_classification.py 21.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
"""Nearest Neighbor Classification"""

# Authors: Jake Vanderplas <vanderplas@astro.washington.edu>
#          Fabian Pedregosa <fabian.pedregosa@inria.fr>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Sparseness support by Lars Buitinck
#          Multi-output support by Arnaud Joly <a.joly@ulg.ac.be>
#
# License: BSD 3 clause (C) INRIA, University of Amsterdam

import numpy as np
from scipy import stats
from ..utils.extmath import weighted_mode
from ..utils.validation import _is_arraylike, _num_samples

import warnings
from ._base import \
    _check_weights, _get_weights, \
    NeighborsBase, KNeighborsMixin,\
    RadiusNeighborsMixin, SupervisedIntegerMixin
from ..base import ClassifierMixin
from ..utils import check_array
from ..utils.validation import _deprecate_positional_args


class KNeighborsClassifier(NeighborsBase, KNeighborsMixin,
                           SupervisedIntegerMixin, ClassifierMixin):
    """Classifier implementing the k-nearest neighbors vote.

    Read more in the :ref:`User Guide <classification>`.

    Parameters
    ----------
    n_neighbors : int, default=5
        Number of neighbors to use by default for :meth:`kneighbors` queries.

    weights : {'uniform', 'distance'} or callable, default='uniform'
        weight function used in prediction.  Possible values:

        - 'uniform' : uniform weights.  All points in each neighborhood
          are weighted equally.
        - 'distance' : weight points by the inverse of their distance.
          in this case, closer neighbors of a query point will have a
          greater influence than neighbors which are further away.
        - [callable] : a user-defined function which accepts an
          array of distances, and returns an array of the same shape
          containing the weights.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, default=30
        Leaf size passed to BallTree or KDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    p : int, default=2
        Power parameter for the Minkowski metric. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric : str or callable, default='minkowski'
        the distance metric to use for the tree.  The default metric is
        minkowski, and with p=2 is equivalent to the standard Euclidean
        metric. See the documentation of :class:`DistanceMetric` for a
        list of available metrics.
        If metric is "precomputed", X is assumed to be a distance matrix and
        must be square during fit. X may be a :term:`sparse graph`,
        in which case only "nonzero" elements may be considered neighbors.

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

    n_jobs : int, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.
        Doesn't affect :meth:`fit` method.

    Attributes
    ----------
    classes_ : array of shape (n_classes,)
        Class labels known to the classifier

    effective_metric_ : str or callble
        The distance metric used. It will be same as the `metric` parameter
        or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
        'minkowski' and `p` parameter set to 2.

    effective_metric_params_ : dict
        Additional keyword arguments for the metric function. For most metrics
        will be same with `metric_params` parameter, but may also contain the
        `p` parameter value if the `effective_metric_` attribute is set to
        'minkowski'.

    outputs_2d_ : bool
        False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit
        otherwise True.

    Examples
    --------
    >>> X = [[0], [1], [2], [3]]
    >>> y = [0, 0, 1, 1]
    >>> from sklearn.neighbors import KNeighborsClassifier
    >>> neigh = KNeighborsClassifier(n_neighbors=3)
    >>> neigh.fit(X, y)
    KNeighborsClassifier(...)
    >>> print(neigh.predict([[1.1]]))
    [0]
    >>> print(neigh.predict_proba([[0.9]]))
    [[0.66666667 0.33333333]]

    See also
    --------
    RadiusNeighborsClassifier
    KNeighborsRegressor
    RadiusNeighborsRegressor
    NearestNeighbors

    Notes
    -----
    See :ref:`Nearest Neighbors <neighbors>` in the online documentation
    for a discussion of the choice of ``algorithm`` and ``leaf_size``.

