test_pca.py 22.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
import numpy as np
import scipy as sp

import pytest

from sklearn.utils._testing import assert_allclose

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from sklearn.decomposition._pca import _assess_dimension
from sklearn.decomposition._pca import _infer_dimension

iris = datasets.load_iris()
PCA_SOLVERS = ['full', 'arpack', 'randomized', 'auto']


@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
@pytest.mark.parametrize('n_components', range(1, iris.data.shape[1]))
def test_pca(svd_solver, n_components):
    X = iris.data
    pca = PCA(n_components=n_components, svd_solver=svd_solver)

    # check the shape of fit.transform
    X_r = pca.fit(X).transform(X)
    assert X_r.shape[1] == n_components

    # check the equivalence of fit.transform and fit_transform
    X_r2 = pca.fit_transform(X)
    assert_allclose(X_r, X_r2)
    X_r = pca.transform(X)
    assert_allclose(X_r, X_r2)

    # Test get_covariance and get_precision
    cov = pca.get_covariance()
    precision = pca.get_precision()
    assert_allclose(np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-12)


def test_no_empty_slice_warning():
    # test if we avoid numpy warnings for computing over empty arrays
    n_components = 10
    n_features = n_components + 2  # anything > n_comps triggered it in 0.16
    X = np.random.uniform(-1, 1, size=(n_components, n_features))
    pca = PCA(n_components=n_components)
    with pytest.warns(None) as record:
        pca.fit(X)
    assert not record.list


@pytest.mark.parametrize('copy', [True, False])
@pytest.mark.parametrize('solver', PCA_SOLVERS)
def test_whitening(solver, copy):
    # Check that PCA output has unit-variance
    rng = np.random.RandomState(0)
    n_samples = 100
    n_features = 80
    n_components = 30
    rank = 50

    # some low rank data with correlated features
    X = np.dot(rng.randn(n_samples, rank),
               np.dot(np.diag(np.linspace(10.0, 1.0, rank)),
                      rng.randn(rank, n_features)))
    # the component-wise variance of the first 50 features is 3 times the
    # mean component-wise variance of the remaining 30 features
    X[:, :50] *= 3

    assert X.shape == (n_samples, n_features)

    # the component-wise variance is thus highly varying:
    assert X.std(axis=0).std() > 43.8

    # whiten the data while projecting to the lower dim subspace
    X_ = X.copy()  # make sure we keep an original across iterations.
    pca = PCA(n_components=n_components, whiten=True, copy=copy,
              svd_solver=solver, random_state=0, iterated_power=7)
    # test fit_transform
    X_whitened = pca.fit_transform(X_.copy())
    assert X_whitened.shape == (n_samples, n_components)
    X_whitened2 = pca.transform(X_)
    assert_allclose(X_whitened, X_whitened2, rtol=5e-4)

    assert_allclose(X_whitened.std(ddof=1, axis=0), np.ones(n_components))
    assert_allclose(
        X_whitened.mean(axis=0), np.zeros(n_components), atol=1e-12
    )

    X_ = X.copy()
    pca = PCA(n_components=n_components, whiten=False, copy=copy,
              svd_solver=solver).fit(X_)
    X_unwhitened = pca.transform(X_)
    assert X_unwhitened.shape == (n_samples, n_components)

    # in that case the output components still have varying variances
    assert X_unwhitened.std(axis=0).std() == pytest.approx(74.1, rel=1e-1)
    # we always center, so no test for non-centering.


