_linprog_ip.py 44.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
"""Interior-point method for linear programming

The *interior-point* method uses the primal-dual path following algorithm
outlined in [1]_. This algorithm supports sparse constraint matrices and
is typically faster than the simplex methods, especially for large, sparse
problems. Note, however, that the solution returned may be slightly less
accurate than those of the simplex methods and will not, in general,
correspond with a vertex of the polytope defined by the constraints.

    .. versionadded:: 1.0.0

References
----------
.. [1] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
       optimizer for linear programming: an implementation of the
       homogeneous algorithm." High performance optimization. Springer US,
       2000. 197-232.
"""
# Author: Matt Haberland

import numpy as np
import scipy as sp
import scipy.sparse as sps
from warnings import warn
from scipy.linalg import LinAlgError
from .optimize import OptimizeWarning, OptimizeResult, _check_unknown_options
from ._linprog_util import _postsolve
has_umfpack = True
has_cholmod = True
try:
    from sksparse.cholmod import cholesky as cholmod
    from sksparse.cholmod import analyze as cholmod_analyze
except ImportError:
    has_cholmod = False
try:
    import scikits.umfpack  # test whether to use factorized
except ImportError:
    has_umfpack = False


def _get_solver(M, sparse=False, lstsq=False, sym_pos=True,
                cholesky=True, permc_spec='MMD_AT_PLUS_A'):
    """
    Given solver options, return a handle to the appropriate linear system
    solver.

    Parameters
    ----------
    M : 2-D array
        As defined in [4] Equation 8.31
    sparse : bool (default = False)
        True if the system to be solved is sparse. This is typically set
        True when the original ``A_ub`` and ``A_eq`` arrays are sparse.
    lstsq : bool (default = False)
        True if the system is ill-conditioned and/or (nearly) singular and
        thus a more robust least-squares solver is desired. This is sometimes
        needed as the solution is approached.
    sym_pos : bool (default = True)
        True if the system matrix is symmetric positive definite
        Sometimes this needs to be set false as the solution is approached,
        even when the system should be symmetric positive definite, due to
        numerical difficulties.
    cholesky : bool (default = True)
        True if the system is to be solved by Cholesky, rather than LU,
        decomposition. This is typically faster unless the problem is very
        small or prone to numerical difficulties.
    permc_spec : str (default = 'MMD_AT_PLUS_A')
        Sparsity preservation strategy used by SuperLU. Acceptable values are:

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering.

        See SuperLU documentation.

    Returns
    -------
    solve : function
        Handle to the appropriate solver function

    """
    try:
        if sparse:
            if lstsq:
                def solve(r, sym_pos=False):
                    return sps.linalg.lsqr(M, r)[0]
            elif cholesky:
                try:
                    # Will raise an exception in the first call,
                    # or when the matrix changes due to a new problem
                    _get_solver.cholmod_factor.cholesky_inplace(M)
                except Exception:
                    _get_solver.cholmod_factor = cholmod_analyze(M)
                    _get_solver.cholmod_factor.cholesky_inplace(M)
                solve = _get_solver.cholmod_factor
            else:
                if has_umfpack and sym_pos:
                    solve = sps.linalg.factorized(M)
                else:  # factorized doesn't pass permc_spec
                    solve = sps.linalg.splu(M, permc_spec=permc_spec).solve

        else:
            if lstsq:  # sometimes necessary as solution is approached
                def solve(r):
                    return sp.linalg.lstsq(M, r)[0]
            elif cholesky:
                L = sp.linalg.cho_factor(M)

                def solve(r):
                    return sp.linalg.cho_solve(L, r)
            else:
                # this seems to cache the matrix factorization, so solving
                # with multiple right hand sides is much faster
                def solve(r, sym_pos=sym_pos):
                    return sp.linalg.solve(M, r, sym_pos=sym_pos)
    # There are many things that can go wrong here, and it's hard to say
    # what all of them are. It doesn't really matter: if the matrix can't be
    # factorized, return None. get_solver will be called again with different
    # inputs, and a new routine will try to factorize the matrix.
    except KeyboardInterrupt:
        raise
    except Exception:
        return None
    return solve


def _get_delta(A, b, c, x, y, z, tau, kappa, gamma, eta, sparse=False,
               lstsq=False, sym_pos=True, cholesky=True, pc=True, ip=False,
               permc_spec='MMD_AT_PLUS_A'):
    """
    Given standard form problem defined by ``A``, ``b``, and ``c``;
    current variable estimates ``x``, ``y``, ``z``, ``tau``, and ``kappa``;
    algorithmic parameters ``gamma and ``eta;
    and options ``sparse``, ``lstsq``, ``sym_pos``, ``cholesky``, ``pc``
    (predictor-corrector), and ``ip`` (initial point improvement),
    get the search direction for increments to the variable estimates.

