mio5.py
32.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
''' Classes for read / write of matlab (TM) 5 files
The matfile specification last found here:
https://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/matfile_format.pdf
(as of December 5 2008)
'''
'''
=================================
Note on functions and mat files
=================================
The document above does not give any hints as to the storage of matlab
function handles, or anonymous function handles. I had, therefore, to
guess the format of matlab arrays of ``mxFUNCTION_CLASS`` and
``mxOPAQUE_CLASS`` by looking at example mat files.
``mxFUNCTION_CLASS`` stores all types of matlab functions. It seems to
contain a struct matrix with a set pattern of fields. For anonymous
functions, a sub-fields of one of these fields seems to contain the
well-named ``mxOPAQUE_CLASS``. This seems to contain:
* array flags as for any matlab matrix
* 3 int8 strings
* a matrix
It seems that whenever the mat file contains a ``mxOPAQUE_CLASS``
instance, there is also an un-named matrix (name == '') at the end of
the mat file. I'll call this the ``__function_workspace__`` matrix.
When I saved two anonymous functions in a mat file, or appended another
anonymous function to the mat file, there was still only one
``__function_workspace__`` un-named matrix at the end, but larger than
that for a mat file with a single anonymous function, suggesting that
the workspaces for the two functions had been merged.
The ``__function_workspace__`` matrix appears to be of double class
(``mxCLASS_DOUBLE``), but stored as uint8, the memory for which is in
the format of a mini .mat file, without the first 124 bytes of the file
header (the description and the subsystem_offset), but with the version
U2 bytes, and the S2 endian test bytes. There follow 4 zero bytes,
presumably for 8 byte padding, and then a series of ``miMATRIX``
entries, as in a standard mat file. The ``miMATRIX`` entries appear to
be series of un-named (name == '') matrices, and may also contain arrays
of this same mini-mat format.
I guess that:
* saving an anonymous function back to a mat file will need the
associated ``__function_workspace__`` matrix saved as well for the
anonymous function to work correctly.
* appending to a mat file that has a ``__function_workspace__`` would
involve first pulling off this workspace, appending, checking whether
there were any more anonymous functions appended, and then somehow
merging the relevant workspaces, and saving at the end of the mat
file.
The mat files I was playing with are in ``tests/data``:
* sqr.mat
* parabola.mat
* some_functions.mat
See ``tests/test_mio.py:test_mio_funcs.py`` for the debugging
script I was working with.
'''
# Small fragments of current code adapted from matfile.py by Heiko
# Henkelmann; parts of the code for simplify_cells=True adapted from
# http://blog.nephics.com/2019/08/28/better-loadmat-for-scipy/.
import os
import time
import sys
import zlib
from io import BytesIO
import warnings
import numpy as np
from numpy.compat import asbytes, asstr
import scipy.sparse
from .byteordercodes import native_code, swapped_code
from .miobase import (MatFileReader, docfiller, matdims, read_dtype,
arr_to_chars, arr_dtype_number, MatWriteError,
MatReadError, MatReadWarning)
# Reader object for matlab 5 format variables
from .mio5_utils import VarReader5
# Constants and helper objects
from .mio5_params import (MatlabObject, MatlabFunction, MDTYPES, NP_TO_MTYPES,
NP_TO_MXTYPES, miCOMPRESSED, miMATRIX, miINT8,
miUTF8, miUINT32, mxCELL_CLASS, mxSTRUCT_CLASS,
mxOBJECT_CLASS, mxCHAR_CLASS, mxSPARSE_CLASS,
mxDOUBLE_CLASS, mclass_info, mat_struct)
from .streams import ZlibInputStream
def _has_struct(elem):
"""Determine if elem is an array and if first array item is a struct."""
return (isinstance(elem, np.ndarray) and (elem.size > 0) and
isinstance(elem[0], mat_struct))
def _inspect_cell_array(ndarray):
"""Construct lists from cell arrays (loaded as numpy ndarrays), recursing
into items if they contain mat_struct objects."""
elem_list = []
for sub_elem in ndarray:
if isinstance(sub_elem, mat_struct):
elem_list.append(_matstruct_to_dict(sub_elem))
elif _has_struct(sub_elem):
elem_list.append(_inspect_cell_array(sub_elem))
else:
elem_list.append(sub_elem)
return elem_list
def _matstruct_to_dict(matobj):
"""Construct nested dicts from mat_struct objects."""