    .. warning::

       Regarding the Nearest Neighbors algorithms, if it is found that two
       neighbors, neighbor `k+1` and `k`, have identical distances
       but different labels, the results will depend on the ordering of the
       training data.

    https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
    """

    @_deprecate_positional_args
    def __init__(self, n_neighbors=5, *,
                 weights='uniform', algorithm='auto', leaf_size=30,
                 p=2, metric='minkowski', metric_params=None, n_jobs=None,
                 **kwargs):
        super().__init__(
            n_neighbors=n_neighbors,
            algorithm=algorithm,
            leaf_size=leaf_size, metric=metric, p=p,
            metric_params=metric_params,
            n_jobs=n_jobs, **kwargs)
        self.weights = _check_weights(weights)

    def predict(self, X):
        """Predict the class labels for the provided data.

        Parameters
        ----------
        X : array-like of shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            Test samples.

        Returns
        -------
        y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
            Class labels for each data sample.
        """
        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)
        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_outputs = len(classes_)
        n_queries = _num_samples(X)
        weights = _get_weights(neigh_dist, self.weights)

        y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
        for k, classes_k in enumerate(classes_):
            if weights is None:
                mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
            else:
                mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)

            mode = np.asarray(mode.ravel(), dtype=np.intp)
            y_pred[:, k] = classes_k.take(mode)

        if not self.outputs_2d_:
            y_pred = y_pred.ravel()

        return y_pred

    def predict_proba(self, X):
        """Return probability estimates for the test data X.

        Parameters
        ----------
        X : array-like of shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            Test samples.

        Returns
        -------
        p : ndarray of shape (n_queries, n_classes), or a list of n_outputs
            of such arrays if n_outputs > 1.
            The class probabilities of the input samples. Classes are ordered
            by lexicographic order.
        """
        X = check_array(X, accept_sparse='csr')

        neigh_dist, neigh_ind = self.kneighbors(X)

        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        n_queries = _num_samples(X)

        weights = _get_weights(neigh_dist, self.weights)
        if weights is None:
            weights = np.ones_like(neigh_ind)

        all_rows = np.arange(X.shape[0])
        probabilities = []
        for k, classes_k in enumerate(classes_):
            pred_labels = _y[:, k][neigh_ind]
            proba_k = np.zeros((n_queries, classes_k.size))

            # a simple ':' index doesn't work right
            for i, idx in enumerate(pred_labels.T):  # loop is O(n_neighbors)
                proba_k[all_rows, idx] += weights[:, i]

            # normalize 'votes' into real [0,1] probabilities
            normalizer = proba_k.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba_k /= normalizer

            probabilities.append(proba_k)

        if not self.outputs_2d_:
            probabilities = probabilities[0]

        return probabilities


class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin,
                                SupervisedIntegerMixin, ClassifierMixin):
    """Classifier implementing a vote among neighbors within a given radius

    Read more in the :ref:`User Guide <classification>`.

    Parameters
    ----------
    radius : float, default=1.0
        Range of parameter space to use by default for :meth:`radius_neighbors`
        queries.

    weights : {'uniform', 'distance'} or callable, default='uniform'
        weight function used in prediction.  Possible values:

        - 'uniform' : uniform weights.  All points in each neighborhood
          are weighted equally.
        - 'distance' : weight points by the inverse of their distance.
          in this case, closer neighbors of a query point will have a
          greater influence than neighbors which are further away.
        - [callable] : a user-defined function which accepts an
          array of distances, and returns an array of the same shape
          containing the weights.

        Uniform weights are used by default.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, default=30
        Leaf size passed to BallTree or KDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    p : int, default=2
        Power parameter for the Minkowski metric. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric : str or callable, default='minkowski'
        the distance metric to use for the tree.  The default metric is
        minkowski, and with p=2 is equivalent to the standard Euclidean
        metric. See the documentation of :class:`DistanceMetric` for a
        list of available metrics.
        If metric is "precomputed", X is assumed to be a distance matrix and
        must be square during fit. X may be a :term:`sparse graph`,
        in which case only "nonzero" elements may be considered neighbors.

    outlier_label : {manual label, 'most_frequent'}, default=None
        label for outlier samples (samples with no neighbors in given radius).

        - manual label: str or int label (should be the same type as y)
          or list of manual labels if multi-output is used.
        - 'most_frequent' : assign the most frequent label of y to outliers.
        - None : when any outlier is detected, ValueError will be raised.

