_classification.py
21.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
"""Nearest Neighbor Classification"""
# Authors: Jake Vanderplas <vanderplas@astro.washington.edu>
# Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Sparseness support by Lars Buitinck
# Multi-output support by Arnaud Joly <a.joly@ulg.ac.be>
#
# License: BSD 3 clause (C) INRIA, University of Amsterdam
import numpy as np
from scipy import stats
from ..utils.extmath import weighted_mode
from ..utils.validation import _is_arraylike, _num_samples
import warnings
from ._base import \
_check_weights, _get_weights, \
NeighborsBase, KNeighborsMixin,\
RadiusNeighborsMixin, SupervisedIntegerMixin
from ..base import ClassifierMixin
from ..utils import check_array
from ..utils.validation import _deprecate_positional_args
class KNeighborsClassifier(NeighborsBase, KNeighborsMixin,
SupervisedIntegerMixin, ClassifierMixin):
"""Classifier implementing the k-nearest neighbors vote.
Read more in the :ref:`User Guide <classification>`.
Parameters
----------
n_neighbors : int, default=5
Number of neighbors to use by default for :meth:`kneighbors` queries.
weights : {'uniform', 'distance'} or callable, default='uniform'
weight function used in prediction. Possible values:
- 'uniform' : uniform weights. All points in each neighborhood
are weighted equally.
- 'distance' : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`BallTree`
- 'kd_tree' will use :class:`KDTree`
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, default=30
Leaf size passed to BallTree or KDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.
p : int, default=2
Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric : str or callable, default='minkowski'
the distance metric to use for the tree. The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of :class:`DistanceMetric` for a
list of available metrics.
If metric is "precomputed", X is assumed to be a distance matrix and
must be square during fit. X may be a :term:`sparse graph`,
in which case only "nonzero" elements may be considered neighbors.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Doesn't affect :meth:`fit` method.
Attributes
----------
classes_ : array of shape (n_classes,)
Class labels known to the classifier
effective_metric_ : str or callble
The distance metric used. It will be same as the `metric` parameter
or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
'minkowski' and `p` parameter set to 2.
effective_metric_params_ : dict
Additional keyword arguments for the metric function. For most metrics
will be same with `metric_params` parameter, but may also contain the
`p` parameter value if the `effective_metric_` attribute is set to
'minkowski'.
outputs_2d_ : bool
False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit
otherwise True.
Examples
--------
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[0.66666667 0.33333333]]
See also
--------
RadiusNeighborsClassifier
KNeighborsRegressor
RadiusNeighborsRegressor
NearestNeighbors
Notes
-----
See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.
.. warning::
Regarding the Nearest Neighbors algorithms, if it is found that two
neighbors, neighbor `k+1` and `k`, have identical distances
but different labels, the results will depend on the ordering of the
training data.
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
"""
@_deprecate_positional_args
def __init__(self, n_neighbors=5, *,
weights='uniform', algorithm='auto', leaf_size=30,
p=2, metric='minkowski', metric_params=None, n_jobs=None,
**kwargs):
super().__init__(
n_neighbors=n_neighbors,
algorithm=algorithm,
leaf_size=leaf_size, metric=metric, p=p,
metric_params=metric_params,
n_jobs=n_jobs, **kwargs)
self.weights = _check_weights(weights)
def predict(self, X):
"""Predict the class labels for the provided data.
Parameters
----------
X : array-like of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed'
Test samples.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
"""
X = check_array(X, accept_sparse='csr')
neigh_dist, neigh_ind = self.kneighbors(X)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
n_outputs = len(classes_)
n_queries = _num_samples(X)
weights = _get_weights(neigh_dist, self.weights)
y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
for k, classes_k in enumerate(classes_):
if weights is None:
mode, _ = stats.mode(_y[neigh_ind, k], axis=1)
else:
mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1)
mode = np.asarray(mode.ravel(), dtype=np.intp)
y_pred[:, k] = classes_k.take(mode)
if not self.outputs_2d_:
y_pred = y_pred.ravel()
return y_pred
def predict_proba(self, X):
"""Return probability estimates for the test data X.
Parameters
----------
X : array-like of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed'
Test samples.
Returns
-------
p : ndarray of shape (n_queries, n_classes), or a list of n_outputs
of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.