d = {}
for f in matobj._fieldnames:
elem = matobj.__dict__[f]
if isinstance(elem, mat_struct):
d[f] = _matstruct_to_dict(elem)
elif _has_struct(elem):
d[f] = _inspect_cell_array(elem)
else:
d[f] = elem
return d
def _simplify_cells(d):
"""Convert mat objects in dict to nested dicts."""
for key in d:
if isinstance(d[key], mat_struct):
d[key] = _matstruct_to_dict(d[key])
elif _has_struct(d[key]):
d[key] = _inspect_cell_array(d[key])
return d
class MatFile5Reader(MatFileReader):
''' Reader for Mat 5 mat files
Adds the following attribute to base class
uint16_codec - char codec to use for uint16 char arrays
(defaults to system default codec)
Uses variable reader that has the following stardard interface (see
abstract class in ``miobase``::
__init__(self, file_reader)
read_header(self)
array_from_header(self)
and added interface::
set_stream(self, stream)
read_full_tag(self)
'''
@docfiller
def __init__(self,
mat_stream,
byte_order=None,
mat_dtype=False,
squeeze_me=False,
chars_as_strings=True,
matlab_compatible=False,
struct_as_record=True,
verify_compressed_data_integrity=True,
uint16_codec=None,
simplify_cells=False):
'''Initializer for matlab 5 file format reader
%(matstream_arg)s
%(load_args)s
%(struct_arg)s
uint16_codec : {None, string}
Set codec to use for uint16 char arrays (e.g., 'utf-8').
Use system default codec if None
'''
super(MatFile5Reader, self).__init__(
mat_stream,
byte_order,
mat_dtype,
squeeze_me,
chars_as_strings,
matlab_compatible,
struct_as_record,
verify_compressed_data_integrity,
simplify_cells)
# Set uint16 codec
if not uint16_codec:
uint16_codec = sys.getdefaultencoding()
self.uint16_codec = uint16_codec
# placeholders for readers - see initialize_read method
self._file_reader = None
self._matrix_reader = None
def guess_byte_order(self):
''' Guess byte order.
Sets stream pointer to 0 '''
self.mat_stream.seek(126)
mi = self.mat_stream.read(2)
self.mat_stream.seek(0)
return mi == b'IM' and '<' or '>'
def read_file_header(self):
''' Read in mat 5 file header '''
hdict = {}
hdr_dtype = MDTYPES[self.byte_order]['dtypes']['file_header']
hdr = read_dtype(self.mat_stream, hdr_dtype)
hdict['__header__'] = hdr['description'].item().strip(b' \t\n\000')
v_major = hdr['version'] >> 8
v_minor = hdr['version'] & 0xFF
hdict['__version__'] = '%d.%d' % (v_major, v_minor)
return hdict
def initialize_read(self):
''' Run when beginning read of variables
Sets up readers from parameters in `self`
'''
# reader for top level stream. We need this extra top-level
# reader because we use the matrix_reader object to contain
# compressed matrices (so they have their own stream)
self._file_reader = VarReader5(self)
# reader for matrix streams
self._matrix_reader = VarReader5(self)
def read_var_header(self):
''' Read header, return header, next position
Header has to define at least .name and .is_global
Parameters
----------
None
Returns
-------
header : object
object that can be passed to self.read_var_array, and that
has attributes .name and .is_global
next_position : int
position in stream of next variable
'''
mdtype, byte_count = self._file_reader.read_full_tag()
if not byte_count > 0:
raise ValueError("Did not read any bytes")
next_pos = self.mat_stream.tell() + byte_count
if mdtype == miCOMPRESSED:
# Make new stream from compressed data
stream = ZlibInputStream(self.mat_stream, byte_count)
self._matrix_reader.set_stream(stream)
check_stream_limit = self.verify_compressed_data_integrity
mdtype, byte_count = self._matrix_reader.read_full_tag()
else:
check_stream_limit = False
self._matrix_reader.set_stream(self.mat_stream)
if not mdtype == miMATRIX:
raise TypeError('Expecting miMATRIX type here, got %d' % mdtype)
header = self._matrix_reader.read_header(check_stream_limit)
return header, next_pos
def read_var_array(self, header, process=True):
''' Read array, given `header`
Parameters
----------
header : header object
object with fields defining variable header
process : {True, False} bool, optional
If True, apply recursive post-processing during loading of
array.
Returns
-------
arr : array
array with post-processing applied or not according to
`process`.