    Parameters
    ----------
    As defined in [4], except:
    sparse : bool
        True if the system to be solved is sparse. This is typically set
        True when the original ``A_ub`` and ``A_eq`` arrays are sparse.
    lstsq : bool
        True if the system is ill-conditioned and/or (nearly) singular and
        thus a more robust least-squares solver is desired. This is sometimes
        needed as the solution is approached.
    sym_pos : bool
        True if the system matrix is symmetric positive definite
        Sometimes this needs to be set false as the solution is approached,
        even when the system should be symmetric positive definite, due to
        numerical difficulties.
    cholesky : bool
        True if the system is to be solved by Cholesky, rather than LU,
        decomposition. This is typically faster unless the problem is very
        small or prone to numerical difficulties.
    pc : bool
        True if the predictor-corrector method of Mehrota is to be used. This
        is almost always (if not always) beneficial. Even though it requires
        the solution of an additional linear system, the factorization
        is typically (implicitly) reused so solution is efficient, and the
        number of algorithm iterations is typically reduced.
    ip : bool
        True if the improved initial point suggestion due to [4] section 4.3
        is desired. It's unclear whether this is beneficial.
    permc_spec : str (default = 'MMD_AT_PLUS_A')
        (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
        True``.) A matrix is factorized in each iteration of the algorithm.
        This option specifies how to permute the columns of the matrix for
        sparsity preservation. Acceptable values are:

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering.

        This option can impact the convergence of the
        interior point algorithm; test different values to determine which
        performs best for your problem. For more information, refer to
        ``scipy.sparse.linalg.splu``.

    Returns
    -------
    Search directions as defined in [4]

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """
    if A.shape[0] == 0:
        # If there are no constraints, some solvers fail (understandably)
        # rather than returning empty solution. This gets the job done.
        sparse, lstsq, sym_pos, cholesky = False, False, True, False
    n_x = len(x)

    # [4] Equation 8.8
    r_P = b * tau - A.dot(x)
    r_D = c * tau - A.T.dot(y) - z
    r_G = c.dot(x) - b.transpose().dot(y) + kappa
    mu = (x.dot(z) + tau * kappa) / (n_x + 1)

    #  Assemble M from [4] Equation 8.31
    Dinv = x / z

    if sparse:
        M = A.dot(sps.diags(Dinv, 0, format="csc").dot(A.T))
    else:
        M = A.dot(Dinv.reshape(-1, 1) * A.T)
    solve = _get_solver(M, sparse, lstsq, sym_pos, cholesky, permc_spec)

    # pc: "predictor-corrector" [4] Section 4.1
    # In development this option could be turned off
    # but it always seems to improve performance substantially
    n_corrections = 1 if pc else 0

    i = 0
    alpha, d_x, d_z, d_tau, d_kappa = 0, 0, 0, 0, 0
    while i <= n_corrections:
        # Reference [4] Eq. 8.6
        rhatp = eta(gamma) * r_P
        rhatd = eta(gamma) * r_D
        rhatg = eta(gamma) * r_G

        # Reference [4] Eq. 8.7
        rhatxs = gamma * mu - x * z
        rhattk = gamma * mu - tau * kappa

        if i == 1:
            if ip:  # if the correction is to get "initial point"
                # Reference [4] Eq. 8.23
                rhatxs = ((1 - alpha) * gamma * mu -
                          x * z - alpha**2 * d_x * d_z)
                rhattk = ((1 - alpha) * gamma * mu -
                    tau * kappa -
                    alpha**2 * d_tau * d_kappa)
            else:  # if the correction is for "predictor-corrector"
                # Reference [4] Eq. 8.13
                rhatxs -= d_x * d_z
                rhattk -= d_tau * d_kappa

