test_fblas.py 18.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
# Test interfaces to fortran blas.
#
# The tests are more of interface than they are of the underlying blas.
# Only very small matrices checked -- N=3 or so.
#
# !! Complex calculations really aren't checked that carefully.
# !! Only real valued complex numbers are used in tests.

from numpy import float32, float64, complex64, complex128, arange, array, \
                  zeros, shape, transpose, newaxis, common_type, conjugate

from scipy.linalg import _fblas as fblas

from numpy.testing import assert_array_equal, \
    assert_allclose, assert_array_almost_equal, assert_

import pytest

# decimal accuracy to require between Python and LAPACK/BLAS calculations
accuracy = 5

# Since numpy.dot likely uses the same blas, use this routine
# to check.


def matrixmultiply(a, b):
    if len(b.shape) == 1:
        b_is_vector = True
        b = b[:, newaxis]
    else:
        b_is_vector = False
    assert_(a.shape[1] == b.shape[0])
    c = zeros((a.shape[0], b.shape[1]), common_type(a, b))
    for i in range(a.shape[0]):
        for j in range(b.shape[1]):
            s = 0
            for k in range(a.shape[1]):
                s += a[i, k] * b[k, j]
            c[i, j] = s
    if b_is_vector:
        c = c.reshape((a.shape[0],))
    return c

##################################################
# Test blas ?axpy


class BaseAxpy(object):
    ''' Mixin class for axpy tests '''

    def test_default_a(self):
        x = arange(3., dtype=self.dtype)
        y = arange(3., dtype=x.dtype)
        real_y = x*1.+y
        y = self.blas_func(x, y)
        assert_array_equal(real_y, y)

    def test_simple(self):
        x = arange(3., dtype=self.dtype)
        y = arange(3., dtype=x.dtype)
        real_y = x*3.+y
        y = self.blas_func(x, y, a=3.)
        assert_array_equal(real_y, y)

    def test_x_stride(self):
        x = arange(6., dtype=self.dtype)
        y = zeros(3, x.dtype)
        y = arange(3., dtype=x.dtype)
        real_y = x[::2]*3.+y
        y = self.blas_func(x, y, a=3., n=3, incx=2)
        assert_array_equal(real_y, y)

    def test_y_stride(self):
        x = arange(3., dtype=self.dtype)
        y = zeros(6, x.dtype)
        real_y = x*3.+y[::2]
        y = self.blas_func(x, y, a=3., n=3, incy=2)
        assert_array_equal(real_y, y[::2])

    def test_x_and_y_stride(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        real_y = x[::4]*3.+y[::2]
        y = self.blas_func(x, y, a=3., n=3, incx=4, incy=2)
        assert_array_equal(real_y, y[::2])

    def test_x_bad_size(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(x, y, n=4, incx=5)

    def test_y_bad_size(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(x, y, n=3, incy=5)


try:
    class TestSaxpy(BaseAxpy):
        blas_func = fblas.saxpy
        dtype = float32
except AttributeError:
    class TestSaxpy:
        pass


class TestDaxpy(BaseAxpy):
    blas_func = fblas.daxpy
    dtype = float64


try:
    class TestCaxpy(BaseAxpy):
        blas_func = fblas.caxpy
        dtype = complex64
except AttributeError:
    class TestCaxpy:
        pass


class TestZaxpy(BaseAxpy):
    blas_func = fblas.zaxpy
    dtype = complex128


##################################################
# Test blas ?scal

class BaseScal(object):
    ''' Mixin class for scal testing '''

    def test_simple(self):
        x = arange(3., dtype=self.dtype)
        real_x = x*3.
        x = self.blas_func(3., x)
        assert_array_equal(real_x, x)

    def test_x_stride(self):
        x = arange(6., dtype=self.dtype)
        real_x = x.copy()
        real_x[::2] = x[::2]*array(3., self.dtype)
        x = self.blas_func(3., x, n=3, incx=2)
        assert_array_equal(real_x, x)

    def test_x_bad_size(self):
        x = arange(12., dtype=self.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(2., x, n=4, incx=5)


try:
    class TestSscal(BaseScal):
        blas_func = fblas.sscal
        dtype = float32
except AttributeError:
    class TestSscal:
        pass


class TestDscal(BaseScal):
    blas_func = fblas.dscal
    dtype = float64


try:
    class TestCscal(BaseScal):
        blas_func = fblas.cscal
        dtype = complex64
except AttributeError:
    class TestCscal:
        pass


class TestZscal(BaseScal):
    blas_func = fblas.zscal
    dtype = complex128


##################################################
# Test blas ?copy

class BaseCopy(object):
    ''' Mixin class for copy testing '''

    def test_simple(self):
        x = arange(3., dtype=self.dtype)
        y = zeros(shape(x), x.dtype)
        y = self.blas_func(x, y)
        assert_array_equal(x, y)