'''
return self._matrix_reader.array_from_header(header, process)
def get_variables(self, variable_names=None):
''' get variables from stream as dictionary
variable_names - optional list of variable names to get
If variable_names is None, then get all variables in file
'''
if isinstance(variable_names, str):
variable_names = [variable_names]
elif variable_names is not None:
variable_names = list(variable_names)
self.mat_stream.seek(0)
# Here we pass all the parameters in self to the reading objects
self.initialize_read()
mdict = self.read_file_header()
mdict['__globals__'] = []
while not self.end_of_stream():
hdr, next_position = self.read_var_header()
name = asstr(hdr.name)
if name in mdict:
warnings.warn('Duplicate variable name "%s" in stream'
' - replacing previous with new\n'
'Consider mio5.varmats_from_mat to split '
'file into single variable files' % name,
MatReadWarning, stacklevel=2)
if name == '':
# can only be a matlab 7 function workspace
name = '__function_workspace__'
# We want to keep this raw because mat_dtype processing
# will break the format (uint8 as mxDOUBLE_CLASS)
process = False
else:
process = True
if variable_names is not None and name not in variable_names:
self.mat_stream.seek(next_position)
continue
try:
res = self.read_var_array(hdr, process)
except MatReadError as err:
warnings.warn(
'Unreadable variable "%s", because "%s"' %
(name, err),
Warning, stacklevel=2)
res = "Read error: %s" % err
self.mat_stream.seek(next_position)
mdict[name] = res
if hdr.is_global:
mdict['__globals__'].append(name)
if variable_names is not None:
variable_names.remove(name)
if len(variable_names) == 0:
break
if self.simplify_cells:
return _simplify_cells(mdict)
else:
return mdict
def list_variables(self):
''' list variables from stream '''
self.mat_stream.seek(0)
# Here we pass all the parameters in self to the reading objects
self.initialize_read()
self.read_file_header()
vars = []
while not self.end_of_stream():
hdr, next_position = self.read_var_header()
name = asstr(hdr.name)
if name == '':
# can only be a matlab 7 function workspace
name = '__function_workspace__'
shape = self._matrix_reader.shape_from_header(hdr)
if hdr.is_logical:
info = 'logical'
else:
info = mclass_info.get(hdr.mclass, 'unknown')
vars.append((name, shape, info))
self.mat_stream.seek(next_position)
return vars
def varmats_from_mat(file_obj):
""" Pull variables out of mat 5 file as a sequence of mat file objects
This can be useful with a difficult mat file, containing unreadable
variables. This routine pulls the variables out in raw form and puts them,
unread, back into a file stream for saving or reading. Another use is the
pathological case where there is more than one variable of the same name in
the file; this routine returns the duplicates, whereas the standard reader
will overwrite duplicates in the returned dictionary.
The file pointer in `file_obj` will be undefined. File pointers for the
returned file-like objects are set at 0.
Parameters
----------
file_obj : file-like
file object containing mat file
Returns
-------
named_mats : list
list contains tuples of (name, BytesIO) where BytesIO is a file-like
object containing mat file contents as for a single variable. The
BytesIO contains a string with the original header and a single var. If
``var_file_obj`` is an individual BytesIO instance, then save as a mat
file with something like ``open('test.mat',
'wb').write(var_file_obj.read())``
Examples
--------
>>> import scipy.io
BytesIO is from the ``io`` module in Python 3, and is ``cStringIO`` for
Python < 3.
>>> mat_fileobj = BytesIO()
>>> scipy.io.savemat(mat_fileobj, {'b': np.arange(10), 'a': 'a string'})
>>> varmats = varmats_from_mat(mat_fileobj)
>>> sorted([name for name, str_obj in varmats])
['a', 'b']
"""
rdr = MatFile5Reader(file_obj)
file_obj.seek(0)
# Raw read of top-level file header
hdr_len = MDTYPES[native_code]['dtypes']['file_header'].itemsize
raw_hdr = file_obj.read(hdr_len)
# Initialize variable reading
file_obj.seek(0)
rdr.initialize_read()
rdr.read_file_header()
next_position = file_obj.tell()
named_mats = []
while not rdr.end_of_stream():
start_position = next_position
hdr, next_position = rdr.read_var_header()
name = asstr(hdr.name)
# Read raw variable string
file_obj.seek(start_position)
byte_count = next_position - start_position
var_str = file_obj.read(byte_count)
# write to stringio object
out_obj = BytesIO()
out_obj.write(raw_hdr)
out_obj.write(var_str)
out_obj.seek(0)
named_mats.append((name, out_obj))
return named_mats
class EmptyStructMarker(object):
""" Class to indicate presence of empty matlab struct on output """
def to_writeable(source):
''' Convert input object ``source`` to something we can write
Parameters
----------
source : object
Returns
-------
arr : None or ndarray or EmptyStructMarker
If `source` cannot be converted to something we can write to a matfile,
return None. If `source` is equivalent to an empty dictionary, return
``EmptyStructMarker``. Otherwise return `source` converted to an
ndarray with contents for writing to matfile.