        # sometimes numerical difficulties arise as the solution is approached
        # this loop tries to solve the equations using a sequence of functions
        # for solve. For dense systems, the order is:
        # 1. scipy.linalg.cho_factor/scipy.linalg.cho_solve,
        # 2. scipy.linalg.solve w/ sym_pos = True,
        # 3. scipy.linalg.solve w/ sym_pos = False, and if all else fails
        # 4. scipy.linalg.lstsq
        # For sparse systems, the order is:
        # 1. sksparse.cholmod.cholesky (if available)
        # 2. scipy.sparse.linalg.factorized (if umfpack available)
        # 3. scipy.sparse.linalg.splu
        # 4. scipy.sparse.linalg.lsqr
        solved = False
        while(not solved):
            try:
                # [4] Equation 8.28
                p, q = _sym_solve(Dinv, A, c, b, solve)
                # [4] Equation 8.29
                u, v = _sym_solve(Dinv, A, rhatd -
                                  (1 / x) * rhatxs, rhatp, solve)
                if np.any(np.isnan(p)) or np.any(np.isnan(q)):
                    raise LinAlgError
                solved = True
            except (LinAlgError, ValueError, TypeError) as e:
                # Usually this doesn't happen. If it does, it happens when
                # there are redundant constraints or when approaching the
                # solution. If so, change solver.
                if cholesky:
                    cholesky = False
                    warn(
                        "Solving system with option 'cholesky':True "
                        "failed. It is normal for this to happen "
                        "occasionally, especially as the solution is "
                        "approached. However, if you see this frequently, "
                        "consider setting option 'cholesky' to False.",
                        OptimizeWarning, stacklevel=5)
                elif sym_pos:
                    sym_pos = False
                    warn(
                        "Solving system with option 'sym_pos':True "
                        "failed. It is normal for this to happen "
                        "occasionally, especially as the solution is "
                        "approached. However, if you see this frequently, "
                        "consider setting option 'sym_pos' to False.",
                        OptimizeWarning, stacklevel=5)
                elif not lstsq:
                    lstsq = True
                    warn(
                        "Solving system with option 'sym_pos':False "
                        "failed. This may happen occasionally, "
                        "especially as the solution is "
                        "approached. However, if you see this frequently, "
                        "your problem may be numerically challenging. "
                        "If you cannot improve the formulation, consider "
                        "setting 'lstsq' to True. Consider also setting "
                        "`presolve` to True, if it is not already.",
                        OptimizeWarning, stacklevel=5)
                else:
                    raise e
                solve = _get_solver(M, sparse, lstsq, sym_pos,
                                    cholesky, permc_spec)
        # [4] Results after 8.29
        d_tau = ((rhatg + 1 / tau * rhattk - (-c.dot(u) + b.dot(v))) /
                 (1 / tau * kappa + (-c.dot(p) + b.dot(q))))
        d_x = u + p * d_tau
        d_y = v + q * d_tau

        # [4] Relations between  after 8.25 and 8.26
        d_z = (1 / x) * (rhatxs - z * d_x)
        d_kappa = 1 / tau * (rhattk - kappa * d_tau)

        # [4] 8.12 and "Let alpha be the maximal possible step..." before 8.23
        alpha = _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, 1)
        if ip:  # initial point - see [4] 4.4
            gamma = 10
        else:  # predictor-corrector, [4] definition after 8.12
            beta1 = 0.1  # [4] pg. 220 (Table 8.1)
            gamma = (1 - alpha)**2 * min(beta1, (1 - alpha))
        i += 1

    return d_x, d_y, d_z, d_tau, d_kappa


def _sym_solve(Dinv, A, r1, r2, solve):
    """
    An implementation of [4] equation 8.31 and 8.32

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """
    # [4] 8.31
    r = r2 + A.dot(Dinv * r1)
    v = solve(r)
    # [4] 8.32
    u = Dinv * (A.T.dot(v) - r1)
    return u, v


def _get_step(x, d_x, z, d_z, tau, d_tau, kappa, d_kappa, alpha0):
    """
    An implementation of [4] equation 8.21

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """
    # [4] 4.3 Equation 8.21, ignoring 8.20 requirement
    # same step is taken in primal and dual spaces
    # alpha0 is basically beta3 from [4] Table 8.1, but instead of beta3
    # the value 1 is used in Mehrota corrector and initial point correction
    i_x = d_x < 0
    i_z = d_z < 0
    alpha_x = alpha0 * np.min(x[i_x] / -d_x[i_x]) if np.any(i_x) else 1
    alpha_tau = alpha0 * tau / -d_tau if d_tau < 0 else 1
    alpha_z = alpha0 * np.min(z[i_z] / -d_z[i_z]) if np.any(i_z) else 1
    alpha_kappa = alpha0 * kappa / -d_kappa if d_kappa < 0 else 1
    alpha = np.min([1, alpha_x, alpha_tau, alpha_z, alpha_kappa])
    return alpha


def _get_message(status):
    """
    Given problem status code, return a more detailed message.

    Parameters
    ----------
    status : int
        An integer representing the exit status of the optimization::

         0 : Optimization terminated successfully
         1 : Iteration limit reached
         2 : Problem appears to be infeasible
         3 : Problem appears to be unbounded
         4 : Serious numerical difficulties encountered

    Returns
    -------
    message : str
        A string descriptor of the exit status of the optimization.

