-1]).end()

            if '\n' in repr_[left_lim:-right_lim]:
                # The left side and right side aren't on the same line.
                # To avoid weird cuts, e.g.:
                # categoric...ore',
                # we need to start the right side with an appropriate newline
                # character so that it renders properly as:
                # categoric...
                # handle_unknown='ignore',
                # so we add [^\n]*\n which matches until the next \n
                regex += r'[^\n]*\n'
                right_lim = re.match(regex, repr_[::-1]).end()

            ellipsis = '...'
            if left_lim + len(ellipsis) < len(repr_) - right_lim:
                # Only add ellipsis if it results in a shorter repr
                repr_ = repr_[:left_lim] + '...' + repr_[-right_lim:]

        return repr_

    def __getstate__(self):
        try:
            state = super().__getstate__()
        except AttributeError:
            state = self.__dict__.copy()

        if type(self).__module__.startswith('sklearn.'):
            return dict(state.items(), _sklearn_version=__version__)
        else:
            return state

    def __setstate__(self, state):
        if type(self).__module__.startswith('sklearn.'):
            pickle_version = state.pop("_sklearn_version", "pre-0.18")
            if pickle_version != __version__:
                warnings.warn(
                    "Trying to unpickle estimator {0} from version {1} when "
                    "using version {2}. This might lead to breaking code or "
                    "invalid results. Use at your own risk.".format(
                        self.__class__.__name__, pickle_version, __version__),
                    UserWarning)
        try:
            super().__setstate__(state)
        except AttributeError:
            self.__dict__.update(state)

    def _more_tags(self):
        return _DEFAULT_TAGS

    def _get_tags(self):
        collected_tags = {}
        for base_class in reversed(inspect.getmro(self.__class__)):
            if hasattr(base_class, '_more_tags'):
                # need the if because mixins might not have _more_tags
                # but might do redundant work in estimators
                # (i.e. calling more tags on BaseEstimator multiple times)
                more_tags = base_class._more_tags(self)
                collected_tags.update(more_tags)
        return collected_tags

    def _check_n_features(self, X, reset):
        """Set the `n_features_in_` attribute, or check against it.

        Parameters
        ----------
        X : {ndarray, sparse matrix} of shape (n_samples, n_features)
            The input samples.
        reset : bool
            If True, the `n_features_in_` attribute is set to `X.shape[1]`.
            Else, the attribute must already exist and the function checks
            that it is equal to `X.shape[1]`.
        """
        n_features = X.shape[1]

        if reset:
            self.n_features_in_ = n_features
        else:
            if not hasattr(self, 'n_features_in_'):
                raise RuntimeError(
                    "The reset parameter is False but there is no "
                    "n_features_in_ attribute. Is this estimator fitted?"
                )
            if n_features != self.n_features_in_:
                raise ValueError(
                    'X has {} features, but this {} is expecting {} features '
                    'as input.'.format(n_features, self.__class__.__name__,
                                       self.n_features_in_)
                )

    def _validate_data(self, X, y=None, reset=True,
                       validate_separately=False, **check_params):
        """Validate input data and set or check the `n_features_in_` attribute.

        Parameters
        ----------
        X : {array-like, sparse matrix, dataframe} of shape \
                (n_samples, n_features)
            The input samples.
        y : array-like of shape (n_samples,), default=None
            The targets. If None, `check_array` is called on `X` and
            `check_X_y` is called otherwise.
        reset : bool, default=True
            Whether to reset the `n_features_in_` attribute.
            If False, the input will be checked for consistency with data
            provided when reset was last True.
        validate_separately : False or tuple of dicts, default=False
            Only used if y is not None.
            If False, call validate_X_y(). Else, it must be a tuple of kwargs
            to be used for calling check_array() on X and y respectively.
        **check_params : kwargs
            Parameters passed to :func:`sklearn.utils.check_array` or
            :func:`sklearn.utils.check_X_y`. Ignored if validate_separately
            is not False.