    def test_x_stride(self):
        x = arange(6., dtype=self.dtype)
        y = zeros(3, x.dtype)
        y = self.blas_func(x, y, n=3, incx=2)
        assert_array_equal(x[::2], y)

    def test_y_stride(self):
        x = arange(3., dtype=self.dtype)
        y = zeros(6, x.dtype)
        y = self.blas_func(x, y, n=3, incy=2)
        assert_array_equal(x, y[::2])

    def test_x_and_y_stride(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        y = self.blas_func(x, y, n=3, incx=4, incy=2)
        assert_array_equal(x[::4], y[::2])

    def test_x_bad_size(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(x, y, n=4, incx=5)

    def test_y_bad_size(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(x, y, n=3, incy=5)

    # def test_y_bad_type(self):
    ##   Hmmm. Should this work?  What should be the output.
    #    x = arange(3.,dtype=self.dtype)
    #    y = zeros(shape(x))
    #    self.blas_func(x,y)
    #    assert_array_equal(x,y)


try:
    class TestScopy(BaseCopy):
        blas_func = fblas.scopy
        dtype = float32
except AttributeError:
    class TestScopy:
        pass


class TestDcopy(BaseCopy):
    blas_func = fblas.dcopy
    dtype = float64


try:
    class TestCcopy(BaseCopy):
        blas_func = fblas.ccopy
        dtype = complex64
except AttributeError:
    class TestCcopy:
        pass


class TestZcopy(BaseCopy):
    blas_func = fblas.zcopy
    dtype = complex128


##################################################
# Test blas ?swap

class BaseSwap(object):
    ''' Mixin class for swap tests '''

    def test_simple(self):
        x = arange(3., dtype=self.dtype)
        y = zeros(shape(x), x.dtype)
        desired_x = y.copy()
        desired_y = x.copy()
        x, y = self.blas_func(x, y)
        assert_array_equal(desired_x, x)
        assert_array_equal(desired_y, y)

    def test_x_stride(self):
        x = arange(6., dtype=self.dtype)
        y = zeros(3, x.dtype)
        desired_x = y.copy()
        desired_y = x.copy()[::2]
        x, y = self.blas_func(x, y, n=3, incx=2)
        assert_array_equal(desired_x, x[::2])
        assert_array_equal(desired_y, y)

    def test_y_stride(self):
        x = arange(3., dtype=self.dtype)
        y = zeros(6, x.dtype)
        desired_x = y.copy()[::2]
        desired_y = x.copy()
        x, y = self.blas_func(x, y, n=3, incy=2)
        assert_array_equal(desired_x, x)
        assert_array_equal(desired_y, y[::2])

    def test_x_and_y_stride(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        desired_x = y.copy()[::2]
        desired_y = x.copy()[::4]
        x, y = self.blas_func(x, y, n=3, incx=4, incy=2)
        assert_array_equal(desired_x, x[::4])
        assert_array_equal(desired_y, y[::2])

    def test_x_bad_size(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(x, y, n=4, incx=5)

    def test_y_bad_size(self):
        x = arange(12., dtype=self.dtype)
        y = zeros(6, x.dtype)
        with pytest.raises(Exception, match='failed for 1st keyword'):
            self.blas_func(x, y, n=3, incy=5)


try:
    class TestSswap(BaseSwap):
        blas_func = fblas.sswap
        dtype = float32
except AttributeError:
    class TestSswap:
        pass


class TestDswap(BaseSwap):
    blas_func = fblas.dswap
    dtype = float64


try:
    class TestCswap(BaseSwap):
        blas_func = fblas.cswap
        dtype = complex64
except AttributeError:
    class TestCswap:
        pass


class TestZswap(BaseSwap):
    blas_func = fblas.zswap
    dtype = complex128

##################################################
# Test blas ?gemv
# This will be a mess to test all cases.


class BaseGemv(object):
    ''' Mixin class for gemv tests '''

    def get_data(self, x_stride=1, y_stride=1):
        mult = array(1, dtype=self.dtype)
        if self.dtype in [complex64, complex128]:
            mult = array(1+1j, dtype=self.dtype)
        from numpy.random import normal, seed
        seed(1234)
        alpha = array(1., dtype=self.dtype) * mult
        beta = array(1., dtype=self.dtype) * mult
        a = normal(0., 1., (3, 3)).astype(self.dtype) * mult
        x = arange(shape(a)[0]*x_stride, dtype=self.dtype) * mult
        y = arange(shape(a)[1]*y_stride, dtype=self.dtype) * mult
        return alpha, beta, a, x, y

    def test_simple(self):
        alpha, beta, a, x, y = self.get_data()
        desired_y = alpha*matrixmultiply(a, x)+beta*y
        y = self.blas_func(alpha, a, x, beta, y)
        assert_array_almost_equal(desired_y, y)