    """
    messages = (
        ["Optimization terminated successfully.",
         "The iteration limit was reached before the algorithm converged.",
         "The algorithm terminated successfully and determined that the "
         "problem is infeasible.",
         "The algorithm terminated successfully and determined that the "
         "problem is unbounded.",
         "Numerical difficulties were encountered before the problem "
         "converged. Please check your problem formulation for errors, "
         "independence of linear equality constraints, and reasonable "
         "scaling and matrix condition numbers. If you continue to "
         "encounter this error, please submit a bug report."
         ])
    return messages[status]


def _do_step(x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha):
    """
    An implementation of [4] Equation 8.9

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """
    x = x + alpha * d_x
    tau = tau + alpha * d_tau
    z = z + alpha * d_z
    kappa = kappa + alpha * d_kappa
    y = y + alpha * d_y
    return x, y, z, tau, kappa


def _get_blind_start(shape):
    """
    Return the starting point from [4] 4.4

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """
    m, n = shape
    x0 = np.ones(n)
    y0 = np.zeros(m)
    z0 = np.ones(n)
    tau0 = 1
    kappa0 = 1
    return x0, y0, z0, tau0, kappa0


def _indicators(A, b, c, c0, x, y, z, tau, kappa):
    """
    Implementation of several equations from [4] used as indicators of
    the status of optimization.

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """

    # residuals for termination are relative to initial values
    x0, y0, z0, tau0, kappa0 = _get_blind_start(A.shape)

    # See [4], Section 4 - The Homogeneous Algorithm, Equation 8.8
    def r_p(x, tau):
        return b * tau - A.dot(x)

    def r_d(y, z, tau):
        return c * tau - A.T.dot(y) - z

    def r_g(x, y, kappa):
        return kappa + c.dot(x) - b.dot(y)

    # np.dot unpacks if they are arrays of size one
    def mu(x, tau, z, kappa):
        return (x.dot(z) + np.dot(tau, kappa)) / (len(x) + 1)

    obj = c.dot(x / tau) + c0

    def norm(a):
        return np.linalg.norm(a)

    # See [4], Section 4.5 - The Stopping Criteria
    r_p0 = r_p(x0, tau0)
    r_d0 = r_d(y0, z0, tau0)
    r_g0 = r_g(x0, y0, kappa0)
    mu_0 = mu(x0, tau0, z0, kappa0)
    rho_A = norm(c.T.dot(x) - b.T.dot(y)) / (tau + norm(b.T.dot(y)))
    rho_p = norm(r_p(x, tau)) / max(1, norm(r_p0))
    rho_d = norm(r_d(y, z, tau)) / max(1, norm(r_d0))
    rho_g = norm(r_g(x, y, kappa)) / max(1, norm(r_g0))
    rho_mu = mu(x, tau, z, kappa) / mu_0
    return rho_p, rho_d, rho_A, rho_g, rho_mu, obj


def _display_iter(rho_p, rho_d, rho_g, alpha, rho_mu, obj, header=False):
    """
    Print indicators of optimization status to the console.

    Parameters
    ----------
    rho_p : float
        The (normalized) primal feasibility, see [4] 4.5
    rho_d : float
        The (normalized) dual feasibility, see [4] 4.5
    rho_g : float
        The (normalized) duality gap, see [4] 4.5
    alpha : float
        The step size, see [4] 4.3
    rho_mu : float
        The (normalized) path parameter, see [4] 4.5
    obj : float
        The objective function value of the current iterate
    header : bool
        True if a header is to be printed

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.

    """
    if header:
        print("Primal Feasibility ",
              "Dual Feasibility   ",
              "Duality Gap        ",
              "Step            ",
              "Path Parameter     ",
              "Objective          ")

    # no clue why this works
    fmt = '{0:<20.13}{1:<20.13}{2:<20.13}{3:<17.13}{4:<20.13}{5:<20.13}'
    print(fmt.format(
        float(rho_p),
        float(rho_d),
        float(rho_g),
        alpha if isinstance(alpha, str) else float(alpha),
        float(rho_mu),
        float(obj)))


def _ip_hsd(A, b, c, c0, alpha0, beta, maxiter, disp, tol, sparse, lstsq,
            sym_pos, cholesky, pc, ip, permc_spec, callback, postsolve_args):
    r"""
    Solve a linear programming problem in standard form:

    Minimize::

        c @ x

    Subject to::

        A @ x == b
            x >= 0

    using the interior point method of [4].