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

    n_jobs : int, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    classes_ : ndarray of shape (n_classes,)
        Class labels known to the classifier.

    effective_metric_ : str or callble
        The distance metric used. It will be same as the `metric` parameter
        or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
        'minkowski' and `p` parameter set to 2.

    effective_metric_params_ : dict
        Additional keyword arguments for the metric function. For most metrics
        will be same with `metric_params` parameter, but may also contain the
        `p` parameter value if the `effective_metric_` attribute is set to
        'minkowski'.

    outputs_2d_ : bool
        False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit
        otherwise True.

    Examples
    --------
    >>> X = [[0], [1], [2], [3]]
    >>> y = [0, 0, 1, 1]
    >>> from sklearn.neighbors import RadiusNeighborsClassifier
    >>> neigh = RadiusNeighborsClassifier(radius=1.0)
    >>> neigh.fit(X, y)
    RadiusNeighborsClassifier(...)
    >>> print(neigh.predict([[1.5]]))
    [0]
    >>> print(neigh.predict_proba([[1.0]]))
    [[0.66666667 0.33333333]]

    See also
    --------
    KNeighborsClassifier
    RadiusNeighborsRegressor
    KNeighborsRegressor
    NearestNeighbors

    Notes
    -----
    See :ref:`Nearest Neighbors <neighbors>` in the online documentation
    for a discussion of the choice of ``algorithm`` and ``leaf_size``.

    https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
    """

    @_deprecate_positional_args
    def __init__(self, radius=1.0, *, weights='uniform',
                 algorithm='auto', leaf_size=30, p=2, metric='minkowski',
                 outlier_label=None, metric_params=None, n_jobs=None,
                 **kwargs):
        super().__init__(
              radius=radius,
              algorithm=algorithm,
              leaf_size=leaf_size,
              metric=metric, p=p, metric_params=metric_params,
              n_jobs=n_jobs, **kwargs)
        self.weights = _check_weights(weights)
        self.outlier_label = outlier_label

    def fit(self, X, y):
        """Fit the model using X as training data and y as target values

        Parameters
        ----------
        X : BallTree, KDTree or {array-like, sparse matrix} of shape \
                (n_samples, n_features) or (n_samples, n_samples)
            Training data. If array or matrix, the shape is (n_samples,
            n_features), or (n_samples, n_samples) if metric='precomputed'.

        y : {array-like, sparse matrix} of shape (n_samples,) or \
                (n_samples, n_output)
            Target values.

        """

        SupervisedIntegerMixin.fit(self, X, y)

        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        if self.outlier_label is None:
            outlier_label_ = None

        elif self.outlier_label == 'most_frequent':
            outlier_label_ = []
            # iterate over multi-output, get the most frequest label for each
            # output.
            for k, classes_k in enumerate(classes_):
                label_count = np.bincount(_y[:, k])
                outlier_label_.append(classes_k[label_count.argmax()])

        else:
            if (_is_arraylike(self.outlier_label) and
               not isinstance(self.outlier_label, str)):
                if len(self.outlier_label) != len(classes_):
                    raise ValueError("The length of outlier_label: {} is "
                                     "inconsistent with the output "
                                     "length: {}".format(self.outlier_label,
                                                         len(classes_)))
                outlier_label_ = self.outlier_label
            else:
                outlier_label_ = [self.outlier_label] * len(classes_)

            for classes, label in zip(classes_, outlier_label_):
                if (_is_arraylike(label) and
                   not isinstance(label, str)):
                    # ensure the outlier lable for each output is a scalar.
                    raise TypeError("The outlier_label of classes {} is "
                                    "supposed to be a scalar, got "
                                    "{}.".format(classes, label))
                if np.append(classes, label).dtype != classes.dtype:
                    # ensure the dtype of outlier label is consistent with y.
                    raise TypeError("The dtype of outlier_label {} is "
                                    "inconsistent with classes {} in "
                                    "y.".format(label, classes))

        self.outlier_label_ = outlier_label_
        return self

    def predict(self, X):
        """Predict the class labels for the provided data.