        Returns
        -------
        out : {ndarray, sparse matrix} or tuple of these
            The validated input. A tuple is returned if `y` is not None.
        """

        if y is None:
            if self._get_tags()['requires_y']:
                raise ValueError(
                    f"This {self.__class__.__name__} estimator "
                    f"requires y to be passed, but the target y is None."
                )
            X = check_array(X, **check_params)
            out = X
        else:
            if validate_separately:
                # We need this because some estimators validate X and y
                # separately, and in general, separately calling check_array()
                # on X and y isn't equivalent to just calling check_X_y()
                # :(
                check_X_params, check_y_params = validate_separately
                X = check_array(X, **check_X_params)
                y = check_array(y, **check_y_params)
            else:
                X, y = check_X_y(X, y, **check_params)
            out = X, y

        if check_params.get('ensure_2d', True):
            self._check_n_features(X, reset=reset)

        return out

    @property
    def _repr_html_(self):
        """HTML representation of estimator.

        This is redundant with the logic of `_repr_mimebundle_`. The latter
        should be favorted in the long term, `_repr_html_` is only
        implemented for consumers who do not interpret `_repr_mimbundle_`.
        """
        if get_config()["display"] != 'diagram':
            raise AttributeError("_repr_html_ is only defined when the "
                                 "'display' configuration option is set to "
                                 "'diagram'")
        return self._repr_html_inner

    def _repr_html_inner(self):
        """This function is returned by the @property `_repr_html_` to make
        `hasattr(estimator, "_repr_html_") return `True` or `False` depending
        on `get_config()["display"]`.
        """
        return estimator_html_repr(self)

    def _repr_mimebundle_(self, **kwargs):
        """Mime bundle used by jupyter kernels to display estimator"""
        output = {"text/plain": repr(self)}
        if get_config()["display"] == 'diagram':
            output["text/html"] = estimator_html_repr(self)
        return output


class ClassifierMixin:
    """Mixin class for all classifiers in scikit-learn."""

    _estimator_type = "classifier"

    def score(self, X, y, sample_weight=None):
        """
        Return the mean accuracy on the given test data and labels.

        In multi-label classification, this is the subset accuracy
        which is a harsh metric since you require for each sample that
        each label set be correctly predicted.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True labels for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            Mean accuracy of self.predict(X) wrt. y.
        """
        from .metrics import accuracy_score
        return accuracy_score(y, self.predict(X), sample_weight=sample_weight)

    def _more_tags(self):
        return {'requires_y': True}


class RegressorMixin:
    """Mixin class for all regression estimators in scikit-learn."""
    _estimator_type = "regressor"

    def score(self, X, y, sample_weight=None):
        """Return the coefficient of determination R^2 of the prediction.

        The coefficient R^2 is defined as (1 - u/v), where u is the residual
        sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
        sum of squares ((y_true - y_true.mean()) ** 2).sum().
        The best possible score is 1.0 and it can be negative (because the
        model can be arbitrarily worse). A constant model that always
        predicts the expected value of y, disregarding the input features,
        would get a R^2 score of 0.0.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Test samples. For some estimators this may be a
            precomputed kernel matrix or a list of generic objects instead,
            shape = (n_samples, n_samples_fitted),
            where n_samples_fitted is the number of
            samples used in the fitting for the estimator.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            True values for X.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights.

        Returns
        -------
        score : float
            R^2 of self.predict(X) wrt. y.

        Notes
        -----
        The R2 score used when calling ``score`` on a regressor uses
        ``multioutput='uniform_average'`` from version 0.23 to keep consistent
        with default value of :func:`~sklearn.metrics.r2_score`.
        This influences the ``score`` method of all the multioutput
        regressors (except for
        :class:`~sklearn.multioutput.MultiOutputRegressor`).
        """

        from .metrics import r2_score
        y_pred = self.predict(X)
        return r2_score(y, y_pred, sample_weight=sample_weight)

    def _more_tags(self):
        return {'requires_y': True}


class ClusterMixin:
    """Mixin class for all cluster estimators in scikit-learn."""
    _estimator_type = "clusterer"

    def fit_predict(self, X, y=None):
        """
        Perform clustering on X and returns cluster labels.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Input data.

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        labels : ndarray of shape (n_samples,)
            Cluster labels.
        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        self.fit(X)
        return self.labels_


class BiclusterMixin:
    """Mixin class for all bicluster estimators in scikit-learn"""

    @property
    def biclusters_(self):
        """Convenient way to get row and column indicators together.

        Returns the ``rows_`` and ``columns_`` members.
        """
        return self.rows_, self.columns_

    def get_indices(self, i):
        """Row and column indices of the i'th bicluster.