    Parameters
    ----------
    A : 2-D array
        2-D array such that ``A @ x``, gives the values of the equality
        constraints at ``x``.
    b : 1-D array
        1-D array of values representing the RHS of each equality constraint
        (row) in ``A`` (for standard form problem).
    c : 1-D array
        Coefficients of the linear objective function to be minimized (for
        standard form problem).
    c0 : float
        Constant term in objective function due to fixed (and eliminated)
        variables. (Purely for display.)
    alpha0 : float
        The maximal step size for Mehrota's predictor-corrector search
        direction; see :math:`\beta_3`of [4] Table 8.1
    beta : float
        The desired reduction of the path parameter :math:`\mu` (see  [6]_)
    maxiter : int
        The maximum number of iterations of the algorithm.
    disp : bool
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration.
    tol : float
        Termination tolerance; see [4]_ Section 4.5.
    sparse : bool
        Set to ``True`` if the problem is to be treated as sparse. However,
        the inputs ``A_eq`` and ``A_ub`` should nonetheless be provided as
        (dense) arrays rather than sparse matrices.
    lstsq : bool
        Set to ``True`` if the problem is expected to be very poorly
        conditioned. This should always be left as ``False`` unless severe
        numerical difficulties are frequently encountered, and a better option
        would be to improve the formulation of the problem.
    sym_pos : bool
        Leave ``True`` if the problem is expected to yield a well conditioned
        symmetric positive definite normal equation matrix (almost always).
    cholesky : bool
        Set to ``True`` if the normal equations are to be solved by explicit
        Cholesky decomposition followed by explicit forward/backward
        substitution. This is typically faster for moderate, dense problems
        that are numerically well-behaved.
    pc : bool
        Leave ``True`` if the predictor-corrector method of Mehrota is to be
        used. This is almost always (if not always) beneficial.
    ip : bool
        Set to ``True`` if the improved initial point suggestion due to [4]_
        Section 4.3 is desired. It's unclear whether this is beneficial.
    permc_spec : str (default = 'MMD_AT_PLUS_A')
        (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
        True``.) A matrix is factorized in each iteration of the algorithm.
        This option specifies how to permute the columns of the matrix for
        sparsity preservation. Acceptable values are:

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering.

        This option can impact the convergence of the
        interior point algorithm; test different values to determine which
        performs best for your problem. For more information, refer to
        ``scipy.sparse.linalg.splu``.
    callback : callable, optional
        If a callback function is provided, it will be called within each
        iteration of the algorithm. The callback function must accept a single
        `scipy.optimize.OptimizeResult` consisting of the following fields:

            x : 1-D array
                Current solution vector
            fun : float
                Current value of the objective function
            success : bool
                True only when an algorithm has completed successfully,
                so this is always False as the callback function is called
                only while the algorithm is still iterating.
            slack : 1-D array
                The values of the slack variables. Each slack variable
                corresponds to an inequality constraint. If the slack is zero,
                the corresponding constraint is active.
            con : 1-D array
                The (nominally zero) residuals of the equality constraints,
                that is, ``b - A_eq @ x``
            phase : int
                The phase of the algorithm being executed. This is always
                1 for the interior-point method because it has only one phase.
            status : int
                For revised simplex, this is always 0 because if a different
                status is detected, the algorithm terminates.
            nit : int
                The number of iterations performed.
            message : str
                A string descriptor of the exit status of the optimization.
    postsolve_args : tuple
        Data needed by _postsolve to convert the solution to the standard-form
        problem into the solution to the original problem.

    Returns
    -------
    x_hat : float
        Solution vector (for standard form problem).
    status : int
        An integer representing the exit status of the optimization::

         0 : Optimization terminated successfully
         1 : Iteration limit reached
         2 : Problem appears to be infeasible
         3 : Problem appears to be unbounded
         4 : Serious numerical difficulties encountered

    message : str
        A string descriptor of the exit status of the optimization.
    iteration : int
        The number of iterations taken to solve the problem

    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.
    .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
           Programming based on Newton's Method." Unpublished Course Notes,
           March 2004. Available 2/25/2017 at:
           https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf

    """

    iteration = 0

    # default initial point
    x, y, z, tau, kappa = _get_blind_start(A.shape)

    # first iteration is special improvement of initial point
    ip = ip if pc else False

    # [4] 4.5
    rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators(
        A, b, c, c0, x, y, z, tau, kappa)
    go = rho_p > tol or rho_d > tol or rho_A > tol  # we might get lucky : )

    if disp:
        _display_iter(rho_p, rho_d, rho_g, "-", rho_mu, obj, header=True)
    if callback is not None:
        x_o, fun, slack, con, _ = _postsolve(x/tau, postsolve_args,
                                                tol=tol)
        res = OptimizeResult({'x': x_o, 'fun': fun, 'slack': slack,
                              'con': con, 'nit': iteration, 'phase': 1,
                              'complete': False, 'status': 0,
                              'message': "", 'success': False})
        callback(res)

    status = 0
    message = "Optimization terminated successfully."