@pytest.mark.parametrize('svd_solver', ['arpack', 'randomized'])
def test_pca_explained_variance_equivalence_solver(svd_solver):
    rng = np.random.RandomState(0)
    n_samples, n_features = 100, 80
    X = rng.randn(n_samples, n_features)

    pca_full = PCA(n_components=2, svd_solver='full')
    pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=0)

    pca_full.fit(X)
    pca_other.fit(X)

    assert_allclose(
        pca_full.explained_variance_,
        pca_other.explained_variance_,
        rtol=5e-2
    )
    assert_allclose(
        pca_full.explained_variance_ratio_,
        pca_other.explained_variance_ratio_,
        rtol=5e-2
    )


@pytest.mark.parametrize(
    'X',
    [np.random.RandomState(0).randn(100, 80),
     datasets.make_classification(100, 80, n_informative=78,
                                  random_state=0)[0]],
    ids=['random-data', 'correlated-data']
)
@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
def test_pca_explained_variance_empirical(X, svd_solver):
    pca = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
    X_pca = pca.fit_transform(X)
    assert_allclose(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0))

    expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0]
    expected_result = sorted(expected_result, reverse=True)[:2]
    assert_allclose(pca.explained_variance_, expected_result, rtol=5e-3)


@pytest.mark.parametrize("svd_solver", ['arpack', 'randomized'])
def test_pca_singular_values_consistency(svd_solver):
    rng = np.random.RandomState(0)
    n_samples, n_features = 100, 80
    X = rng.randn(n_samples, n_features)

    pca_full = PCA(n_components=2, svd_solver='full', random_state=rng)
    pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)

    pca_full.fit(X)
    pca_other.fit(X)

    assert_allclose(
        pca_full.singular_values_, pca_other.singular_values_, rtol=5e-3
    )


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_singular_values(svd_solver):
    rng = np.random.RandomState(0)
    n_samples, n_features = 100, 80
    X = rng.randn(n_samples, n_features)

    pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
    X_trans = pca.fit_transform(X)

    # compare to the Frobenius norm
    assert_allclose(
        np.sum(pca.singular_values_ ** 2), np.linalg.norm(X_trans, "fro") ** 2
    )
    # Compare to the 2-norms of the score vectors
    assert_allclose(
        pca.singular_values_, np.sqrt(np.sum(X_trans ** 2, axis=0))
    )

    # set the singular values and see what er get back
    n_samples, n_features = 100, 110
    X = rng.randn(n_samples, n_features)

    pca = PCA(n_components=3, svd_solver=svd_solver, random_state=rng)
    X_trans = pca.fit_transform(X)
    X_trans /= np.sqrt(np.sum(X_trans ** 2, axis=0))
    X_trans[:, 0] *= 3.142
    X_trans[:, 1] *= 2.718
    X_hat = np.dot(X_trans, pca.components_)
    pca.fit(X_hat)
    assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0])


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_check_projection(svd_solver):
    # Test that the projection of data is correct
    rng = np.random.RandomState(0)
    n, p = 100, 3
    X = rng.randn(n, p) * .1
    X[:10] += np.array([3, 4, 5])
    Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])

    Yt = PCA(n_components=2, svd_solver=svd_solver).fit(X).transform(Xt)
    Yt /= np.sqrt((Yt ** 2).sum())

    assert_allclose(np.abs(Yt[0][0]), 1., rtol=5e-3)


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_check_projection_list(svd_solver):
    # Test that the projection of data is correct
    X = [[1.0, 0.0], [0.0, 1.0]]
    pca = PCA(n_components=1, svd_solver=svd_solver, random_state=0)
    X_trans = pca.fit_transform(X)
    assert X_trans.shape, (2, 1)
    assert_allclose(X_trans.mean(), 0.00, atol=1e-12)
    assert_allclose(X_trans.std(), 0.71, rtol=5e-3)


@pytest.mark.parametrize("svd_solver", ['full', 'arpack', 'randomized'])
@pytest.mark.parametrize("whiten", [False, True])
def test_pca_inverse(svd_solver, whiten):
    # Test that the projection of data can be inverted
    rng = np.random.RandomState(0)
    n, p = 50, 3
    X = rng.randn(n, p)  # spherical data
    X[:, 1] *= .00001  # make middle component relatively small
    X += [5, 4, 3]  # make a large mean

