_basinhopping.py
29.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
"""
basinhopping: The basinhopping global optimization algorithm
"""
import numpy as np
import math
from numpy import cos, sin
import scipy.optimize
from scipy._lib._util import check_random_state
__all__ = ['basinhopping']
class Storage(object):
"""
Class used to store the lowest energy structure
"""
def __init__(self, minres):
self._add(minres)
def _add(self, minres):
self.minres = minres
self.minres.x = np.copy(minres.x)
def update(self, minres):
if minres.fun < self.minres.fun:
self._add(minres)
return True
else:
return False
def get_lowest(self):
return self.minres
class BasinHoppingRunner(object):
"""This class implements the core of the basinhopping algorithm.
x0 : ndarray
The starting coordinates.
minimizer : callable
The local minimizer, with signature ``result = minimizer(x)``.
The return value is an `optimize.OptimizeResult` object.
step_taking : callable
This function displaces the coordinates randomly. Signature should
be ``x_new = step_taking(x)``. Note that `x` may be modified in-place.
accept_tests : list of callables
Each test is passed the kwargs `f_new`, `x_new`, `f_old` and
`x_old`. These tests will be used to judge whether or not to accept
the step. The acceptable return values are True, False, or ``"force
accept"``. If any of the tests return False then the step is rejected.
If ``"force accept"``, then this will override any other tests in
order to accept the step. This can be used, for example, to forcefully
escape from a local minimum that ``basinhopping`` is trapped in.
disp : bool, optional
Display status messages.
"""
def __init__(self, x0, minimizer, step_taking, accept_tests, disp=False):
self.x = np.copy(x0)
self.minimizer = minimizer
self.step_taking = step_taking
self.accept_tests = accept_tests
self.disp = disp
self.nstep = 0
# initialize return object
self.res = scipy.optimize.OptimizeResult()
self.res.minimization_failures = 0
# do initial minimization
minres = minimizer(self.x)
if not minres.success:
self.res.minimization_failures += 1
if self.disp:
print("warning: basinhopping: local minimization failure")
self.x = np.copy(minres.x)
self.energy = minres.fun
if self.disp:
print("basinhopping step %d: f %g" % (self.nstep, self.energy))
# initialize storage class
self.storage = Storage(minres)
if hasattr(minres, "nfev"):
self.res.nfev = minres.nfev
if hasattr(minres, "njev"):
self.res.njev = minres.njev
if hasattr(minres, "nhev"):
self.res.nhev = minres.nhev
def _monte_carlo_step(self):
"""Do one Monte Carlo iteration
Randomly displace the coordinates, minimize, and decide whether
or not to accept the new coordinates.
"""
# Take a random step. Make a copy of x because the step_taking
# algorithm might change x in place
x_after_step = np.copy(self.x)
x_after_step = self.step_taking(x_after_step)
# do a local minimization
minres = self.minimizer(x_after_step)
x_after_quench = minres.x
energy_after_quench = minres.fun
if not minres.success:
self.res.minimization_failures += 1
if self.disp:
print("warning: basinhopping: local minimization failure")
if hasattr(minres, "nfev"):
self.res.nfev += minres.nfev
if hasattr(minres, "njev"):
self.res.njev += minres.njev
if hasattr(minres, "nhev"):
self.res.nhev += minres.nhev
# accept the move based on self.accept_tests. If any test is False,
# then reject the step. If any test returns the special string
# 'force accept', then accept the step regardless. This can be used
# to forcefully escape from a local minimum if normal basin hopping
# steps are not sufficient.
accept = True
for test in self.accept_tests:
testres = test(f_new=energy_after_quench, x_new=x_after_quench,
f_old=self.energy, x_old=self.x)
if testres == 'force accept':
accept = True
break
elif testres is None:
raise ValueError("accept_tests must return True, False, or "
"'force accept'")
elif not testres:
