_numdiff.py 25 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
"""Routines for numerical differentiation."""

import numpy as np
from numpy.linalg import norm

from scipy.sparse.linalg import LinearOperator
from ..sparse import issparse, csc_matrix, csr_matrix, coo_matrix, find
from ._group_columns import group_dense, group_sparse

EPS = np.finfo(np.float64).eps


def _adjust_scheme_to_bounds(x0, h, num_steps, scheme, lb, ub):
    """Adjust final difference scheme to the presence of bounds.

    Parameters
    ----------
    x0 : ndarray, shape (n,)
        Point at which we wish to estimate derivative.
    h : ndarray, shape (n,)
        Desired absolute finite difference steps.
    num_steps : int
        Number of `h` steps in one direction required to implement finite
        difference scheme. For example, 2 means that we need to evaluate
        f(x0 + 2 * h) or f(x0 - 2 * h)
    scheme : {'1-sided', '2-sided'}
        Whether steps in one or both directions are required. In other
        words '1-sided' applies to forward and backward schemes, '2-sided'
        applies to center schemes.
    lb : ndarray, shape (n,)
        Lower bounds on independent variables.
    ub : ndarray, shape (n,)
        Upper bounds on independent variables.

    Returns
    -------
    h_adjusted : ndarray, shape (n,)
        Adjusted absolute step sizes. Step size decreases only if a sign flip
        or switching to one-sided scheme doesn't allow to take a full step.
    use_one_sided : ndarray of bool, shape (n,)
        Whether to switch to one-sided scheme. Informative only for
        ``scheme='2-sided'``.
    """
    if scheme == '1-sided':
        use_one_sided = np.ones_like(h, dtype=bool)
    elif scheme == '2-sided':
        h = np.abs(h)
        use_one_sided = np.zeros_like(h, dtype=bool)
    else:
        raise ValueError("`scheme` must be '1-sided' or '2-sided'.")

    if np.all((lb == -np.inf) & (ub == np.inf)):
        return h, use_one_sided

    h_total = h * num_steps
    h_adjusted = h.copy()

    lower_dist = x0 - lb
    upper_dist = ub - x0

    if scheme == '1-sided':
        x = x0 + h_total
        violated = (x < lb) | (x > ub)
        fitting = np.abs(h_total) <= np.maximum(lower_dist, upper_dist)
        h_adjusted[violated & fitting] *= -1

        forward = (upper_dist >= lower_dist) & ~fitting
        h_adjusted[forward] = upper_dist[forward] / num_steps
        backward = (upper_dist < lower_dist) & ~fitting
        h_adjusted[backward] = -lower_dist[backward] / num_steps
    elif scheme == '2-sided':
        central = (lower_dist >= h_total) & (upper_dist >= h_total)

        forward = (upper_dist >= lower_dist) & ~central
        h_adjusted[forward] = np.minimum(
            h[forward], 0.5 * upper_dist[forward] / num_steps)
        use_one_sided[forward] = True

        backward = (upper_dist < lower_dist) & ~central
        h_adjusted[backward] = -np.minimum(
            h[backward], 0.5 * lower_dist[backward] / num_steps)
        use_one_sided[backward] = True

        min_dist = np.minimum(upper_dist, lower_dist) / num_steps
        adjusted_central = (~central & (np.abs(h_adjusted) <= min_dist))
        h_adjusted[adjusted_central] = min_dist[adjusted_central]
        use_one_sided[adjusted_central] = False

    return h_adjusted, use_one_sided


relative_step = {"2-point": EPS**0.5,
                 "3-point": EPS**(1/3),
                 "cs": EPS**0.5}


def _compute_absolute_step(rel_step, x0, method):
    """
    Computes an absolute step from a relative step for finite difference
    calculation.

    Parameters
    ----------
    rel_step: None or array-like
        Relative step for the finite difference calculation
    x0 : np.ndarray
        Parameter vector
    method : {'2-point', '3-point', 'cs'}
    """
    if rel_step is None:
        rel_step = relative_step[method]
    sign_x0 = (x0 >= 0).astype(float) * 2 - 1
    return rel_step * sign_x0 * np.maximum(1.0, np.abs(x0))


def _prepare_bounds(bounds, x0):
    """
    Prepares new-style bounds from a two-tuple specifying the lower and upper
    limits for values in x0. If a value is not bound then the lower/upper bound
    will be expected to be -np.inf/np.inf.

