_expm_frechet.py 12 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
"""Frechet derivative of the matrix exponential."""
import numpy as np
import scipy.linalg

__all__ = ['expm_frechet', 'expm_cond']


def expm_frechet(A, E, method=None, compute_expm=True, check_finite=True):
    """
    Frechet derivative of the matrix exponential of A in the direction E.

    Parameters
    ----------
    A : (N, N) array_like
        Matrix of which to take the matrix exponential.
    E : (N, N) array_like
        Matrix direction in which to take the Frechet derivative.
    method : str, optional
        Choice of algorithm. Should be one of

        - `SPS` (default)
        - `blockEnlarge`

    compute_expm : bool, optional
        Whether to compute also `expm_A` in addition to `expm_frechet_AE`.
        Default is True.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    expm_A : ndarray
        Matrix exponential of A.
    expm_frechet_AE : ndarray
        Frechet derivative of the matrix exponential of A in the direction E.

    For ``compute_expm = False``, only `expm_frechet_AE` is returned.

    See also
    --------
    expm : Compute the exponential of a matrix.

    Notes
    -----
    This section describes the available implementations that can be selected
    by the `method` parameter. The default method is *SPS*.

    Method *blockEnlarge* is a naive algorithm.

    Method *SPS* is Scaling-Pade-Squaring [1]_.
    It is a sophisticated implementation which should take
    only about 3/8 as much time as the naive implementation.
    The asymptotics are the same.

    .. versionadded:: 0.13.0

    References
    ----------
    .. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
           Computing the Frechet Derivative of the Matrix Exponential,
           with an application to Condition Number Estimation.
           SIAM Journal On Matrix Analysis and Applications.,
           30 (4). pp. 1639-1657. ISSN 1095-7162

    Examples
    --------
    >>> import scipy.linalg
    >>> A = np.random.randn(3, 3)
    >>> E = np.random.randn(3, 3)
    >>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
    >>> expm_A.shape, expm_frechet_AE.shape
    ((3, 3), (3, 3))

    >>> import scipy.linalg
    >>> A = np.random.randn(3, 3)
    >>> E = np.random.randn(3, 3)
    >>> expm_A, expm_frechet_AE = scipy.linalg.expm_frechet(A, E)
    >>> M = np.zeros((6, 6))
    >>> M[:3, :3] = A; M[:3, 3:] = E; M[3:, 3:] = A
    >>> expm_M = scipy.linalg.expm(M)
    >>> np.allclose(expm_A, expm_M[:3, :3])
    True
    >>> np.allclose(expm_frechet_AE, expm_M[:3, 3:])
    True

    """
    if check_finite:
        A = np.asarray_chkfinite(A)
        E = np.asarray_chkfinite(E)
    else:
        A = np.asarray(A)
        E = np.asarray(E)
    if A.ndim != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected A to be a square matrix')
    if E.ndim != 2 or E.shape[0] != E.shape[1]:
        raise ValueError('expected E to be a square matrix')
    if A.shape != E.shape:
        raise ValueError('expected A and E to be the same shape')
    if method is None:
        method = 'SPS'
    if method == 'SPS':
        expm_A, expm_frechet_AE = expm_frechet_algo_64(A, E)
    elif method == 'blockEnlarge':
        expm_A, expm_frechet_AE = expm_frechet_block_enlarge(A, E)
    else:
        raise ValueError('Unknown implementation %s' % method)
    if compute_expm:
        return expm_A, expm_frechet_AE
    else:
        return expm_frechet_AE


def expm_frechet_block_enlarge(A, E):
    """
    This is a helper function, mostly for testing and profiling.
    Return expm(A), frechet(A, E)
    """
    n = A.shape[0]
    M = np.vstack([
        np.hstack([A, E]),
        np.hstack([np.zeros_like(A), A])])
    expm_M = scipy.linalg.expm(M)
    return expm_M[:n, :n], expm_M[:n, n:]


"""
Maximal values ell_m of ||2**-s A|| such that the backward error bound
does not exceed 2**-53.
"""
ell_table_61 = (
        None,
        # 1
        2.11e-8,
        3.56e-4,
        1.08e-2,
        6.49e-2,
        2.00e-1,
        4.37e-1,
        7.83e-1,
        1.23e0,
        1.78e0,
        2.42e0,
        # 11
        3.13e0,
        3.90e0,
        4.74e0,
        5.63e0,
        6.56e0,
        7.52e0,
        8.53e0,
        9.56e0,
        1.06e1,
        1.17e1,
        )