accept = False
# Report the result of the acceptance test to the take step class.
# This is for adaptive step taking
if hasattr(self.step_taking, "report"):
self.step_taking.report(accept, f_new=energy_after_quench,
x_new=x_after_quench, f_old=self.energy,
x_old=self.x)
return accept, minres
def one_cycle(self):
"""Do one cycle of the basinhopping algorithm
"""
self.nstep += 1
new_global_min = False
accept, minres = self._monte_carlo_step()
if accept:
self.energy = minres.fun
self.x = np.copy(minres.x)
new_global_min = self.storage.update(minres)
# print some information
if self.disp:
self.print_report(minres.fun, accept)
if new_global_min:
print("found new global minimum on step %d with function"
" value %g" % (self.nstep, self.energy))
# save some variables as BasinHoppingRunner attributes
self.xtrial = minres.x
self.energy_trial = minres.fun
self.accept = accept
return new_global_min
def print_report(self, energy_trial, accept):
"""print a status update"""
minres = self.storage.get_lowest()
print("basinhopping step %d: f %g trial_f %g accepted %d "
" lowest_f %g" % (self.nstep, self.energy, energy_trial,
accept, minres.fun))
class AdaptiveStepsize(object):
"""
Class to implement adaptive stepsize.
This class wraps the step taking class and modifies the stepsize to
ensure the true acceptance rate is as close as possible to the target.
Parameters
----------
takestep : callable
The step taking routine. Must contain modifiable attribute
takestep.stepsize
accept_rate : float, optional
The target step acceptance rate
interval : int, optional
Interval for how often to update the stepsize
factor : float, optional
The step size is multiplied or divided by this factor upon each
update.
verbose : bool, optional
Print information about each update
"""
def __init__(self, takestep, accept_rate=0.5, interval=50, factor=0.9,
verbose=True):
self.takestep = takestep
self.target_accept_rate = accept_rate
self.interval = interval
self.factor = factor
self.verbose = verbose
self.nstep = 0
self.nstep_tot = 0
self.naccept = 0
def __call__(self, x):
return self.take_step(x)
def _adjust_step_size(self):
old_stepsize = self.takestep.stepsize
accept_rate = float(self.naccept) / self.nstep
if accept_rate > self.target_accept_rate:
# We're accepting too many steps. This generally means we're
# trapped in a basin. Take bigger steps.
self.takestep.stepsize /= self.factor
else:
# We're not accepting enough steps. Take smaller steps.
self.takestep.stepsize *= self.factor
if self.verbose:
print("adaptive stepsize: acceptance rate %f target %f new "
"stepsize %g old stepsize %g" % (accept_rate,
self.target_accept_rate, self.takestep.stepsize,
old_stepsize))
def take_step(self, x):
self.nstep += 1
self.nstep_tot += 1
if self.nstep % self.interval == 0:
self._adjust_step_size()
return self.takestep(x)
def report(self, accept, **kwargs):
"called by basinhopping to report the result of the step"
if accept:
self.naccept += 1
class RandomDisplacement(object):
"""
Add a random displacement of maximum size `stepsize` to each coordinate
Calling this updates `x` in-place.
Parameters
----------
stepsize : float, optional
Maximum stepsize in any dimension
random_gen : {None, `np.random.RandomState`, `np.random.Generator`}
The random number generator that generates the displacements
"""
def __init__(self, stepsize=0.5, random_gen=None):
self.stepsize = stepsize
self.random_gen = check_random_state(random_gen)
def __call__(self, x):
x += self.random_gen.uniform(-self.stepsize, self.stepsize,
np.shape(x))
return x
class MinimizerWrapper(object):
"""
wrap a minimizer function as a minimizer class
"""
def __init__(self, minimizer, func=None, **kwargs):
self.minimizer = minimizer
self.func = func
self.kwargs = kwargs
def __call__(self, x0):
if self.func is None:
return self.minimizer(x0, **self.kwargs)
else:
return self.minimizer(self.func, x0, **self.kwargs)
class Metropolis(object):
"""
Metropolis acceptance criterion
Parameters
----------
T : float
The "temperature" parameter for the accept or reject criterion.
random_gen : {None, `np.random.RandomState`, `np.random.Generator`}
Random number generator used for acceptance test
"""
def __init__(self, T, random_gen=None):
# Avoid ZeroDivisionError since "MBH can be regarded as a special case
# of the BH framework with the Metropolis criterion, where temperature
# T = 0." (Reject all steps that increase energy.)
self.beta = 1.0 / T if T != 0 else float('inf')
self.random_gen = check_random_state(random_gen)
def accept_reject(self, energy_new, energy_old):
"""
If new energy is lower than old, it will always be accepted.