    Examples
    --------
    >>> _prepare_bounds([(0, 1, 2), (1, 2, np.inf)], [0.5, 1.5, 2.5])
    (array([0., 1., 2.]), array([ 1.,  2., inf]))
    """
    lb, ub = [np.asarray(b, dtype=float) for b in bounds]
    if lb.ndim == 0:
        lb = np.resize(lb, x0.shape)

    if ub.ndim == 0:
        ub = np.resize(ub, x0.shape)

    return lb, ub


def group_columns(A, order=0):
    """Group columns of a 2-D matrix for sparse finite differencing [1]_.

    Two columns are in the same group if in each row at least one of them
    has zero. A greedy sequential algorithm is used to construct groups.

    Parameters
    ----------
    A : array_like or sparse matrix, shape (m, n)
        Matrix of which to group columns.
    order : int, iterable of int with shape (n,) or None
        Permutation array which defines the order of columns enumeration.
        If int or None, a random permutation is used with `order` used as
        a random seed. Default is 0, that is use a random permutation but
        guarantee repeatability.

    Returns
    -------
    groups : ndarray of int, shape (n,)
        Contains values from 0 to n_groups-1, where n_groups is the number
        of found groups. Each value ``groups[i]`` is an index of a group to
        which ith column assigned. The procedure was helpful only if
        n_groups is significantly less than n.

    References
    ----------
    .. [1] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
           sparse Jacobian matrices", Journal of the Institute of Mathematics
           and its Applications, 13 (1974), pp. 117-120.
    """
    if issparse(A):
        A = csc_matrix(A)
    else:
        A = np.atleast_2d(A)
        A = (A != 0).astype(np.int32)

    if A.ndim != 2:
        raise ValueError("`A` must be 2-dimensional.")

    m, n = A.shape

    if order is None or np.isscalar(order):
        rng = np.random.RandomState(order)
        order = rng.permutation(n)
    else:
        order = np.asarray(order)
        if order.shape != (n,):
            raise ValueError("`order` has incorrect shape.")

    A = A[:, order]

    if issparse(A):
        groups = group_sparse(m, n, A.indices, A.indptr)
    else:
        groups = group_dense(m, n, A)

    groups[order] = groups.copy()

    return groups


def approx_derivative(fun, x0, method='3-point', rel_step=None, abs_step=None,
                      f0=None, bounds=(-np.inf, np.inf), sparsity=None,
                      as_linear_operator=False, args=(), kwargs={}):
    """Compute finite difference approximation of the derivatives of a
    vector-valued function.

    If a function maps from R^n to R^m, its derivatives form m-by-n matrix
    called the Jacobian, where an element (i, j) is a partial derivative of
    f[i] with respect to x[j].

    Parameters
    ----------
    fun : callable
        Function of which to estimate the derivatives. The argument x
        passed to this function is ndarray of shape (n,) (never a scalar
        even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
    x0 : array_like of shape (n,) or float
        Point at which to estimate the derivatives. Float will be converted
        to a 1-D array.
    method : {'3-point', '2-point', 'cs'}, optional
        Finite difference method to use:
            - '2-point' - use the first order accuracy forward or backward
                          difference.
            - '3-point' - use central difference in interior points and the
                          second order accuracy forward or backward difference
                          near the boundary.
            - 'cs' - use a complex-step finite difference scheme. This assumes
                     that the user function is real-valued and can be
                     analytically continued to the complex plane. Otherwise,
                     produces bogus results.
    rel_step : None or array_like, optional
        Relative step size to use. The absolute step size is computed as
        ``h = rel_step * sign(x0) * max(1, abs(x0))``, possibly adjusted to
        fit into the bounds. For ``method='3-point'`` the sign of `h` is
        ignored. If None (default) then step is selected automatically,
        see Notes.
    abs_step : array_like, optional
        Absolute step size to use, possibly adjusted to fit into the bounds.
        For ``method='3-point'`` the sign of `abs_step` is ignored. By default
        relative steps are used, only if ``abs_step is not None`` are absolute
        steps used.
    f0 : None or array_like, optional
        If not None it is assumed to be equal to ``fun(x0)``, in  this case
        the ``fun(x0)`` is not called. Default is None.
    bounds : tuple of array_like, optional
        Lower and upper bounds on independent variables. Defaults to no bounds.
        Each bound must match the size of `x0` or be a scalar, in the latter
        case the bound will be the same for all variables. Use it to limit the
        range of function evaluation. Bounds checking is not implemented
        when `as_linear_operator` is True.
    sparsity : {None, array_like, sparse matrix, 2-tuple}, optional
        Defines a sparsity structure of the Jacobian matrix. If the Jacobian
        matrix is known to have only few non-zero elements in each row, then
        it's possible to estimate its several columns by a single function
        evaluation [3]_. To perform such economic computations two ingredients
        are required:

        * structure : array_like or sparse matrix of shape (m, n). A zero
          element means that a corresponding element of the Jacobian
          identically equals to zero.
        * groups : array_like of shape (n,). A column grouping for a given
          sparsity structure, use `group_columns` to obtain it.

        A single array or a sparse matrix is interpreted as a sparsity
        structure, and groups are computed inside the function. A tuple is
        interpreted as (structure, groups). If None (default), a standard
        dense differencing will be used.

        Note, that sparse differencing makes sense only for large Jacobian
        matrices where each row contains few non-zero elements.
    as_linear_operator : bool, optional
        When True the function returns an `scipy.sparse.linalg.LinearOperator`.
        Otherwise it returns a dense array or a sparse matrix depending on
        `sparsity`. The linear operator provides an efficient way of computing
        ``J.dot(p)`` for any vector ``p`` of shape (n,), but does not allow
        direct access to individual elements of the matrix. By default
        `as_linear_operator` is False.
    args, kwargs : tuple and dict, optional
        Additional arguments passed to `fun`. Both empty by default.
        The calling signature is ``fun(x, *args, **kwargs)``.

    Returns
    -------
    J : {ndarray, sparse matrix, LinearOperator}
        Finite difference approximation of the Jacobian matrix.
        If `as_linear_operator` is True returns a LinearOperator
        with shape (m, n). Otherwise it returns a dense array or sparse
        matrix depending on how `sparsity` is defined. If `sparsity`
        is None then a ndarray with shape (m, n) is returned. If
        `sparsity` is not None returns a csr_matrix with shape (m, n).
        For sparse matrices and linear operators it is always returned as
        a 2-D structure, for ndarrays, if m=1 it is returned
        as a 1-D gradient array with shape (n,).

    See Also
    --------
    check_derivative : Check correctness of a function computing derivatives.

    Notes
    -----
    If `rel_step` is not provided, it assigned to ``EPS**(1/s)``, where EPS is
    machine epsilon for float64 numbers, s=2 for '2-point' method and s=3 for
    '3-point' method. Such relative step approximately minimizes a sum of
    truncation and round-off errors, see [1]_. Relative steps are used by
    default. However, absolute steps are used when ``abs_step is not None``.
    If any of the absolute steps produces an indistinguishable difference from
    the original `x0`, ``(x0 + abs_step) - x0 == 0``, then a relative step is
    substituted for that particular entry.

    A finite difference scheme for '3-point' method is selected automatically.
    The well-known central difference scheme is used for points sufficiently
    far from the boundary, and 3-point forward or backward scheme is used for
    points near the boundary. Both schemes have the second-order accuracy in
    terms of Taylor expansion. Refer to [2]_ for the formulas of 3-point
    forward and backward difference schemes.

    For dense differencing when m=1 Jacobian is returned with a shape (n,),
    on the other hand when n=1 Jacobian is returned with a shape (m, 1).
    Our motivation is the following: a) It handles a case of gradient
    computation (m=1) in a conventional way. b) It clearly separates these two
    different cases. b) In all cases np.atleast_2d can be called to get 2-D
    Jacobian with correct dimensions.