    def test_default_beta_y(self):
        alpha, beta, a, x, y = self.get_data()
        desired_y = matrixmultiply(a, x)
        y = self.blas_func(1, a, x)
        assert_array_almost_equal(desired_y, y)

    def test_simple_transpose(self):
        alpha, beta, a, x, y = self.get_data()
        desired_y = alpha*matrixmultiply(transpose(a), x)+beta*y
        y = self.blas_func(alpha, a, x, beta, y, trans=1)
        assert_array_almost_equal(desired_y, y)

    def test_simple_transpose_conj(self):
        alpha, beta, a, x, y = self.get_data()
        desired_y = alpha*matrixmultiply(transpose(conjugate(a)), x)+beta*y
        y = self.blas_func(alpha, a, x, beta, y, trans=2)
        assert_array_almost_equal(desired_y, y)

    def test_x_stride(self):
        alpha, beta, a, x, y = self.get_data(x_stride=2)
        desired_y = alpha*matrixmultiply(a, x[::2])+beta*y
        y = self.blas_func(alpha, a, x, beta, y, incx=2)
        assert_array_almost_equal(desired_y, y)

    def test_x_stride_transpose(self):
        alpha, beta, a, x, y = self.get_data(x_stride=2)
        desired_y = alpha*matrixmultiply(transpose(a), x[::2])+beta*y
        y = self.blas_func(alpha, a, x, beta, y, trans=1, incx=2)
        assert_array_almost_equal(desired_y, y)

    def test_x_stride_assert(self):
        # What is the use of this test?
        alpha, beta, a, x, y = self.get_data(x_stride=2)
        with pytest.raises(Exception, match='failed for 3rd argument'):
            y = self.blas_func(1, a, x, 1, y, trans=0, incx=3)
        with pytest.raises(Exception, match='failed for 3rd argument'):
            y = self.blas_func(1, a, x, 1, y, trans=1, incx=3)

    def test_y_stride(self):
        alpha, beta, a, x, y = self.get_data(y_stride=2)
        desired_y = y.copy()
        desired_y[::2] = alpha*matrixmultiply(a, x)+beta*y[::2]
        y = self.blas_func(alpha, a, x, beta, y, incy=2)
        assert_array_almost_equal(desired_y, y)

    def test_y_stride_transpose(self):
        alpha, beta, a, x, y = self.get_data(y_stride=2)
        desired_y = y.copy()
        desired_y[::2] = alpha*matrixmultiply(transpose(a), x)+beta*y[::2]
        y = self.blas_func(alpha, a, x, beta, y, trans=1, incy=2)
        assert_array_almost_equal(desired_y, y)

    def test_y_stride_assert(self):
        # What is the use of this test?
        alpha, beta, a, x, y = self.get_data(y_stride=2)
        with pytest.raises(Exception, match='failed for 2nd keyword'):
            y = self.blas_func(1, a, x, 1, y, trans=0, incy=3)
        with pytest.raises(Exception, match='failed for 2nd keyword'):
            y = self.blas_func(1, a, x, 1, y, trans=1, incy=3)


try:
    class TestSgemv(BaseGemv):
        blas_func = fblas.sgemv
        dtype = float32

        def test_sgemv_on_osx(self):
            from itertools import product
            import sys
            import numpy as np

            if sys.platform != 'darwin':
                return

            def aligned_array(shape, align, dtype, order='C'):
                # Make array shape `shape` with aligned at `align` bytes
                d = dtype()
                # Make array of correct size with `align` extra bytes
                N = np.prod(shape)
                tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8)
                address = tmp.__array_interface__["data"][0]
                # Find offset into array giving desired alignment
                for offset in range(align):
                    if (address + offset) % align == 0:
                        break
                tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype)
                return tmp.reshape(shape, order=order)

            def as_aligned(arr, align, dtype, order='C'):
                # Copy `arr` into an aligned array with same shape
                aligned = aligned_array(arr.shape, align, dtype, order)
                aligned[:] = arr[:]
                return aligned

            def assert_dot_close(A, X, desired):
                assert_allclose(self.blas_func(1.0, A, X), desired,
                                rtol=1e-5, atol=1e-7)

            testdata = product((15, 32), (10000,), (200, 89), ('C', 'F'))
            for align, m, n, a_order in testdata:
                A_d = np.random.rand(m, n)
                X_d = np.random.rand(n)
                desired = np.dot(A_d, X_d)
                # Calculation with aligned single precision
                A_f = as_aligned(A_d, align, np.float32, order=a_order)
                X_f = as_aligned(X_d, align, np.float32, order=a_order)
                assert_dot_close(A_f, X_f, desired)

except AttributeError:
    class TestSgemv:
        pass


class TestDgemv(BaseGemv):
    blas_func = fblas.dgemv
    dtype = float64


try:
    class TestCgemv(BaseGemv):
        blas_func = fblas.cgemv
        dtype = complex64
except AttributeError:
    class TestCgemv:
        pass


class TestZgemv(BaseGemv):
    blas_func = fblas.zgemv
    dtype = complex128


"""
##################################################
### Test blas ?ger
### This will be a mess to test all cases.