If new is higher than old, there is a chance it will be accepted,
less likely for larger differences.
"""
with np.errstate(invalid='ignore'):
# The energy values being fed to Metropolis are 1-length arrays, and if
# they are equal, their difference is 0, which gets multiplied by beta,
# which is inf, and array([0]) * float('inf') causes
#
# RuntimeWarning: invalid value encountered in multiply
#
# Ignore this warning so so when the algorithm is on a flat plane, it always
# accepts the step, to try to move off the plane.
prod = -(energy_new - energy_old) * self.beta
w = math.exp(min(0, prod))
rand = self.random_gen.uniform()
return w >= rand
def __call__(self, **kwargs):
"""
f_new and f_old are mandatory in kwargs
"""
return bool(self.accept_reject(kwargs["f_new"],
kwargs["f_old"]))
def basinhopping(func, x0, niter=100, T=1.0, stepsize=0.5,
minimizer_kwargs=None, take_step=None, accept_test=None,
callback=None, interval=50, disp=False, niter_success=None,
seed=None):
"""
Find the global minimum of a function using the basin-hopping algorithm
Basin-hopping is a two-phase method that combines a global stepping
algorithm with local minimization at each step. Designed to mimic
the natural process of energy minimization of clusters of atoms, it works
well for similar problems with "funnel-like, but rugged" energy landscapes
[5]_.
As the step-taking, step acceptance, and minimization methods are all
customizable, this function can also be used to implement other two-phase
methods.
Parameters
----------
func : callable ``f(x, *args)``
Function to be optimized. ``args`` can be passed as an optional item
in the dict ``minimizer_kwargs``
x0 : array_like
Initial guess.
niter : integer, optional
The number of basin-hopping iterations
T : float, optional
The "temperature" parameter for the accept or reject criterion. Higher
"temperatures" mean that larger jumps in function value will be
accepted. For best results ``T`` should be comparable to the
separation (in function value) between local minima.
stepsize : float, optional
Maximum step size for use in the random displacement.
minimizer_kwargs : dict, optional
Extra keyword arguments to be passed to the local minimizer
``scipy.optimize.minimize()`` Some important options could be:
method : str
The minimization method (e.g. ``"L-BFGS-B"``)
args : tuple
Extra arguments passed to the objective function (``func``) and
its derivatives (Jacobian, Hessian).
take_step : callable ``take_step(x)``, optional
Replace the default step-taking routine with this routine. The default
step-taking routine is a random displacement of the coordinates, but
other step-taking algorithms may be better for some systems.
``take_step`` can optionally have the attribute ``take_step.stepsize``.
If this attribute exists, then ``basinhopping`` will adjust
``take_step.stepsize`` in order to try to optimize the global minimum
search.
accept_test : callable, ``accept_test(f_new=f_new, x_new=x_new, f_old=fold, x_old=x_old)``, optional
Define a test which will be used to judge whether or not to accept the
step. This will be used in addition to the Metropolis test based on
"temperature" ``T``. The acceptable return values are True,
False, or ``"force accept"``. If any of the tests return False
then the step is rejected. If the latter, then this will override any
other tests in order to accept the step. This can be used, for example,
to forcefully escape from a local minimum that ``basinhopping`` is
trapped in.
callback : callable, ``callback(x, f, accept)``, optional
A callback function which will be called for all minima found. ``x``
and ``f`` are the coordinates and function value of the trial minimum,
and ``accept`` is whether or not that minimum was accepted. This can
be used, for example, to save the lowest N minima found. Also,
``callback`` can be used to specify a user defined stop criterion by
optionally returning True to stop the ``basinhopping`` routine.
interval : integer, optional
interval for how often to update the ``stepsize``
disp : bool, optional
Set to True to print status messages
niter_success : integer, optional
Stop the run if the global minimum candidate remains the same for this
number of iterations.
seed : {int, `~np.random.RandomState`, `~np.random.Generator`}, optional
If `seed` is not specified the `~np.random.RandomState` singleton is
used.