    References
    ----------
    .. [1] W. H. Press et. al. "Numerical Recipes. The Art of Scientific
           Computing. 3rd edition", sec. 5.7.

    .. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
           sparse Jacobian matrices", Journal of the Institute of Mathematics
           and its Applications, 13 (1974), pp. 117-120.

    .. [3] B. Fornberg, "Generation of Finite Difference Formulas on
           Arbitrarily Spaced Grids", Mathematics of Computation 51, 1988.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import approx_derivative
    >>>
    >>> def f(x, c1, c2):
    ...     return np.array([x[0] * np.sin(c1 * x[1]),
    ...                      x[0] * np.cos(c2 * x[1])])
    ...
    >>> x0 = np.array([1.0, 0.5 * np.pi])
    >>> approx_derivative(f, x0, args=(1, 2))
    array([[ 1.,  0.],
           [-1.,  0.]])

    Bounds can be used to limit the region of function evaluation.
    In the example below we compute left and right derivative at point 1.0.

    >>> def g(x):
    ...     return x**2 if x >= 1 else x
    ...
    >>> x0 = 1.0
    >>> approx_derivative(g, x0, bounds=(-np.inf, 1.0))
    array([ 1.])
    >>> approx_derivative(g, x0, bounds=(1.0, np.inf))
    array([ 2.])
    """
    if method not in ['2-point', '3-point', 'cs']:
        raise ValueError("Unknown method '%s'. " % method)

    x0 = np.atleast_1d(x0)
    if x0.ndim > 1:
        raise ValueError("`x0` must have at most 1 dimension.")

    lb, ub = _prepare_bounds(bounds, x0)

    if lb.shape != x0.shape or ub.shape != x0.shape:
        raise ValueError("Inconsistent shapes between bounds and `x0`.")

    if as_linear_operator and not (np.all(np.isinf(lb))
                                   and np.all(np.isinf(ub))):
        raise ValueError("Bounds not supported when "
                         "`as_linear_operator` is True.")

    def fun_wrapped(x):
        f = np.atleast_1d(fun(x, *args, **kwargs))
        if f.ndim > 1:
            raise RuntimeError("`fun` return value has "
                               "more than 1 dimension.")
        return f

    if f0 is None:
        f0 = fun_wrapped(x0)
    else:
        f0 = np.atleast_1d(f0)
        if f0.ndim > 1:
            raise ValueError("`f0` passed has more than 1 dimension.")

    if np.any((x0 < lb) | (x0 > ub)):
        raise ValueError("`x0` violates bound constraints.")

    if as_linear_operator:
        if rel_step is None:
            rel_step = relative_step[method]

        return _linear_operator_difference(fun_wrapped, x0,
                                           f0, rel_step, method)
    else:
        # by default we use rel_step
        if abs_step is None:
            h = _compute_absolute_step(rel_step, x0, method)
        else:
            # user specifies an absolute step
            sign_x0 = (x0 >= 0).astype(float) * 2 - 1
            h = abs_step

            # cannot have a zero step. This might happen if x0 is very large
            # or small. In which case fall back to relative step.
            dx = ((x0 + h) - x0)
            h = np.where(dx == 0,
                         relative_step[method] * sign_x0 *
                         np.maximum(1.0, np.abs(x0)),
                         h)

        if method == '2-point':
            h, use_one_sided = _adjust_scheme_to_bounds(
                x0, h, 1, '1-sided', lb, ub)
        elif method == '3-point':
            h, use_one_sided = _adjust_scheme_to_bounds(
                x0, h, 1, '2-sided', lb, ub)
        elif method == 'cs':
            use_one_sided = False

        if sparsity is None:
            return _dense_difference(fun_wrapped, x0, f0, h,
                                     use_one_sided, method)
        else:
            if not issparse(sparsity) and len(sparsity) == 2:
                structure, groups = sparsity
            else:
                structure = sparsity
                groups = group_columns(sparsity)

            if issparse(structure):
                structure = csc_matrix(structure)
            else:
                structure = np.atleast_2d(structure)

            groups = np.atleast_1d(groups)
            return _sparse_difference(fun_wrapped, x0, f0, h,
                                      use_one_sided, structure,
                                      groups, method)