    # same check that we can find the original data from the transformed
    # signal (since the data is almost of rank n_components)
    pca = PCA(n_components=2, svd_solver=svd_solver, whiten=whiten).fit(X)
    Y = pca.transform(X)
    Y_inverse = pca.inverse_transform(Y)
    assert_allclose(X, Y_inverse, rtol=5e-6)


@pytest.mark.parametrize(
    'data',
    [np.array([[0, 1, 0], [1, 0, 0]]), np.array([[0, 1, 0], [1, 0, 0]]).T]
)
@pytest.mark.parametrize(
    "svd_solver, n_components, err_msg",
    [('arpack', 0, r'must be between 1 and min\(n_samples, n_features\)'),
     ('randomized', 0, r'must be between 1 and min\(n_samples, n_features\)'),
     ('arpack', 2, r'must be strictly less than min'),
     ('auto', -1, (r"n_components={}L? must be between {}L? and "
                   r"min\(n_samples, n_features\)={}L? with "
                   r"svd_solver=\'{}\'")),
     ('auto', 3, (r"n_components={}L? must be between {}L? and "
                  r"min\(n_samples, n_features\)={}L? with "
                  r"svd_solver=\'{}\'")),
     ('auto', 1.0, "must be of type int")]
)
def test_pca_validation(svd_solver, data, n_components, err_msg):
    # Ensures that solver-specific extreme inputs for the n_components
    # parameter raise errors
    smallest_d = 2  # The smallest dimension
    lower_limit = {'randomized': 1, 'arpack': 1, 'full': 0, 'auto': 0}
    pca_fitted = PCA(n_components, svd_solver=svd_solver)

    solver_reported = 'full' if svd_solver == 'auto' else svd_solver
    err_msg = err_msg.format(
        n_components, lower_limit[svd_solver], smallest_d, solver_reported
    )
    with pytest.raises(ValueError, match=err_msg):
        pca_fitted.fit(data)

    # Additional case for arpack
    if svd_solver == 'arpack':
        n_components = smallest_d

        err_msg = ("n_components={}L? must be strictly less than "
                   r"min\(n_samples, n_features\)={}L? with "
                   "svd_solver=\'arpack\'".format(n_components, smallest_d))
        with pytest.raises(ValueError, match=err_msg):
            PCA(n_components, svd_solver=svd_solver).fit(data)


@pytest.mark.parametrize(
    'solver, n_components_',
    [('full', min(iris.data.shape)),
     ('arpack', min(iris.data.shape) - 1),
     ('randomized', min(iris.data.shape))]
)
@pytest.mark.parametrize("data", [iris.data, iris.data.T])
def test_n_components_none(data, solver, n_components_):
    pca = PCA(svd_solver=solver)
    pca.fit(data)
    assert pca.n_components_ == n_components_


@pytest.mark.parametrize("svd_solver", ['auto', 'full'])
def test_n_components_mle(svd_solver):
    # Ensure that n_components == 'mle' doesn't raise error for auto/full
    rng = np.random.RandomState(0)
    n_samples, n_features = 600, 10
    X = rng.randn(n_samples, n_features)
    pca = PCA(n_components='mle', svd_solver=svd_solver)
    pca.fit(X)
    assert pca.n_components_ == 1


@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_n_components_mle_error(svd_solver):
    # Ensure that n_components == 'mle' will raise an error for unsupported
    # solvers
    rng = np.random.RandomState(0)
    n_samples, n_features = 600, 10
    X = rng.randn(n_samples, n_features)
    pca = PCA(n_components='mle', svd_solver=svd_solver)
    err_msg = ("n_components='mle' cannot be a string with svd_solver='{}'"
               .format(svd_solver))
    with pytest.raises(ValueError, match=err_msg):
        pca.fit(X)