'''
if isinstance(source, np.ndarray):
return source
if source is None:
return None
# Objects that implement mappings
is_mapping = (hasattr(source, 'keys') and hasattr(source, 'values') and
hasattr(source, 'items'))
# Objects that don't implement mappings, but do have dicts
if isinstance(source, np.generic):
# NumPy scalars are never mappings (PyPy issue workaround)
pass
elif not is_mapping and hasattr(source, '__dict__'):
source = dict((key, value) for key, value in source.__dict__.items()
if not key.startswith('_'))
is_mapping = True
if is_mapping:
dtype = []
values = []
for field, value in source.items():
if (isinstance(field, str) and
field[0] not in '_0123456789'):
dtype.append((str(field), object))
values.append(value)
if dtype:
return np.array([tuple(values)], dtype)
else:
return EmptyStructMarker
# Next try and convert to an array
narr = np.asanyarray(source)
if narr.dtype.type in (object, np.object_) and \
narr.shape == () and narr == source:
# No interesting conversion possible
return None
return narr
# Native byte ordered dtypes for convenience for writers
NDT_FILE_HDR = MDTYPES[native_code]['dtypes']['file_header']
NDT_TAG_FULL = MDTYPES[native_code]['dtypes']['tag_full']
NDT_TAG_SMALL = MDTYPES[native_code]['dtypes']['tag_smalldata']
NDT_ARRAY_FLAGS = MDTYPES[native_code]['dtypes']['array_flags']
class VarWriter5(object):
''' Generic matlab matrix writing class '''
mat_tag = np.zeros((), NDT_TAG_FULL)
mat_tag['mdtype'] = miMATRIX
def __init__(self, file_writer):
self.file_stream = file_writer.file_stream
self.unicode_strings = file_writer.unicode_strings
self.long_field_names = file_writer.long_field_names
self.oned_as = file_writer.oned_as
# These are used for top level writes, and unset after
self._var_name = None
self._var_is_global = False
def write_bytes(self, arr):
self.file_stream.write(arr.tobytes(order='F'))
def write_string(self, s):
self.file_stream.write(s)
def write_element(self, arr, mdtype=None):
''' write tag and data '''
if mdtype is None:
mdtype = NP_TO_MTYPES[arr.dtype.str[1:]]
# Array needs to be in native byte order
if arr.dtype.byteorder == swapped_code:
arr = arr.byteswap().newbyteorder()
byte_count = arr.size*arr.itemsize
if byte_count <= 4:
self.write_smalldata_element(arr, mdtype, byte_count)
else:
self.write_regular_element(arr, mdtype, byte_count)
def write_smalldata_element(self, arr, mdtype, byte_count):
# write tag with embedded data
tag = np.zeros((), NDT_TAG_SMALL)