    if sparse:
        A = sps.csc_matrix(A)
        A.T = A.transpose()  # A.T is defined for sparse matrices but is slow
        # Redefine it to avoid calculating again
        # This is fine as long as A doesn't change

    while go:

        iteration += 1

        if ip:  # initial point
            # [4] Section 4.4
            gamma = 1

            def eta(g):
                return 1
        else:
            # gamma = 0 in predictor step according to [4] 4.1
            # if predictor/corrector is off, use mean of complementarity [6]
            # 5.1 / [4] Below Figure 10-4
            gamma = 0 if pc else beta * np.mean(z * x)
            # [4] Section 4.1

            def eta(g=gamma):
                return 1 - g

        try:
            # Solve [4] 8.6 and 8.7/8.13/8.23
            d_x, d_y, d_z, d_tau, d_kappa = _get_delta(
                A, b, c, x, y, z, tau, kappa, gamma, eta,
                sparse, lstsq, sym_pos, cholesky, pc, ip, permc_spec)

            if ip:  # initial point
                # [4] 4.4
                # Formula after 8.23 takes a full step regardless if this will
                # take it negative
                alpha = 1.0
                x, y, z, tau, kappa = _do_step(
                    x, y, z, tau, kappa, d_x, d_y,
                    d_z, d_tau, d_kappa, alpha)
                x[x < 1] = 1
                z[z < 1] = 1
                tau = max(1, tau)
                kappa = max(1, kappa)
                ip = False  # done with initial point
            else:
                # [4] Section 4.3
                alpha = _get_step(x, d_x, z, d_z, tau,
                                  d_tau, kappa, d_kappa, alpha0)
                # [4] Equation 8.9
                x, y, z, tau, kappa = _do_step(
                    x, y, z, tau, kappa, d_x, d_y, d_z, d_tau, d_kappa, alpha)

        except (LinAlgError, FloatingPointError,
                ValueError, ZeroDivisionError):
            # this can happen when sparse solver is used and presolve
            # is turned off. Also observed ValueError in AppVeyor Python 3.6
            # Win32 build (PR #8676). I've never seen it otherwise.
            status = 4
            message = _get_message(status)
            break

        # [4] 4.5
        rho_p, rho_d, rho_A, rho_g, rho_mu, obj = _indicators(
            A, b, c, c0, x, y, z, tau, kappa)
        go = rho_p > tol or rho_d > tol or rho_A > tol

        if disp:
            _display_iter(rho_p, rho_d, rho_g, alpha, rho_mu, obj)
        if callback is not None:
            x_o, fun, slack, con, _ = _postsolve(x/tau, postsolve_args,
                                                    tol=tol)
            res = OptimizeResult({'x': x_o, 'fun': fun, 'slack': slack,
                                  'con': con, 'nit': iteration, 'phase': 1,
                                  'complete': False, 'status': 0,
                                  'message': "", 'success': False})
            callback(res)

        # [4] 4.5
        inf1 = (rho_p < tol and rho_d < tol and rho_g < tol and tau < tol *
                max(1, kappa))
        inf2 = rho_mu < tol and tau < tol * min(1, kappa)
        if inf1 or inf2:
            # [4] Lemma 8.4 / Theorem 8.3
            if b.transpose().dot(y) > tol:
                status = 2
            else:  # elif c.T.dot(x) < tol: ? Probably not necessary.
                status = 3
            message = _get_message(status)
            break
        elif iteration >= maxiter:
            status = 1
            message = _get_message(status)
            break

    x_hat = x / tau
    # [4] Statement after Theorem 8.2
    return x_hat, status, message, iteration


def _linprog_ip(c, c0, A, b, callback, postsolve_args, maxiter=1000, tol=1e-8,
                disp=False, alpha0=.99995, beta=0.1, sparse=False, lstsq=False,
                sym_pos=True, cholesky=None, pc=True, ip=False,
                permc_spec='MMD_AT_PLUS_A', **unknown_options):
    r"""
    Minimize a linear objective function subject to linear
    equality and non-negativity constraints using the interior point method
    of [4]_. Linear programming is intended to solve problems
    of the following form:

    Minimize::

        c @ x

    Subject to::

        A @ x == b
            x >= 0

    Parameters
    ----------
    c : 1-D array
        Coefficients of the linear objective function to be minimized.
    c0 : float
        Constant term in objective function due to fixed (and eliminated)
        variables. (Purely for display.)
    A : 2-D array
        2-D array such that ``A @ x``, gives the values of the equality
        constraints at ``x``.
    b : 1-D array
        1-D array of values representing the right hand side of each equality
        constraint (row) in ``A``.
    callback : callable, optional
        Callback function to be executed once per iteration.
    postsolve_args : tuple
        Data needed by _postsolve to convert the solution to the standard-form
        problem into the solution to the original problem.