If `seed` is an int, a new ``RandomState`` instance is used, seeded
with seed.
If `seed` is already a ``RandomState`` or ``Generator`` instance, then
that object is used.
Specify `seed` for repeatable minimizations. The random numbers
generated with this seed only affect the default Metropolis
`accept_test` and the default `take_step`. If you supply your own
`take_step` and `accept_test`, and these functions use random
number generation, then those functions are responsible for the state
of their random number generator.
Returns
-------
res : OptimizeResult
The optimization result represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``fun`` the value
of the function at the solution, and ``message`` which describes the
cause of the termination. The ``OptimizeResult`` object returned by the
selected minimizer at the lowest minimum is also contained within this
object and can be accessed through the ``lowest_optimization_result``
attribute. See `OptimizeResult` for a description of other attributes.
See Also
--------
minimize :
The local minimization function called once for each basinhopping step.
``minimizer_kwargs`` is passed to this routine.
Notes
-----
Basin-hopping is a stochastic algorithm which attempts to find the global
minimum of a smooth scalar function of one or more variables [1]_ [2]_ [3]_
[4]_. The algorithm in its current form was described by David Wales and
Jonathan Doye [2]_ http://www-wales.ch.cam.ac.uk/.
The algorithm is iterative with each cycle composed of the following
features
1) random perturbation of the coordinates
2) local minimization
3) accept or reject the new coordinates based on the minimized function
value
The acceptance test used here is the Metropolis criterion of standard Monte
Carlo algorithms, although there are many other possibilities [3]_.
This global minimization method has been shown to be extremely efficient
for a wide variety of problems in physics and chemistry. It is
particularly useful when the function has many minima separated by large
barriers. See the Cambridge Cluster Database
http://www-wales.ch.cam.ac.uk/CCD.html for databases of molecular systems
that have been optimized primarily using basin-hopping. This database
includes minimization problems exceeding 300 degrees of freedom.
See the free software program GMIN (http://www-wales.ch.cam.ac.uk/GMIN) for
a Fortran implementation of basin-hopping. This implementation has many
different variations of the procedure described above, including more
advanced step taking algorithms and alternate acceptance criterion.
For stochastic global optimization there is no way to determine if the true
global minimum has actually been found. Instead, as a consistency check,
the algorithm can be run from a number of different random starting points
to ensure the lowest minimum found in each example has converged to the
global minimum. For this reason, ``basinhopping`` will by default simply
run for the number of iterations ``niter`` and return the lowest minimum
found. It is left to the user to ensure that this is in fact the global
minimum.
Choosing ``stepsize``: This is a crucial parameter in ``basinhopping`` and
depends on the problem being solved. The step is chosen uniformly in the
region from x0-stepsize to x0+stepsize, in each dimension. Ideally, it
should be comparable to the typical separation (in argument values) between
local minima of the function being optimized. ``basinhopping`` will, by
default, adjust ``stepsize`` to find an optimal value, but this may take
many iterations. You will get quicker results if you set a sensible
initial value for ``stepsize``.
Choosing ``T``: The parameter ``T`` is the "temperature" used in the
Metropolis criterion. Basinhopping steps are always accepted if
``func(xnew) < func(xold)``. Otherwise, they are accepted with
probability::
exp( -(func(xnew) - func(xold)) / T )
So, for best results, ``T`` should to be comparable to the typical
difference (in function values) between local minima. (The height of
"walls" between local minima is irrelevant.)
If ``T`` is 0, the algorithm becomes Monotonic Basin-Hopping, in which all
steps that increase energy are rejected.
.. versionadded:: 0.12.0
References
----------
.. [1] Wales, David J. 2003, Energy Landscapes, Cambridge University Press,
Cambridge, UK.