def test_pca_dim():
    # Check automated dimensionality setting
    rng = np.random.RandomState(0)
    n, p = 100, 5
    X = rng.randn(n, p) * .1
    X[:10] += np.array([3, 4, 5, 1, 2])
    pca = PCA(n_components='mle', svd_solver='full').fit(X)
    assert pca.n_components == 'mle'
    assert pca.n_components_ == 1


def test_infer_dim_1():
    # TODO: explain what this is testing
    # Or at least use explicit variable names...
    n, p = 1000, 5
    rng = np.random.RandomState(0)
    X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) +
         np.array([1, 0, 7, 4, 6]))
    pca = PCA(n_components=p, svd_solver='full')
    pca.fit(X)
    spect = pca.explained_variance_
    ll = np.array([_assess_dimension(spect, k, n) for k in range(1, p)])
    assert ll[1] > ll.max() - .01 * n


def test_infer_dim_2():
    # TODO: explain what this is testing
    # Or at least use explicit variable names...
    n, p = 1000, 5
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * .1
    X[:10] += np.array([3, 4, 5, 1, 2])
    X[10:20] += np.array([6, 0, 7, 2, -1])
    pca = PCA(n_components=p, svd_solver='full')
    pca.fit(X)
    spect = pca.explained_variance_
    assert _infer_dimension(spect, n) > 1


def test_infer_dim_3():
    n, p = 100, 5
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * .1
    X[:10] += np.array([3, 4, 5, 1, 2])
    X[10:20] += np.array([6, 0, 7, 2, -1])
    X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
    pca = PCA(n_components=p, svd_solver='full')
    pca.fit(X)
    spect = pca.explained_variance_
    assert _infer_dimension(spect, n) > 2


@pytest.mark.parametrize(
    "X, n_components, n_components_validated",
    [(iris.data, 0.95, 2),  # row > col
     (iris.data, 0.01, 1),  # row > col
     (np.random.RandomState(0).rand(5, 20), 0.5, 2)]  # row < col
)
def test_infer_dim_by_explained_variance(X, n_components,
                                         n_components_validated):
    pca = PCA(n_components=n_components, svd_solver='full')
    pca.fit(X)
    assert pca.n_components == pytest.approx(n_components)
    assert pca.n_components_ == n_components_validated


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_score(svd_solver):
    # Test that probabilistic PCA scoring yields a reasonable score
    n, p = 1000, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * .1 + np.array([3, 4, 5])
    pca = PCA(n_components=2, svd_solver=svd_solver)
    pca.fit(X)

    ll1 = pca.score(X)
    h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p
    assert_allclose(ll1 / h, 1, rtol=5e-2)

    ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5]))
    assert ll1 > ll2

    pca = PCA(n_components=2, whiten=True, svd_solver=svd_solver)
    pca.fit(X)
    ll2 = pca.score(X)
    assert ll1 > ll2


def test_pca_score3():
    # Check that probabilistic PCA selects the right model
    n, p = 200, 3
    rng = np.random.RandomState(0)
    Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
          np.array([1, 0, 7]))
    Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
          np.array([1, 0, 7]))
    ll = np.zeros(p)
    for k in range(p):
        pca = PCA(n_components=k, svd_solver='full')
        pca.fit(Xl)
        ll[k] = pca.score(Xt)

    assert ll.argmax() == 1


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_sanity_noise_variance(svd_solver):
    # Sanity check for the noise_variance_. For more details see
    # https://github.com/scikit-learn/scikit-learn/issues/7568
    # https://github.com/scikit-learn/scikit-learn/issues/8541
    # https://github.com/scikit-learn/scikit-learn/issues/8544
    X, _ = datasets.load_digits(return_X_y=True)
    pca = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
    pca.fit(X)
    assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0)


@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
def test_pca_score_consistency_solvers(svd_solver):
    # Check the consistency of score between solvers
    X, _ = datasets.load_digits(return_X_y=True)
    pca_full = PCA(n_components=30, svd_solver='full', random_state=0)
    pca_other = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
    pca_full.fit(X)
    pca_other.fit(X)
    assert_allclose(pca_full.score(X), pca_other.score(X), rtol=5e-6)