"""
X = check_array(X, accept_sparse='csr')
neigh_dist, neigh_ind = self.kneighbors(X)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
n_queries = _num_samples(X)
weights = _get_weights(neigh_dist, self.weights)
if weights is None:
weights = np.ones_like(neigh_ind)
all_rows = np.arange(X.shape[0])
probabilities = []
for k, classes_k in enumerate(classes_):
pred_labels = _y[:, k][neigh_ind]
proba_k = np.zeros((n_queries, classes_k.size))
# a simple ':' index doesn't work right
for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors)
proba_k[all_rows, idx] += weights[:, i]
# normalize 'votes' into real [0,1] probabilities
normalizer = proba_k.sum(axis=1)[:, np.newaxis]
normalizer[normalizer == 0.0] = 1.0
proba_k /= normalizer
probabilities.append(proba_k)
if not self.outputs_2d_:
probabilities = probabilities[0]
return probabilities
class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin,
SupervisedIntegerMixin, ClassifierMixin):
"""Classifier implementing a vote among neighbors within a given radius
Read more in the :ref:`User Guide <classification>`.
Parameters
----------
radius : float, default=1.0
Range of parameter space to use by default for :meth:`radius_neighbors`
queries.
weights : {'uniform', 'distance'} or callable, default='uniform'
weight function used in prediction. Possible values:
- 'uniform' : uniform weights. All points in each neighborhood
are weighted equally.
- 'distance' : weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.
- [callable] : a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.
Uniform weights are used by default.
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
Algorithm used to compute the nearest neighbors:
- 'ball_tree' will use :class:`BallTree`
- 'kd_tree' will use :class:`KDTree`
- 'brute' will use a brute-force search.
- 'auto' will attempt to decide the most appropriate algorithm
based on the values passed to :meth:`fit` method.
Note: fitting on sparse input will override the setting of
this parameter, using brute force.
leaf_size : int, default=30
Leaf size passed to BallTree or KDTree. This can affect the
speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.
p : int, default=2
Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.
metric : str or callable, default='minkowski'
the distance metric to use for the tree. The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of :class:`DistanceMetric` for a
list of available metrics.
If metric is "precomputed", X is assumed to be a distance matrix and
must be square during fit. X may be a :term:`sparse graph`,
in which case only "nonzero" elements may be considered neighbors.
outlier_label : {manual label, 'most_frequent'}, default=None
label for outlier samples (samples with no neighbors in given radius).
- manual label: str or int label (should be the same type as y)
or list of manual labels if multi-output is used.
- 'most_frequent' : assign the most frequent label of y to outliers.
- None : when any outlier is detected, ValueError will be raised.
metric_params : dict, default=None
Additional keyword arguments for the metric function.
n_jobs : int, default=None
The number of parallel jobs to run for neighbors search.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
classes_ : ndarray of shape (n_classes,)
Class labels known to the classifier.
effective_metric_ : str or callble
The distance metric used. It will be same as the `metric` parameter
or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to
'minkowski' and `p` parameter set to 2.
effective_metric_params_ : dict
Additional keyword arguments for the metric function. For most metrics
will be same with `metric_params` parameter, but may also contain the
`p` parameter value if the `effective_metric_` attribute is set to
'minkowski'.
outputs_2d_ : bool
False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit
otherwise True.
Examples
--------
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]
>>> print(neigh.predict_proba([[1.0]]))
[[0.66666667 0.33333333]]
See also
--------
KNeighborsClassifier
RadiusNeighborsRegressor
KNeighborsRegressor
NearestNeighbors
Notes
-----
See :ref:`Nearest Neighbors <neighbors>` in the online documentation
for a discussion of the choice of ``algorithm`` and ``leaf_size``.
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
"""
@_deprecate_positional_args
def __init__(self, radius=1.0, *, weights='uniform',
algorithm='auto', leaf_size=30, p=2, metric='minkowski',
outlier_label=None, metric_params=None, n_jobs=None,
**kwargs):
super().__init__(
radius=radius,
algorithm=algorithm,
leaf_size=leaf_size,
metric=metric, p=p, metric_params=metric_params,
n_jobs=n_jobs, **kwargs)
self.weights = _check_weights(weights)
self.outlier_label = outlier_label
def fit(self, X, y):
"""Fit the model using X as training data and y as target values
Parameters
----------
X : BallTree, KDTree or {array-like, sparse matrix} of shape \
(n_samples, n_features) or (n_samples, n_samples)
Training data. If array or matrix, the shape is (n_samples,
n_features), or (n_samples, n_samples) if metric='precomputed'.
y : {array-like, sparse matrix} of shape (n_samples,) or \
(n_samples, n_output)
Target values.