        Parameters
        ----------
        X : array-like of shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            Test samples.

        Returns
        -------
        y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
            Class labels for each data sample.
        """

        probs = self.predict_proba(X)
        classes_ = self.classes_

        if not self.outputs_2d_:
            probs = [probs]
            classes_ = [self.classes_]

        n_outputs = len(classes_)
        n_queries = probs[0].shape[0]
        y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)

        for k, prob in enumerate(probs):
            # iterate over multi-output, assign labels based on probabilities
            # of each output.
            max_prob_index = prob.argmax(axis=1)
            y_pred[:, k] = classes_[k].take(max_prob_index)

            outlier_zero_probs = (prob == 0).all(axis=1)
            if outlier_zero_probs.any():
                zero_prob_index = np.flatnonzero(outlier_zero_probs)
                y_pred[zero_prob_index, k] = self.outlier_label_[k]

        if not self.outputs_2d_:
            y_pred = y_pred.ravel()

        return y_pred

    def predict_proba(self, X):
        """Return probability estimates for the test data X.

        Parameters
        ----------
        X : array-like of shape (n_queries, n_features), \
                or (n_queries, n_indexed) if metric == 'precomputed'
            Test samples.

        Returns
        -------
        p : ndarray of shape (n_queries, n_classes), or a list of n_outputs
            of such arrays if n_outputs > 1.
            The class probabilities of the input samples. Classes are ordered
            by lexicographic order.
        """

        X = check_array(X, accept_sparse='csr')
        n_queries = _num_samples(X)

        neigh_dist, neigh_ind = self.radius_neighbors(X)
        outlier_mask = np.zeros(n_queries, dtype=np.bool)
        outlier_mask[:] = [len(nind) == 0 for nind in neigh_ind]
        outliers = np.flatnonzero(outlier_mask)
        inliers = np.flatnonzero(~outlier_mask)

        classes_ = self.classes_
        _y = self._y
        if not self.outputs_2d_:
            _y = self._y.reshape((-1, 1))
            classes_ = [self.classes_]

        if self.outlier_label_ is None and outliers.size > 0:
            raise ValueError('No neighbors found for test samples %r, '
                             'you can try using larger radius, '
                             'giving a label for outliers, '
                             'or considering removing them from your dataset.'
                             % outliers)

        weights = _get_weights(neigh_dist, self.weights)
        if weights is not None:
            weights = weights[inliers]

        probabilities = []
        # iterate over multi-output, measure probabilities of the k-th output.
        for k, classes_k in enumerate(classes_):
            pred_labels = np.zeros(len(neigh_ind), dtype=object)
            pred_labels[:] = [_y[ind, k] for ind in neigh_ind]

            proba_k = np.zeros((n_queries, classes_k.size))
            proba_inl = np.zeros((len(inliers), classes_k.size))

            # samples have different size of neighbors within the same radius
            if weights is None:
                for i, idx in enumerate(pred_labels[inliers]):
                    proba_inl[i, :] = np.bincount(idx,
                                                  minlength=classes_k.size)
            else:
                for i, idx in enumerate(pred_labels[inliers]):
                    proba_inl[i, :] = np.bincount(idx,
                                                  weights[i],
                                                  minlength=classes_k.size)
            proba_k[inliers, :] = proba_inl

            if outliers.size > 0:
                _outlier_label = self.outlier_label_[k]
                label_index = np.flatnonzero(classes_k == _outlier_label)
                if label_index.size == 1:
                    proba_k[outliers, label_index[0]] = 1.0
                else:
                    warnings.warn('Outlier label {} is not in training '
                                  'classes. All class probabilities of '
                                  'outliers will be assigned with 0.'
                                  ''.format(self.outlier_label_[k]))

            # normalize 'votes' into real [0,1] probabilities
            normalizer = proba_k.sum(axis=1)[:, np.newaxis]
            normalizer[normalizer == 0.0] = 1.0
            proba_k /= normalizer

            probabilities.append(proba_k)

        if not self.outputs_2d_:
            probabilities = probabilities[0]

        return probabilities