    Options
    -------
    maxiter : int (default = 1000)
        The maximum number of iterations of the algorithm.
    tol : float (default = 1e-8)
        Termination tolerance to be used for all termination criteria;
        see [4]_ Section 4.5.
    disp : bool (default = False)
        Set to ``True`` if indicators of optimization status are to be printed
        to the console each iteration.
    alpha0 : float (default = 0.99995)
        The maximal step size for Mehrota's predictor-corrector search
        direction; see :math:`\beta_{3}` of [4]_ Table 8.1.
    beta : float (default = 0.1)
        The desired reduction of the path parameter :math:`\mu` (see [6]_)
        when Mehrota's predictor-corrector is not in use (uncommon).
    sparse : bool (default = False)
        Set to ``True`` if the problem is to be treated as sparse after
        presolve. If either ``A_eq`` or ``A_ub`` is a sparse matrix,
        this option will automatically be set ``True``, and the problem
        will be treated as sparse even during presolve. If your constraint
        matrices contain mostly zeros and the problem is not very small (less
        than about 100 constraints or variables), consider setting ``True``
        or providing ``A_eq`` and ``A_ub`` as sparse matrices.
    lstsq : bool (default = False)
        Set to ``True`` if the problem is expected to be very poorly
        conditioned. This should always be left ``False`` unless severe
        numerical difficulties are encountered. Leave this at the default
        unless you receive a warning message suggesting otherwise.
    sym_pos : bool (default = True)
        Leave ``True`` if the problem is expected to yield a well conditioned
        symmetric positive definite normal equation matrix
        (almost always). Leave this at the default unless you receive
        a warning message suggesting otherwise.
    cholesky : bool (default = True)
        Set to ``True`` if the normal equations are to be solved by explicit
        Cholesky decomposition followed by explicit forward/backward
        substitution. This is typically faster for problems
        that are numerically well-behaved.
    pc : bool (default = True)
        Leave ``True`` if the predictor-corrector method of Mehrota is to be
        used. This is almost always (if not always) beneficial.
    ip : bool (default = False)
        Set to ``True`` if the improved initial point suggestion due to [4]_
        Section 4.3 is desired. Whether this is beneficial or not
        depends on the problem.
    permc_spec : str (default = 'MMD_AT_PLUS_A')
        (Has effect only with ``sparse = True``, ``lstsq = False``, ``sym_pos =
        True``, and no SuiteSparse.)
        A matrix is factorized in each iteration of the algorithm.
        This option specifies how to permute the columns of the matrix for
        sparsity preservation. Acceptable values are:

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering.

        This option can impact the convergence of the
        interior point algorithm; test different values to determine which
        performs best for your problem. For more information, refer to
        ``scipy.sparse.linalg.splu``.
    unknown_options : dict
        Optional arguments not used by this particular solver. If
        `unknown_options` is non-empty a warning is issued listing all
        unused options.

    Returns
    -------
    x : 1-D array
        Solution vector.
    status : int
        An integer representing the exit status of the optimization::

         0 : Optimization terminated successfully
         1 : Iteration limit reached
         2 : Problem appears to be infeasible
         3 : Problem appears to be unbounded
         4 : Serious numerical difficulties encountered

    message : str
        A string descriptor of the exit status of the optimization.
    iteration : int
        The number of iterations taken to solve the problem.

    Notes
    -----
    This method implements the algorithm outlined in [4]_ with ideas from [8]_
    and a structure inspired by the simpler methods of [6]_.

    The primal-dual path following method begins with initial 'guesses' of
    the primal and dual variables of the standard form problem and iteratively
    attempts to solve the (nonlinear) Karush-Kuhn-Tucker conditions for the
    problem with a gradually reduced logarithmic barrier term added to the
    objective. This particular implementation uses a homogeneous self-dual
    formulation, which provides certificates of infeasibility or unboundedness
    where applicable.

    The default initial point for the primal and dual variables is that
    defined in [4]_ Section 4.4 Equation 8.22. Optionally (by setting initial
    point option ``ip=True``), an alternate (potentially improved) starting
    point can be calculated according to the additional recommendations of
    [4]_ Section 4.4.

    A search direction is calculated using the predictor-corrector method
    (single correction) proposed by Mehrota and detailed in [4]_ Section 4.1.
    (A potential improvement would be to implement the method of multiple
    corrections described in [4]_ Section 4.2.) In practice, this is
    accomplished by solving the normal equations, [4]_ Section 5.1 Equations
    8.31 and 8.32, derived from the Newton equations [4]_ Section 5 Equations
    8.25 (compare to [4]_ Section 4 Equations 8.6-8.8). The advantage of
    solving the normal equations rather than 8.25 directly is that the
    matrices involved are symmetric positive definite, so Cholesky
    decomposition can be used rather than the more expensive LU factorization.

    With default options, the solver used to perform the factorization depends
    on third-party software availability and the conditioning of the problem.