# The b vectors and U and V are copypasted
# from scipy.sparse.linalg.matfuncs.py.
# M, Lu, Lv follow (6.11), (6.12), (6.13), (3.3)

def _diff_pade3(A, E, ident):
    b = (120., 60., 12., 1.)
    A2 = A.dot(A)
    M2 = np.dot(A, E) + np.dot(E, A)
    U = A.dot(b[3]*A2 + b[1]*ident)
    V = b[2]*A2 + b[0]*ident
    Lu = A.dot(b[3]*M2) + E.dot(b[3]*A2 + b[1]*ident)
    Lv = b[2]*M2
    return U, V, Lu, Lv


def _diff_pade5(A, E, ident):
    b = (30240., 15120., 3360., 420., 30., 1.)
    A2 = A.dot(A)
    M2 = np.dot(A, E) + np.dot(E, A)
    A4 = np.dot(A2, A2)
    M4 = np.dot(A2, M2) + np.dot(M2, A2)
    U = A.dot(b[5]*A4 + b[3]*A2 + b[1]*ident)
    V = b[4]*A4 + b[2]*A2 + b[0]*ident
    Lu = (A.dot(b[5]*M4 + b[3]*M2) +
            E.dot(b[5]*A4 + b[3]*A2 + b[1]*ident))
    Lv = b[4]*M4 + b[2]*M2
    return U, V, Lu, Lv


def _diff_pade7(A, E, ident):
    b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.)
    A2 = A.dot(A)
    M2 = np.dot(A, E) + np.dot(E, A)
    A4 = np.dot(A2, A2)
    M4 = np.dot(A2, M2) + np.dot(M2, A2)
    A6 = np.dot(A2, A4)
    M6 = np.dot(A4, M2) + np.dot(M4, A2)
    U = A.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
    V = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
    Lu = (A.dot(b[7]*M6 + b[5]*M4 + b[3]*M2) +
            E.dot(b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident))
    Lv = b[6]*M6 + b[4]*M4 + b[2]*M2
    return U, V, Lu, Lv


def _diff_pade9(A, E, ident):
    b = (17643225600., 8821612800., 2075673600., 302702400., 30270240.,
            2162160., 110880., 3960., 90., 1.)
    A2 = A.dot(A)
    M2 = np.dot(A, E) + np.dot(E, A)
    A4 = np.dot(A2, A2)
    M4 = np.dot(A2, M2) + np.dot(M2, A2)
    A6 = np.dot(A2, A4)
    M6 = np.dot(A4, M2) + np.dot(M4, A2)
    A8 = np.dot(A4, A4)
    M8 = np.dot(A4, M4) + np.dot(M4, A4)
    U = A.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident)
    V = b[8]*A8 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
    Lu = (A.dot(b[9]*M8 + b[7]*M6 + b[5]*M4 + b[3]*M2) +
            E.dot(b[9]*A8 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident))
    Lv = b[8]*M8 + b[6]*M6 + b[4]*M4 + b[2]*M2
    return U, V, Lu, Lv