def _linear_operator_difference(fun, x0, f0, h, method):
    m = f0.size
    n = x0.size

    if method == '2-point':
        def matvec(p):
            if np.array_equal(p, np.zeros_like(p)):
                return np.zeros(m)
            dx = h / norm(p)
            x = x0 + dx*p
            df = fun(x) - f0
            return df / dx

    elif method == '3-point':
        def matvec(p):
            if np.array_equal(p, np.zeros_like(p)):
                return np.zeros(m)
            dx = 2*h / norm(p)
            x1 = x0 - (dx/2)*p
            x2 = x0 + (dx/2)*p
            f1 = fun(x1)
            f2 = fun(x2)
            df = f2 - f1
            return df / dx

    elif method == 'cs':
        def matvec(p):
            if np.array_equal(p, np.zeros_like(p)):
                return np.zeros(m)
            dx = h / norm(p)
            x = x0 + dx*p*1.j
            f1 = fun(x)
            df = f1.imag
            return df / dx

    else:
        raise RuntimeError("Never be here.")

    return LinearOperator((m, n), matvec)


def _dense_difference(fun, x0, f0, h, use_one_sided, method):
    m = f0.size
    n = x0.size
    J_transposed = np.empty((n, m))
    h_vecs = np.diag(h)

    for i in range(h.size):
        if method == '2-point':
            x = x0 + h_vecs[i]
            dx = x[i] - x0[i]  # Recompute dx as exactly representable number.
            df = fun(x) - f0
        elif method == '3-point' and use_one_sided[i]:
            x1 = x0 + h_vecs[i]
            x2 = x0 + 2 * h_vecs[i]
            dx = x2[i] - x0[i]
            f1 = fun(x1)
            f2 = fun(x2)
            df = -3.0 * f0 + 4 * f1 - f2
        elif method == '3-point' and not use_one_sided[i]:
            x1 = x0 - h_vecs[i]
            x2 = x0 + h_vecs[i]
            dx = x2[i] - x1[i]
            f1 = fun(x1)
            f2 = fun(x2)
            df = f2 - f1
        elif method == 'cs':
            f1 = fun(x0 + h_vecs[i]*1.j)
            df = f1.imag
            dx = h_vecs[i, i]
        else:
            raise RuntimeError("Never be here.")

        J_transposed[i] = df / dx

    if m == 1:
        J_transposed = np.ravel(J_transposed)

    return J_transposed.T


def _sparse_difference(fun, x0, f0, h, use_one_sided,
                       structure, groups, method):
    m = f0.size
    n = x0.size
    row_indices = []
    col_indices = []
    fractions = []

    n_groups = np.max(groups) + 1
    for group in range(n_groups):
        # Perturb variables which are in the same group simultaneously.
        e = np.equal(group, groups)
        h_vec = h * e
        if method == '2-point':
            x = x0 + h_vec
            dx = x - x0
            df = fun(x) - f0
            # The result is  written to columns which correspond to perturbed
            # variables.
            cols, = np.nonzero(e)
            # Find all non-zero elements in selected columns of Jacobian.
            i, j, _ = find(structure[:, cols])
            # Restore column indices in the full array.
            j = cols[j]
        elif method == '3-point':
            # Here we do conceptually the same but separate one-sided
            # and two-sided schemes.
            x1 = x0.copy()
            x2 = x0.copy()

            mask_1 = use_one_sided & e
            x1[mask_1] += h_vec[mask_1]
            x2[mask_1] += 2 * h_vec[mask_1]

            mask_2 = ~use_one_sided & e
            x1[mask_2] -= h_vec[mask_2]
            x2[mask_2] += h_vec[mask_2]

            dx = np.zeros(n)
            dx[mask_1] = x2[mask_1] - x0[mask_1]
            dx[mask_2] = x2[mask_2] - x1[mask_2]

            f1 = fun(x1)
            f2 = fun(x2)

            cols, = np.nonzero(e)
            i, j, _ = find(structure[:, cols])
            j = cols[j]

            mask = use_one_sided[j]
            df = np.empty(m)

            rows = i[mask]
            df[rows] = -3 * f0[rows] + 4 * f1[rows] - f2[rows]

            rows = i[~mask]
            df[rows] = f2[rows] - f1[rows]
        elif method == 'cs':
            f1 = fun(x0 + h_vec*1.j)
            df = f1.imag
            dx = h_vec
            cols, = np.nonzero(e)
            i, j, _ = find(structure[:, cols])
            j = cols[j]
        else:
            raise ValueError("Never be here.")

