test_interpolative.py
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#******************************************************************************
# Copyright (C) 2013 Kenneth L. Ho
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer. Redistributions in binary
# form must reproduce the above copyright notice, this list of conditions and
# the following disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# None of the names of the copyright holders may be used to endorse or
# promote products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#******************************************************************************
import scipy.linalg.interpolative as pymatrixid
import numpy as np
from scipy.linalg import hilbert, svdvals, norm
from scipy.sparse.linalg import aslinearoperator
from scipy.linalg.interpolative import interp_decomp
import time
import itertools
from numpy.testing import assert_, assert_allclose
from pytest import raises as assert_raises
def _debug_print(s):
if 0:
print(s)
class TestInterpolativeDecomposition(object):
def test_id(self):
for dtype in [np.float64, np.complex128]:
self.check_id(dtype)
def check_id(self, dtype):
# Test ID routines on a Hilbert matrix.
# set parameters
n = 300
eps = 1e-12
# construct Hilbert matrix
A = hilbert(n).astype(dtype)
if np.issubdtype(dtype, np.complexfloating):
A = A * (1 + 1j)
L = aslinearoperator(A)
# find rank
S = np.linalg.svd(A, compute_uv=False)
try:
rank = np.nonzero(S < eps)[0][0]
except IndexError:
rank = n
# print input summary
_debug_print("Hilbert matrix dimension: %8i" % n)
_debug_print("Working precision: %8.2e" % eps)
_debug_print("Rank to working precision: %8i" % rank)
# set print format
fmt = "%8.2e (s) / %5s"
# test real ID routines
_debug_print("-----------------------------------------")
_debug_print("Real ID routines")
_debug_print("-----------------------------------------")
# fixed precision
_debug_print("Calling iddp_id / idzp_id ...",)
t0 = time.time()
k, idx, proj = pymatrixid.interp_decomp(A, eps, rand=False)
t = time.time() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_aid / idzp_aid ...",)
t0 = time.time()
k, idx, proj = pymatrixid.interp_decomp(A, eps)
t = time.time() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_rid / idzp_rid ...",)
t0 = time.time()
k, idx, proj = pymatrixid.interp_decomp(L, eps)
t = time.time() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# fixed rank
k = rank
_debug_print("Calling iddr_id / idzr_id ...",)
t0 = time.time()
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
t = time.time() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_aid / idzr_aid ...",)
t0 = time.time()
idx, proj = pymatrixid.interp_decomp(A, k)
t = time.time() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_rid / idzr_rid ...",)
t0 = time.time()
idx, proj = pymatrixid.interp_decomp(L, k)
t = time.time() - t0
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# check skeleton and interpolation matrices
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_(np.allclose(B, A[:,idx[:k]], eps))
assert_(np.allclose(B.dot(P), A, eps))
# test SVD routines
_debug_print("-----------------------------------------")
_debug_print("SVD routines")
_debug_print("-----------------------------------------")
# fixed precision
_debug_print("Calling iddp_svd / idzp_svd ...",)
t0 = time.time()
U, S, V = pymatrixid.svd(A, eps, rand=False)
t = time.time() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_asvd / idzp_asvd...",)
t0 = time.time()
U, S, V = pymatrixid.svd(A, eps)
t = time.time() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddp_rsvd / idzp_rsvd...",)
t0 = time.time()
U, S, V = pymatrixid.svd(L, eps)
t = time.time() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# fixed rank
k = rank
_debug_print("Calling iddr_svd / idzr_svd ...",)
t0 = time.time()
U, S, V = pymatrixid.svd(A, k, rand=False)
t = time.time() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_asvd / idzr_asvd ...",)
t0 = time.time()
U, S, V = pymatrixid.svd(A, k)
t = time.time() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
_debug_print("Calling iddr_rsvd / idzr_rsvd ...",)
t0 = time.time()
U, S, V = pymatrixid.svd(L, k)
t = time.time() - t0
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
_debug_print(fmt % (t, np.allclose(A, B, eps)))
assert_(np.allclose(A, B, eps))
# ID to SVD
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
Up, Sp, Vp = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
B = U.dot(np.diag(S).dot(V.T.conj()))
assert_(np.allclose(A, B, eps))
# Norm estimates
s = svdvals(A)
norm_2_est = pymatrixid.estimate_spectral_norm(A)
assert_(np.allclose(norm_2_est, s[0], 1e-6))
B = A.copy()
B[:,0] *= 1.2
s = svdvals(A - B)
norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
assert_(np.allclose(norm_2_est, s[0], 1e-6))
# Rank estimates
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=dtype)
for M in [A, B]:
ML = aslinearoperator(M)
rank_tol = 1e-9
rank_np = np.linalg.matrix_rank(M, norm(M, 2)*rank_tol)
rank_est = pymatrixid.estimate_rank(M, rank_tol)
rank_est_2 = pymatrixid.estimate_rank(ML, rank_tol)
assert_(rank_est >= rank_np)
assert_(rank_est <= rank_np + 10)
assert_(rank_est_2 >= rank_np - 4)
assert_(rank_est_2 <= rank_np + 4)
def test_rand(self):
pymatrixid.seed('default')
assert_(np.allclose(pymatrixid.rand(2), [0.8932059, 0.64500803], 1e-4))
pymatrixid.seed(1234)
x1 = pymatrixid.rand(2)
assert_(np.allclose(x1, [0.7513823, 0.06861718], 1e-4))
np.random.seed(1234)
pymatrixid.seed()
x2 = pymatrixid.rand(2)
np.random.seed(1234)
pymatrixid.seed(np.random.rand(55))
x3 = pymatrixid.rand(2)
assert_allclose(x1, x2)
assert_allclose(x1, x3)
def test_badcall(self):
A = hilbert(5).astype(np.float32)
assert_raises(ValueError, pymatrixid.interp_decomp, A, 1e-6, rand=False)
def test_rank_too_large(self):
# svd(array, k) should not segfault
a = np.ones((4, 3))
with assert_raises(ValueError):
pymatrixid.svd(a, 4)
def test_full_rank(self):
eps = 1.0e-12
# fixed precision
A = np.random.rand(16, 8)
k, idx, proj = pymatrixid.interp_decomp(A, eps)
assert_(k == A.shape[1])
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_allclose(A, B.dot(P))
# fixed rank
idx, proj = pymatrixid.interp_decomp(A, k)
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
assert_allclose(A, B.dot(P))
def test_bug_9793(self):
dtypes = [np.float_, np.complex_]
rands = [True, False]
epss = [1, 0.1]
for dtype, eps, rand in itertools.product(dtypes, epss, rands):
A = np.array([[-1, -1, -1, 0, 0, 0],
[0, 0, 0, 1, 1, 1],
[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1]],
dtype=dtype, order="C")
B = A.copy()
interp_decomp(A.T, eps, rand=rand)
assert_(np.array_equal(A, B))