def expm_frechet_algo_64(A, E):
    n = A.shape[0]
    s = None
    ident = np.identity(n)
    A_norm_1 = scipy.linalg.norm(A, 1)
    m_pade_pairs = (
            (3, _diff_pade3),
            (5, _diff_pade5),
            (7, _diff_pade7),
            (9, _diff_pade9))
    for m, pade in m_pade_pairs:
        if A_norm_1 <= ell_table_61[m]:
            U, V, Lu, Lv = pade(A, E, ident)
            s = 0
            break
    if s is None:
        # scaling
        s = max(0, int(np.ceil(np.log2(A_norm_1 / ell_table_61[13]))))
        A = A * 2.0**-s
        E = E * 2.0**-s
        # pade order 13
        A2 = np.dot(A, A)
        M2 = np.dot(A, E) + np.dot(E, A)
        A4 = np.dot(A2, A2)
        M4 = np.dot(A2, M2) + np.dot(M2, A2)
        A6 = np.dot(A2, A4)
        M6 = np.dot(A4, M2) + np.dot(M4, A2)
        b = (64764752532480000., 32382376266240000., 7771770303897600.,
                1187353796428800., 129060195264000., 10559470521600.,
                670442572800., 33522128640., 1323241920., 40840800., 960960.,
                16380., 182., 1.)
        W1 = b[13]*A6 + b[11]*A4 + b[9]*A2
        W2 = b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*ident
        Z1 = b[12]*A6 + b[10]*A4 + b[8]*A2
        Z2 = b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*ident
        W = np.dot(A6, W1) + W2
        U = np.dot(A, W)
        V = np.dot(A6, Z1) + Z2
        Lw1 = b[13]*M6 + b[11]*M4 + b[9]*M2
        Lw2 = b[7]*M6 + b[5]*M4 + b[3]*M2
        Lz1 = b[12]*M6 + b[10]*M4 + b[8]*M2
        Lz2 = b[6]*M6 + b[4]*M4 + b[2]*M2
        Lw = np.dot(A6, Lw1) + np.dot(M6, W1) + Lw2
        Lu = np.dot(A, Lw) + np.dot(E, W)
        Lv = np.dot(A6, Lz1) + np.dot(M6, Z1) + Lz2
    # factor once and solve twice
    lu_piv = scipy.linalg.lu_factor(-U + V)
    R = scipy.linalg.lu_solve(lu_piv, U + V)
    L = scipy.linalg.lu_solve(lu_piv, Lu + Lv + np.dot((Lu - Lv), R))
    # squaring
    for k in range(s):
        L = np.dot(R, L) + np.dot(L, R)
        R = np.dot(R, R)
    return R, L


def vec(M):
    """
    Stack columns of M to construct a single vector.

    This is somewhat standard notation in linear algebra.

    Parameters
    ----------
    M : 2-D array_like
        Input matrix

    Returns
    -------
    v : 1-D ndarray
        Output vector

    """
    return M.T.ravel()


def expm_frechet_kronform(A, method=None, check_finite=True):
    """
    Construct the Kronecker form of the Frechet derivative of expm.

    Parameters
    ----------
    A : array_like with shape (N, N)
        Matrix to be expm'd.
    method : str, optional
        Extra keyword to be passed to expm_frechet.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    K : 2-D ndarray with shape (N*N, N*N)
        Kronecker form of the Frechet derivative of the matrix exponential.

    Notes
    -----
    This function is used to help compute the condition number
    of the matrix exponential.

    See also
    --------
    expm : Compute a matrix exponential.
    expm_frechet : Compute the Frechet derivative of the matrix exponential.
    expm_cond : Compute the relative condition number of the matrix exponential
                in the Frobenius norm.

    """
    if check_finite:
        A = np.asarray_chkfinite(A)
    else:
        A = np.asarray(A)
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected a square matrix')

    n = A.shape[0]
    ident = np.identity(n)
    cols = []
    for i in range(n):
        for j in range(n):
            E = np.outer(ident[i], ident[j])
            F = expm_frechet(A, E,
                    method=method, compute_expm=False, check_finite=False)
            cols.append(vec(F))
    return np.vstack(cols).T


def expm_cond(A, check_finite=True):
    """
    Relative condition number of the matrix exponential in the Frobenius norm.

    Parameters
    ----------
    A : 2-D array_like
        Square input matrix with shape (N, N).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    kappa : float
        The relative condition number of the matrix exponential
        in the Frobenius norm

    Notes
    -----
    A faster estimate for the condition number in the 1-norm
    has been published but is not yet implemented in SciPy.

    .. versionadded:: 0.14.0

    See also
    --------
    expm : Compute the exponential of a matrix.
    expm_frechet : Compute the Frechet derivative of the matrix exponential.

    Examples
    --------
    >>> from scipy.linalg import expm_cond
    >>> A = np.array([[-0.3, 0.2, 0.6], [0.6, 0.3, -0.1], [-0.7, 1.2, 0.9]])
    >>> k = expm_cond(A)
    >>> k
    1.7787805864469866

    """
    if check_finite:
        A = np.asarray_chkfinite(A)
    else:
        A = np.asarray(A)
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected a square matrix')

    X = scipy.linalg.expm(A)
    K = expm_frechet_kronform(A, check_finite=False)

    # The following norm choices are deliberate.
    # The norms of A and X are Frobenius norms,
    # and the norm of K is the induced 2-norm.
    A_norm = scipy.linalg.norm(A, 'fro')
    X_norm = scipy.linalg.norm(X, 'fro')
    K_norm = scipy.linalg.norm(K, 2)

    kappa = (K_norm * A_norm) / X_norm
    return kappa