    For dense problems, solvers are tried in the following order:

    1. ``scipy.linalg.cho_factor``

    2. ``scipy.linalg.solve`` with option ``sym_pos=True``

    3. ``scipy.linalg.solve`` with option ``sym_pos=False``

    4. ``scipy.linalg.lstsq``

    For sparse problems:

    1. ``sksparse.cholmod.cholesky`` (if scikit-sparse and SuiteSparse are installed)

    2. ``scipy.sparse.linalg.factorized`` (if scikit-umfpack and SuiteSparse are installed)

    3. ``scipy.sparse.linalg.splu`` (which uses SuperLU distributed with SciPy)

    4. ``scipy.sparse.linalg.lsqr``

    If the solver fails for any reason, successively more robust (but slower)
    solvers are attempted in the order indicated. Attempting, failing, and
    re-starting factorization can be time consuming, so if the problem is
    numerically challenging, options can be set to  bypass solvers that are
    failing. Setting ``cholesky=False`` skips to solver 2,
    ``sym_pos=False`` skips to solver 3, and ``lstsq=True`` skips
    to solver 4 for both sparse and dense problems.

    Potential improvements for combatting issues associated with dense
    columns in otherwise sparse problems are outlined in [4]_ Section 5.3 and
    [10]_ Section 4.1-4.2; the latter also discusses the alleviation of
    accuracy issues associated with the substitution approach to free
    variables.

    After calculating the search direction, the maximum possible step size
    that does not activate the non-negativity constraints is calculated, and
    the smaller of this step size and unity is applied (as in [4]_ Section
    4.1.) [4]_ Section 4.3 suggests improvements for choosing the step size.

    The new point is tested according to the termination conditions of [4]_
    Section 4.5. The same tolerance, which can be set using the ``tol`` option,
    is used for all checks. (A potential improvement would be to expose
    the different tolerances to be set independently.) If optimality,
    unboundedness, or infeasibility is detected, the solve procedure
    terminates; otherwise it repeats.

    The expected problem formulation differs between the top level ``linprog``
    module and the method specific solvers. The method specific solvers expect a
    problem in standard form:

    Minimize::

        c @ x

    Subject to::

        A @ x == b
            x >= 0

    Whereas the top level ``linprog`` module expects a problem of form:

    Minimize::

        c @ x

    Subject to::

        A_ub @ x <= b_ub
        A_eq @ x == b_eq
         lb <= x <= ub

    where ``lb = 0`` and ``ub = None`` unless set in ``bounds``.

    The original problem contains equality, upper-bound and variable constraints
    whereas the method specific solver requires equality constraints and
    variable non-negativity.

    ``linprog`` module converts the original problem to standard form by
    converting the simple bounds to upper bound constraints, introducing
    non-negative slack variables for inequality constraints, and expressing
    unbounded variables as the difference between two non-negative variables.


    References
    ----------
    .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point
           optimizer for linear programming: an implementation of the
           homogeneous algorithm." High performance optimization. Springer US,
           2000. 197-232.
    .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear
           Programming based on Newton's Method." Unpublished Course Notes,
           March 2004. Available 2/25/2017 at
           https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf
    .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear
           programming." Mathematical Programming 71.2 (1995): 221-245.
    .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear
           programming." Athena Scientific 1 (1997): 997.
    .. [10] Andersen, Erling D., et al. Implementation of interior point methods
            for large scale linear programming. HEC/Universite de Geneve, 1996.

    """

    _check_unknown_options(unknown_options)

    # These should be warnings, not errors
    if (cholesky or cholesky is None) and sparse and not has_cholmod:
        if cholesky:
            warn("Sparse cholesky is only available with scikit-sparse. "
                 "Setting `cholesky = False`",
                 OptimizeWarning, stacklevel=3)
        cholesky = False

    if sparse and lstsq:
        warn("Option combination 'sparse':True and 'lstsq':True "
             "is not recommended.",
             OptimizeWarning, stacklevel=3)

    if lstsq and cholesky:
        warn("Invalid option combination 'lstsq':True "
             "and 'cholesky':True; option 'cholesky' has no effect when "
             "'lstsq' is set True.",
             OptimizeWarning, stacklevel=3)

    valid_permc_spec = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', 'COLAMD')
    if permc_spec.upper() not in valid_permc_spec:
        warn("Invalid permc_spec option: '" + str(permc_spec) + "'. "
             "Acceptable values are 'NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A', "
             "and 'COLAMD'. Reverting to default.",
             OptimizeWarning, stacklevel=3)
        permc_spec = 'MMD_AT_PLUS_A'

    # This can be an error
    if not sym_pos and cholesky:
        raise ValueError(
            "Invalid option combination 'sym_pos':False "
            "and 'cholesky':True: Cholesky decomposition is only possible "
            "for symmetric positive definite matrices.")

    cholesky = cholesky or (cholesky is None and sym_pos and not lstsq)

    x, status, message, iteration = _ip_hsd(A, b, c, c0, alpha0, beta,
                                            maxiter, disp, tol, sparse,
                                            lstsq, sym_pos, cholesky,
                                            pc, ip, permc_spec, callback,
                                            postsolve_args)

    return x, status, message, iteration