# arpack raises ValueError for n_components == min(n_samples,  n_features)
@pytest.mark.parametrize("svd_solver", ["full", "randomized"])
def test_pca_zero_noise_variance_edge_cases(svd_solver):
    # ensure that noise_variance_ is 0 in edge cases
    # when n_components == min(n_samples, n_features)
    n, p = 100, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * .1 + np.array([3, 4, 5])

    pca = PCA(n_components=p, svd_solver=svd_solver)
    pca.fit(X)
    assert pca.noise_variance_ == 0

    pca.fit(X.T)
    assert pca.noise_variance_ == 0


@pytest.mark.parametrize(
    'data, n_components, expected_solver',
    [   # case: n_components in (0,1) => 'full'
        (np.random.RandomState(0).uniform(size=(1000, 50)), 0.5, 'full'),
        # case: max(X.shape) <= 500 => 'full'
        (np.random.RandomState(0).uniform(size=(10, 50)), 5, 'full'),
        # case: n_components >= .8 * min(X.shape) => 'full'
        (np.random.RandomState(0).uniform(size=(1000, 50)), 50, 'full'),
        # n_components >= 1 and n_components < .8*min(X.shape) => 'randomized'
        (np.random.RandomState(0).uniform(size=(1000, 50)), 10, 'randomized')
    ]
)
def test_pca_svd_solver_auto(data, n_components, expected_solver):
    pca_auto = PCA(n_components=n_components, random_state=0)
    pca_test = PCA(
        n_components=n_components, svd_solver=expected_solver, random_state=0
    )
    pca_auto.fit(data)
    pca_test.fit(data)
    assert_allclose(pca_auto.components_, pca_test.components_)


@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
def test_pca_sparse_input(svd_solver):
    X = np.random.RandomState(0).rand(5, 4)
    X = sp.sparse.csr_matrix(X)
    assert sp.sparse.issparse(X)

    pca = PCA(n_components=3, svd_solver=svd_solver)
    with pytest.raises(TypeError):
        pca.fit(X)


def test_pca_bad_solver():
    X = np.random.RandomState(0).rand(5, 4)
    pca = PCA(n_components=3, svd_solver='bad_argument')
    with pytest.raises(ValueError):
        pca.fit(X)


@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
def test_pca_deterministic_output(svd_solver):
    rng = np.random.RandomState(0)
    X = rng.rand(10, 10)

    transformed_X = np.zeros((20, 2))
    for i in range(20):
        pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
        transformed_X[i, :] = pca.fit_transform(X)[0]
    assert_allclose(
        transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2)
    )


@pytest.mark.parametrize('svd_solver', PCA_SOLVERS)
def test_pca_dtype_preservation(svd_solver):
    check_pca_float_dtype_preservation(svd_solver)
    check_pca_int_dtype_upcast_to_double(svd_solver)


def check_pca_float_dtype_preservation(svd_solver):
    # Ensure that PCA does not upscale the dtype when input is float32
    X_64 = np.random.RandomState(0).rand(1000, 4).astype(np.float64,
                                                         copy=False)
    X_32 = X_64.astype(np.float32)

    pca_64 = PCA(n_components=3, svd_solver=svd_solver,
                 random_state=0).fit(X_64)
    pca_32 = PCA(n_components=3, svd_solver=svd_solver,
                 random_state=0).fit(X_32)

    assert pca_64.components_.dtype == np.float64
    assert pca_32.components_.dtype == np.float32
    assert pca_64.transform(X_64).dtype == np.float64
    assert pca_32.transform(X_32).dtype == np.float32