        # All that's left is to compute the fraction. We store i, j and
        # fractions as separate arrays and later construct coo_matrix.
        row_indices.append(i)
        col_indices.append(j)
        fractions.append(df[i] / dx[j])

    row_indices = np.hstack(row_indices)
    col_indices = np.hstack(col_indices)
    fractions = np.hstack(fractions)
    J = coo_matrix((fractions, (row_indices, col_indices)), shape=(m, n))
    return csr_matrix(J)


def check_derivative(fun, jac, x0, bounds=(-np.inf, np.inf), args=(),
                     kwargs={}):
    """Check correctness of a function computing derivatives (Jacobian or
    gradient) by comparison with a finite difference approximation.

    Parameters
    ----------
    fun : callable
        Function of which to estimate the derivatives. The argument x
        passed to this function is ndarray of shape (n,) (never a scalar
        even if n=1). It must return 1-D array_like of shape (m,) or a scalar.
    jac : callable
        Function which computes Jacobian matrix of `fun`. It must work with
        argument x the same way as `fun`. The return value must be array_like
        or sparse matrix with an appropriate shape.
    x0 : array_like of shape (n,) or float
        Point at which to estimate the derivatives. Float will be converted
        to 1-D array.
    bounds : 2-tuple of array_like, optional
        Lower and upper bounds on independent variables. Defaults to no bounds.
        Each bound must match the size of `x0` or be a scalar, in the latter
        case the bound will be the same for all variables. Use it to limit the
        range of function evaluation.
    args, kwargs : tuple and dict, optional
        Additional arguments passed to `fun` and `jac`. Both empty by default.
        The calling signature is ``fun(x, *args, **kwargs)`` and the same
        for `jac`.

    Returns
    -------
    accuracy : float
        The maximum among all relative errors for elements with absolute values
        higher than 1 and absolute errors for elements with absolute values
        less or equal than 1. If `accuracy` is on the order of 1e-6 or lower,
        then it is likely that your `jac` implementation is correct.

    See Also
    --------
    approx_derivative : Compute finite difference approximation of derivative.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.optimize import check_derivative
    >>>
    >>>
    >>> def f(x, c1, c2):
    ...     return np.array([x[0] * np.sin(c1 * x[1]),
    ...                      x[0] * np.cos(c2 * x[1])])
    ...
    >>> def jac(x, c1, c2):
    ...     return np.array([
    ...         [np.sin(c1 * x[1]),  c1 * x[0] * np.cos(c1 * x[1])],
    ...         [np.cos(c2 * x[1]), -c2 * x[0] * np.sin(c2 * x[1])]
    ...     ])
    ...
    >>>
    >>> x0 = np.array([1.0, 0.5 * np.pi])
    >>> check_derivative(f, jac, x0, args=(1, 2))
    2.4492935982947064e-16
    """
    J_to_test = jac(x0, *args, **kwargs)
    if issparse(J_to_test):
        J_diff = approx_derivative(fun, x0, bounds=bounds, sparsity=J_to_test,
                                   args=args, kwargs=kwargs)
        J_to_test = csr_matrix(J_to_test)
        abs_err = J_to_test - J_diff
        i, j, abs_err_data = find(abs_err)
        J_diff_data = np.asarray(J_diff[i, j]).ravel()
        return np.max(np.abs(abs_err_data) /
                      np.maximum(1, np.abs(J_diff_data)))
    else:
        J_diff = approx_derivative(fun, x0, bounds=bounds,
                                   args=args, kwargs=kwargs)
        abs_err = np.abs(J_to_test - J_diff)
        return np.max(abs_err / np.maximum(1, np.abs(J_diff)))