"""
SupervisedIntegerMixin.fit(self, X, y)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
if self.outlier_label is None:
outlier_label_ = None
elif self.outlier_label == 'most_frequent':
outlier_label_ = []
# iterate over multi-output, get the most frequest label for each
# output.
for k, classes_k in enumerate(classes_):
label_count = np.bincount(_y[:, k])
outlier_label_.append(classes_k[label_count.argmax()])
else:
if (_is_arraylike(self.outlier_label) and
not isinstance(self.outlier_label, str)):
if len(self.outlier_label) != len(classes_):
raise ValueError("The length of outlier_label: {} is "
"inconsistent with the output "
"length: {}".format(self.outlier_label,
len(classes_)))
outlier_label_ = self.outlier_label
else:
outlier_label_ = [self.outlier_label] * len(classes_)
for classes, label in zip(classes_, outlier_label_):
if (_is_arraylike(label) and
not isinstance(label, str)):
# ensure the outlier lable for each output is a scalar.
raise TypeError("The outlier_label of classes {} is "
"supposed to be a scalar, got "
"{}.".format(classes, label))
if np.append(classes, label).dtype != classes.dtype:
# ensure the dtype of outlier label is consistent with y.
raise TypeError("The dtype of outlier_label {} is "
"inconsistent with classes {} in "
"y.".format(label, classes))
self.outlier_label_ = outlier_label_
return self
def predict(self, X):
"""Predict the class labels for the provided data.
Parameters
----------
X : array-like of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed'
Test samples.
Returns
-------
y : ndarray of shape (n_queries,) or (n_queries, n_outputs)
Class labels for each data sample.
"""
probs = self.predict_proba(X)
classes_ = self.classes_
if not self.outputs_2d_:
probs = [probs]
classes_ = [self.classes_]
n_outputs = len(classes_)
n_queries = probs[0].shape[0]
y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].dtype)
for k, prob in enumerate(probs):
# iterate over multi-output, assign labels based on probabilities
# of each output.
max_prob_index = prob.argmax(axis=1)
y_pred[:, k] = classes_[k].take(max_prob_index)
outlier_zero_probs = (prob == 0).all(axis=1)
if outlier_zero_probs.any():
zero_prob_index = np.flatnonzero(outlier_zero_probs)
y_pred[zero_prob_index, k] = self.outlier_label_[k]
if not self.outputs_2d_:
y_pred = y_pred.ravel()
return y_pred
def predict_proba(self, X):
"""Return probability estimates for the test data X.
Parameters
----------
X : array-like of shape (n_queries, n_features), \
or (n_queries, n_indexed) if metric == 'precomputed'
Test samples.
Returns
-------
p : ndarray of shape (n_queries, n_classes), or a list of n_outputs
of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.
"""
X = check_array(X, accept_sparse='csr')
n_queries = _num_samples(X)
neigh_dist, neigh_ind = self.radius_neighbors(X)
outlier_mask = np.zeros(n_queries, dtype=np.bool)
outlier_mask[:] = [len(nind) == 0 for nind in neigh_ind]
outliers = np.flatnonzero(outlier_mask)
inliers = np.flatnonzero(~outlier_mask)
classes_ = self.classes_
_y = self._y
if not self.outputs_2d_:
_y = self._y.reshape((-1, 1))
classes_ = [self.classes_]
if self.outlier_label_ is None and outliers.size > 0:
raise ValueError('No neighbors found for test samples %r, '
'you can try using larger radius, '
'giving a label for outliers, '
'or considering removing them from your dataset.'
% outliers)
weights = _get_weights(neigh_dist, self.weights)
if weights is not None:
weights = weights[inliers]
probabilities = []
# iterate over multi-output, measure probabilities of the k-th output.
for k, classes_k in enumerate(classes_):
pred_labels = np.zeros(len(neigh_ind), dtype=object)
pred_labels[:] = [_y[ind, k] for ind in neigh_ind]
proba_k = np.zeros((n_queries, classes_k.size))
proba_inl = np.zeros((len(inliers), classes_k.size))
# samples have different size of neighbors within the same radius
if weights is None:
for i, idx in enumerate(pred_labels[inliers]):
proba_inl[i, :] = np.bincount(idx,
minlength=classes_k.size)
else:
for i, idx in enumerate(pred_labels[inliers]):
proba_inl[i, :] = np.bincount(idx,
weights[i],
minlength=classes_k.size)
proba_k[inliers, :] = proba_inl
if outliers.size > 0:
_outlier_label = self.outlier_label_[k]
label_index = np.flatnonzero(classes_k == _outlier_label)
if label_index.size == 1:
proba_k[outliers, label_index[0]] = 1.0
else:
warnings.warn('Outlier label {} is not in training '
'classes. All class probabilities of '
'outliers will be assigned with 0.'
''.format(self.outlier_label_[k]))
# normalize 'votes' into real [0,1] probabilities
normalizer = proba_k.sum(axis=1)[:, np.newaxis]
normalizer[normalizer == 0.0] = 1.0
proba_k /= normalizer
probabilities.append(proba_k)
if not self.outputs_2d_:
probabilities = probabilities[0]
return probabilities