.. [2] Wales, D J, and Doye J P K, Global Optimization by Basin-Hopping and
the Lowest Energy Structures of Lennard-Jones Clusters Containing up to
110 Atoms. Journal of Physical Chemistry A, 1997, 101, 5111.
.. [3] Li, Z. and Scheraga, H. A., Monte Carlo-minimization approach to the
multiple-minima problem in protein folding, Proc. Natl. Acad. Sci. USA,
1987, 84, 6611.
.. [4] Wales, D. J. and Scheraga, H. A., Global optimization of clusters,
crystals, and biomolecules, Science, 1999, 285, 1368.
.. [5] Olson, B., Hashmi, I., Molloy, K., and Shehu1, A., Basin Hopping as
a General and Versatile Optimization Framework for the Characterization
of Biological Macromolecules, Advances in Artificial Intelligence,
Volume 2012 (2012), Article ID 674832, :doi:`10.1155/2012/674832`
Examples
--------
The following example is a 1-D minimization problem, with many
local minima superimposed on a parabola.
>>> from scipy.optimize import basinhopping
>>> func = lambda x: np.cos(14.5 * x - 0.3) + (x + 0.2) * x
>>> x0=[1.]
Basinhopping, internally, uses a local minimization algorithm. We will use
the parameter ``minimizer_kwargs`` to tell basinhopping which algorithm to
use and how to set up that minimizer. This parameter will be passed to
``scipy.optimize.minimize()``.
>>> minimizer_kwargs = {"method": "BFGS"}
>>> ret = basinhopping(func, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = %.4f, f(x0) = %.4f" % (ret.x, ret.fun))
global minimum: x = -0.1951, f(x0) = -1.0009
Next consider a 2-D minimization problem. Also, this time, we
will use gradient information to significantly speed up the search.
>>> def func2d(x):
... f = np.cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] +
... 0.2) * x[0]
... df = np.zeros(2)
... df[0] = -14.5 * np.sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2
... df[1] = 2. * x[1] + 0.2
... return f, df
We'll also use a different local minimization algorithm. Also, we must tell
the minimizer that our function returns both energy and gradient (Jacobian).
>>> minimizer_kwargs = {"method":"L-BFGS-B", "jac":True}
>>> x0 = [1.0, 1.0]
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109
Here is an example using a custom step-taking routine. Imagine you want
the first coordinate to take larger steps than the rest of the coordinates.
This can be implemented like so:
>>> class MyTakeStep(object):
... def __init__(self, stepsize=0.5):
... self.stepsize = stepsize
... def __call__(self, x):
... s = self.stepsize
... x[0] += np.random.uniform(-2.*s, 2.*s)
... x[1:] += np.random.uniform(-s, s, x[1:].shape)
... return x
Since ``MyTakeStep.stepsize`` exists basinhopping will adjust the magnitude
of ``stepsize`` to optimize the search. We'll use the same 2-D function as
before
>>> mytakestep = MyTakeStep()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=200, take_step=mytakestep)
>>> print("global minimum: x = [%.4f, %.4f], f(x0) = %.4f" % (ret.x[0],
... ret.x[1],
... ret.fun))
global minimum: x = [-0.1951, -0.1000], f(x0) = -1.0109
Now, let's do an example using a custom callback function which prints the
value of every minimum found
>>> def print_fun(x, f, accepted):
... print("at minimum %.4f accepted %d" % (f, int(accepted)))
We'll run it for only 10 basinhopping steps this time.
>>> np.random.seed(1)
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=10, callback=print_fun)
at minimum 0.4159 accepted 1
at minimum -0.9073 accepted 1
at minimum -0.1021 accepted 1
at minimum -0.1021 accepted 1
at minimum 0.9102 accepted 1
at minimum 0.9102 accepted 1
at minimum 2.2945 accepted 0
at minimum -0.1021 accepted 1
at minimum -1.0109 accepted 1
at minimum -1.0109 accepted 1
The minimum at -1.0109 is actually the global minimum, found already on the
8th iteration.