    # the rtol is set such that the test passes on all platforms tested on
    # conda-forge: PR#15775
    # see: https://github.com/conda-forge/scikit-learn-feedstock/pull/113
    assert_allclose(pca_64.components_, pca_32.components_, rtol=2e-4)


def check_pca_int_dtype_upcast_to_double(svd_solver):
    # Ensure that all int types will be upcast to float64
    X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
    X_i64 = X_i64.astype(np.int64, copy=False)
    X_i32 = X_i64.astype(np.int32, copy=False)

    pca_64 = PCA(n_components=3, svd_solver=svd_solver,
                 random_state=0).fit(X_i64)
    pca_32 = PCA(n_components=3, svd_solver=svd_solver,
                 random_state=0).fit(X_i32)

    assert pca_64.components_.dtype == np.float64
    assert pca_32.components_.dtype == np.float64
    assert pca_64.transform(X_i64).dtype == np.float64
    assert pca_32.transform(X_i32).dtype == np.float64

    assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-4)


def test_pca_n_components_mostly_explained_variance_ratio():
    # when n_components is the second highest cumulative sum of the
    # explained_variance_ratio_, then n_components_ should equal the
    # number of features in the dataset #15669
    X, y = load_iris(return_X_y=True)
    pca1 = PCA().fit(X, y)

    n_components = pca1.explained_variance_ratio_.cumsum()[-2]
    pca2 = PCA(n_components=n_components).fit(X, y)
    assert pca2.n_components_ == X.shape[1]


def test_assess_dimension_bad_rank():
    # Test error when tested rank not in [1, n_features - 1]
    spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
    n_samples = 10
    for rank in (0, 5):
        with pytest.raises(ValueError,
                           match=r"should be in \[1, n_features - 1\]"):
            _assess_dimension(spectrum, rank, n_samples)


def test_small_eigenvalues_mle():
    # Test rank associated with tiny eigenvalues are given a log-likelihood of
    # -inf. The inferred rank will be 1
    spectrum = np.array([1, 1e-30, 1e-30, 1e-30])

    assert _assess_dimension(spectrum, rank=1, n_samples=10) > -np.inf

    for rank in (2, 3):
        assert _assess_dimension(spectrum, rank, 10) == -np.inf

    assert _infer_dimension(spectrum, 10) == 1


def test_mle_redundant_data():
    # Test 'mle' with pathological X: only one relevant feature should give a
    # rank of 1
    X, _ = datasets.make_classification(n_features=20,
                                        n_informative=1, n_repeated=18,
                                        n_redundant=1, n_clusters_per_class=1,
                                        random_state=42)
    pca = PCA(n_components='mle').fit(X)
    assert pca.n_components_ == 1


def test_fit_mle_too_few_samples():
    # Tests that an error is raised when the number of samples is smaller
    # than the number of features during an mle fit
    X, _ = datasets.make_classification(n_samples=20, n_features=21,
                                        random_state=42)

    pca = PCA(n_components='mle', svd_solver='full')
    with pytest.raises(ValueError, match="n_components='mle' is only "
                                         "supported if "
                                         "n_samples >= n_features"):
        pca.fit(X)


def test_mle_simple_case():
    # non-regression test for issue
    # https://github.com/scikit-learn/scikit-learn/issues/16730
    n_samples, n_dim = 1000, 10
    X = np.random.RandomState(0).randn(n_samples, n_dim)
    X[:, -1] = np.mean(X[:, :-1], axis=-1)  # true X dim is ndim - 1
    pca_skl = PCA('mle', svd_solver='full')
    pca_skl.fit(X)
    assert pca_skl.n_components_ == n_dim - 1


def test_assess_dimesion_rank_one():
    # Make sure assess_dimension works properly on a matrix of rank 1
    n_samples, n_features = 9, 6
    X = np.ones((n_samples, n_features))  # rank 1 matrix
    _, s, _ = np.linalg.svd(X, full_matrices=True)
    assert sum(s[1:]) == 0  # except for rank 1, all eigenvalues are 0

    assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
    for rank in range(2, n_features):
        assert _assess_dimension(s, rank, n_samples) == -np.inf