class BaseGer(object):
    def get_data(self,x_stride=1,y_stride=1):
        from numpy.random import normal, seed
        seed(1234)
        alpha = array(1., dtype = self.dtype)
        a = normal(0.,1.,(3,3)).astype(self.dtype)
        x = arange(shape(a)[0]*x_stride,dtype=self.dtype)
        y = arange(shape(a)[1]*y_stride,dtype=self.dtype)
        return alpha,a,x,y
    def test_simple(self):
        alpha,a,x,y = self.get_data()
        # tranpose takes care of Fortran vs. C(and Python) memory layout
        desired_a = alpha*transpose(x[:,newaxis]*y) + a
        self.blas_func(x,y,a)
        assert_array_almost_equal(desired_a,a)
    def test_x_stride(self):
        alpha,a,x,y = self.get_data(x_stride=2)
        desired_a = alpha*transpose(x[::2,newaxis]*y) + a
        self.blas_func(x,y,a,incx=2)
        assert_array_almost_equal(desired_a,a)
    def test_x_stride_assert(self):
        alpha,a,x,y = self.get_data(x_stride=2)
        with pytest.raises(ValueError, match='foo'):
            self.blas_func(x,y,a,incx=3)
    def test_y_stride(self):
        alpha,a,x,y = self.get_data(y_stride=2)
        desired_a = alpha*transpose(x[:,newaxis]*y[::2]) + a
        self.blas_func(x,y,a,incy=2)
        assert_array_almost_equal(desired_a,a)

    def test_y_stride_assert(self):
        alpha,a,x,y = self.get_data(y_stride=2)
        with pytest.raises(ValueError, match='foo'):
            self.blas_func(a,x,y,incy=3)

class TestSger(BaseGer):
    blas_func = fblas.sger
    dtype = float32
class TestDger(BaseGer):
    blas_func = fblas.dger
    dtype = float64
"""
##################################################
# Test blas ?gerc
# This will be a mess to test all cases.

"""
class BaseGerComplex(BaseGer):
    def get_data(self,x_stride=1,y_stride=1):
        from numpy.random import normal, seed
        seed(1234)
        alpha = array(1+1j, dtype = self.dtype)
        a = normal(0.,1.,(3,3)).astype(self.dtype)
        a = a + normal(0.,1.,(3,3)) * array(1j, dtype = self.dtype)
        x = normal(0.,1.,shape(a)[0]*x_stride).astype(self.dtype)
        x = x + x * array(1j, dtype = self.dtype)
        y = normal(0.,1.,shape(a)[1]*y_stride).astype(self.dtype)
        y = y + y * array(1j, dtype = self.dtype)
        return alpha,a,x,y
    def test_simple(self):
        alpha,a,x,y = self.get_data()
        # tranpose takes care of Fortran vs. C(and Python) memory layout
        a = a * array(0.,dtype = self.dtype)
        #desired_a = alpha*transpose(x[:,newaxis]*self.transform(y)) + a
        desired_a = alpha*transpose(x[:,newaxis]*y) + a
        #self.blas_func(x,y,a,alpha = alpha)
        fblas.cgeru(x,y,a,alpha = alpha)
        assert_array_almost_equal(desired_a,a)

    #def test_x_stride(self):
    #    alpha,a,x,y = self.get_data(x_stride=2)
    #    desired_a = alpha*transpose(x[::2,newaxis]*self.transform(y)) + a
    #    self.blas_func(x,y,a,incx=2)
    #    assert_array_almost_equal(desired_a,a)
    #def test_y_stride(self):
    #    alpha,a,x,y = self.get_data(y_stride=2)
    #    desired_a = alpha*transpose(x[:,newaxis]*self.transform(y[::2])) + a
    #    self.blas_func(x,y,a,incy=2)
    #    assert_array_almost_equal(desired_a,a)

class TestCgeru(BaseGerComplex):
    blas_func = fblas.cgeru
    dtype = complex64
    def transform(self,x):
        return x
class TestZgeru(BaseGerComplex):
    blas_func = fblas.zgeru
    dtype = complex128
    def transform(self,x):
        return x

class TestCgerc(BaseGerComplex):
    blas_func = fblas.cgerc
    dtype = complex64
    def transform(self,x):
        return conjugate(x)

class TestZgerc(BaseGerComplex):
    blas_func = fblas.zgerc
    dtype = complex128
    def transform(self,x):
        return conjugate(x)
"""