Now let's implement bounds on the problem using a custom ``accept_test``:
>>> class MyBounds(object):
... def __init__(self, xmax=[1.1,1.1], xmin=[-1.1,-1.1] ):
... self.xmax = np.array(xmax)
... self.xmin = np.array(xmin)
... def __call__(self, **kwargs):
... x = kwargs["x_new"]
... tmax = bool(np.all(x <= self.xmax))
... tmin = bool(np.all(x >= self.xmin))
... return tmax and tmin
>>> mybounds = MyBounds()
>>> ret = basinhopping(func2d, x0, minimizer_kwargs=minimizer_kwargs,
... niter=10, accept_test=mybounds)
"""
x0 = np.array(x0)
# set up the np.random.RandomState generator
rng = check_random_state(seed)
# set up minimizer
if minimizer_kwargs is None:
minimizer_kwargs = dict()
wrapped_minimizer = MinimizerWrapper(scipy.optimize.minimize, func,
**minimizer_kwargs)
# set up step-taking algorithm
if take_step is not None:
if not callable(take_step):
raise TypeError("take_step must be callable")
# if take_step.stepsize exists then use AdaptiveStepsize to control
# take_step.stepsize
if hasattr(take_step, "stepsize"):
take_step_wrapped = AdaptiveStepsize(take_step, interval=interval,
verbose=disp)
else:
take_step_wrapped = take_step
else:
# use default
displace = RandomDisplacement(stepsize=stepsize, random_gen=rng)
take_step_wrapped = AdaptiveStepsize(displace, interval=interval,
verbose=disp)
# set up accept tests
accept_tests = []
if accept_test is not None:
if not callable(accept_test):
raise TypeError("accept_test must be callable")
accept_tests = [accept_test]
# use default
metropolis = Metropolis(T, random_gen=rng)
accept_tests.append(metropolis)
if niter_success is None:
niter_success = niter + 2
bh = BasinHoppingRunner(x0, wrapped_minimizer, take_step_wrapped,
accept_tests, disp=disp)
# start main iteration loop
count, i = 0, 0
message = ["requested number of basinhopping iterations completed"
" successfully"]
for i in range(niter):
new_global_min = bh.one_cycle()
if callable(callback):
# should we pass a copy of x?
val = callback(bh.xtrial, bh.energy_trial, bh.accept)
if val is not None:
if val:
message = ["callback function requested stop early by"
"returning True"]
break
count += 1
if new_global_min:
count = 0
elif count > niter_success:
message = ["success condition satisfied"]
break
# prepare return object
res = bh.res
res.lowest_optimization_result = bh.storage.get_lowest()
res.x = np.copy(res.lowest_optimization_result.x)
res.fun = res.lowest_optimization_result.fun
res.message = message
res.nit = i + 1
return res
def _test_func2d_nograd(x):
f = (cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] + (x[0] + 0.2) * x[0]
+ 1.010876184442655)
return f
def _test_func2d(x):
f = (cos(14.5 * x[0] - 0.3) + (x[0] + 0.2) * x[0] + cos(14.5 * x[1] -
0.3) + (x[1] + 0.2) * x[1] + x[0] * x[1] + 1.963879482144252)
df = np.zeros(2)
df[0] = -14.5 * sin(14.5 * x[0] - 0.3) + 2. * x[0] + 0.2 + x[1]
df[1] = -14.5 * sin(14.5 * x[1] - 0.3) + 2. * x[1] + 0.2 + x[0]
return f, df
if __name__ == "__main__":
print("\n\nminimize a 2-D function without gradient")
# minimum expected at ~[-0.195, -0.1]
kwargs = {"method": "L-BFGS-B"}
x0 = np.array([1.0, 1.])
scipy.optimize.minimize(_test_func2d_nograd, x0, **kwargs)
ret = basinhopping(_test_func2d_nograd, x0, minimizer_kwargs=kwargs,
niter=200, disp=False)
print("minimum expected at func([-0.195, -0.1]) = 0.0")
print(ret)
print("\n\ntry a harder 2-D problem")
kwargs = {"method": "L-BFGS-B", "jac": True}
x0 = np.array([1.0, 1.0])
ret = basinhopping(_test_func2d, x0, minimizer_kwargs=kwargs, niter=200,
disp=False)
print("minimum expected at ~, func([-0.19415263, -0.19415263]) = 0")
print(ret)