        Only works if ``rows_`` and ``columns_`` attributes exist.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        row_ind : ndarray, dtype=np.intp
            Indices of rows in the dataset that belong to the bicluster.
        col_ind : ndarray, dtype=np.intp
            Indices of columns in the dataset that belong to the bicluster.

        """
        rows = self.rows_[i]
        columns = self.columns_[i]
        return np.nonzero(rows)[0], np.nonzero(columns)[0]

    def get_shape(self, i):
        """Shape of the i'th bicluster.

        Parameters
        ----------
        i : int
            The index of the cluster.

        Returns
        -------
        shape : tuple (int, int)
            Number of rows and columns (resp.) in the bicluster.
        """
        indices = self.get_indices(i)
        return tuple(len(i) for i in indices)

    def get_submatrix(self, i, data):
        """Return the submatrix corresponding to bicluster `i`.

        Parameters
        ----------
        i : int
            The index of the cluster.
        data : array-like
            The data.

        Returns
        -------
        submatrix : ndarray
            The submatrix corresponding to bicluster i.

        Notes
        -----
        Works with sparse matrices. Only works if ``rows_`` and
        ``columns_`` attributes exist.
        """
        from .utils.validation import check_array
        data = check_array(data, accept_sparse='csr')
        row_ind, col_ind = self.get_indices(i)
        return data[row_ind[:, np.newaxis], col_ind]


class TransformerMixin:
    """Mixin class for all transformers in scikit-learn."""

    def fit_transform(self, X, y=None, **fit_params):
        """
        Fit to data, then transform it.

        Fits transformer to X and y with optional parameters fit_params
        and returns a transformed version of X.

        Parameters
        ----------
        X : {array-like, sparse matrix, dataframe} of shape \
                (n_samples, n_features)

        y : ndarray of shape (n_samples,), default=None
            Target values.

        **fit_params : dict
            Additional fit parameters.

        Returns
        -------
        X_new : ndarray array of shape (n_samples, n_features_new)
            Transformed array.
        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        if y is None:
            # fit method of arity 1 (unsupervised transformation)
            return self.fit(X, **fit_params).transform(X)
        else:
            # fit method of arity 2 (supervised transformation)
            return self.fit(X, y, **fit_params).transform(X)


class DensityMixin:
    """Mixin class for all density estimators in scikit-learn."""
    _estimator_type = "DensityEstimator"

    def score(self, X, y=None):
        """Return the score of the model on the data X

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        score : float
        """
        pass


class OutlierMixin:
    """Mixin class for all outlier detection estimators in scikit-learn."""
    _estimator_type = "outlier_detector"

    def fit_predict(self, X, y=None):
        """Perform fit on X and returns labels for X.

        Returns -1 for outliers and 1 for inliers.

        Parameters
        ----------
        X : {array-like, sparse matrix, dataframe} of shape \
            (n_samples, n_features)

        y : Ignored
            Not used, present for API consistency by convention.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            1 for inliers, -1 for outliers.
        """
        # override for transductive outlier detectors like LocalOulierFactor
        return self.fit(X).predict(X)


class MetaEstimatorMixin:
    _required_parameters = ["estimator"]
    """Mixin class for all meta estimators in scikit-learn."""


class MultiOutputMixin:
    """Mixin to mark estimators that support multioutput."""
    def _more_tags(self):
        return {'multioutput': True}


class _UnstableArchMixin:
    """Mark estimators that are non-determinstic on 32bit or PowerPC"""
    def _more_tags(self):
        return {'non_deterministic': (
            _IS_32BIT or platform.machine().startswith(('ppc', 'powerpc')))}


def is_classifier(estimator):
    """Return True if the given estimator is (probably) a classifier.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a classifier and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "classifier"


def is_regressor(estimator):
    """Return True if the given estimator is (probably) a regressor.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is a regressor and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "regressor"


def is_outlier_detector(estimator):
    """Return True if the given estimator is (probably) an outlier detector.

    Parameters
    ----------
    estimator : object
        Estimator object to test.

    Returns
    -------
    out : bool
        True if estimator is an outlier detector and False otherwise.
    """
    return getattr(estimator, "_estimator_type", None) == "outlier_detector"