tag['byte_count_mdtype'] = (byte_count << 16) + mdtype
# if arr.tobytes is < 4, the element will be zero-padded as needed.
tag['data'] = arr.tobytes(order='F')
self.write_bytes(tag)
def write_regular_element(self, arr, mdtype, byte_count):
# write tag, data
tag = np.zeros((), NDT_TAG_FULL)
tag['mdtype'] = mdtype
tag['byte_count'] = byte_count
self.write_bytes(tag)
self.write_bytes(arr)
# pad to next 64-bit boundary
bc_mod_8 = byte_count % 8
if bc_mod_8:
self.file_stream.write(b'\x00' * (8-bc_mod_8))
def write_header(self,
shape,
mclass,
is_complex=False,
is_logical=False,
nzmax=0):
''' Write header for given data options
shape : sequence
array shape
mclass - mat5 matrix class
is_complex - True if matrix is complex
is_logical - True if matrix is logical
nzmax - max non zero elements for sparse arrays
We get the name and the global flag from the object, and reset
them to defaults after we've used them
'''
# get name and is_global from one-shot object store
name = self._var_name
is_global = self._var_is_global
# initialize the top-level matrix tag, store position
self._mat_tag_pos = self.file_stream.tell()
self.write_bytes(self.mat_tag)
# write array flags (complex, global, logical, class, nzmax)
af = np.zeros((), NDT_ARRAY_FLAGS)
af['data_type'] = miUINT32
af['byte_count'] = 8
flags = is_complex << 3 | is_global << 2 | is_logical << 1
af['flags_class'] = mclass | flags << 8
af['nzmax'] = nzmax
self.write_bytes(af)
# shape
self.write_element(np.array(shape, dtype='i4'))
# write name
name = np.asarray(name)
if name == '': # empty string zero-terminated
self.write_smalldata_element(name, miINT8, 0)
else:
self.write_element(name, miINT8)
# reset the one-shot store to defaults
self._var_name = ''
self._var_is_global = False
def update_matrix_tag(self, start_pos):
curr_pos = self.file_stream.tell()
self.file_stream.seek(start_pos)
byte_count = curr_pos - start_pos - 8
if byte_count >= 2**32:
raise MatWriteError("Matrix too large to save with Matlab "
"5 format")
self.mat_tag['byte_count'] = byte_count
self.write_bytes(self.mat_tag)
self.file_stream.seek(curr_pos)
def write_top(self, arr, name, is_global):
""" Write variable at top level of mat file
Parameters
----------
arr : array_like
array-like object to create writer for
name : str, optional
name as it will appear in matlab workspace
default is empty string
is_global : {False, True}, optional
whether variable will be global on load into matlab
"""
# these are set before the top-level header write, and unset at
# the end of the same write, because they do not apply for lower levels
self._var_is_global = is_global
self._var_name = name
# write the header and data
self.write(arr)
def write(self, arr):
''' Write `arr` to stream at top and sub levels
Parameters
----------
arr : array_like
array-like object to create writer for
'''
# store position, so we can update the matrix tag
mat_tag_pos = self.file_stream.tell()
# First check if these are sparse
if scipy.sparse.issparse(arr):
self.write_sparse(arr)
self.update_matrix_tag(mat_tag_pos)
return
# Try to convert things that aren't arrays
narr = to_writeable(arr)
if narr is None:
raise TypeError('Could not convert %s (type %s) to array'
% (arr, type(arr)))
if isinstance(narr, MatlabObject):
self.write_object(narr)
elif isinstance(narr, MatlabFunction):
raise MatWriteError('Cannot write matlab functions')
elif narr is EmptyStructMarker: # empty struct array
self.write_empty_struct()
elif narr.dtype.fields: # struct array
self.write_struct(narr)
elif narr.dtype.hasobject: # cell array
self.write_cells(narr)
elif narr.dtype.kind in ('U', 'S'):
if self.unicode_strings:
codec = 'UTF8'
else:
codec = 'ascii'
self.write_char(narr, codec)
else:
self.write_numeric(narr)
self.update_matrix_tag(mat_tag_pos)
def write_numeric(self, arr):
imagf = arr.dtype.kind == 'c'
logif = arr.dtype.kind == 'b'
try:
mclass = NP_TO_MXTYPES[arr.dtype.str[1:]]
except KeyError:
# No matching matlab type, probably complex256 / float128 / float96
# Cast data to complex128 / float64.
if imagf:
arr = arr.astype('c128')
elif logif:
arr = arr.astype('i1') # Should only contain 0/1
else:
arr = arr.astype('f8')
mclass = mxDOUBLE_CLASS
self.write_header(matdims(arr, self.oned_as),
mclass,
is_complex=imagf,
is_logical=logif)
if imagf:
self.write_element(arr.real)
self.write_element(arr.imag)
else:
self.write_element(arr)
def write_char(self, arr, codec='ascii'):
''' Write string array `arr` with given `codec`
'''
if arr.size == 0 or np.all(arr == ''):
# This an empty string array or a string array containing
# only empty strings. Matlab cannot distinguish between a
# string array that is empty, and a string array containing
# only empty strings, because it stores strings as arrays of
# char. There is no way of having an array of char that is
# not empty, but contains an empty string. We have to
# special-case the array-with-empty-strings because even
# empty strings have zero padding, which would otherwise
# appear in matlab as a string with a space.
shape = (0,) * np.max([arr.ndim, 2])
self.write_header(shape, mxCHAR_CLASS)
self.write_smalldata_element(arr, miUTF8, 0)
return
# non-empty string.
#
# Convert to char array
arr = arr_to_chars(arr)
# We have to write the shape directly, because we are going
# recode the characters, and the resulting stream of chars
# may have a different length
shape = arr.shape
self.write_header(shape, mxCHAR_CLASS)
if arr.dtype.kind == 'U' and arr.size:
# Make one long string from all the characters. We need to
# transpose here, because we're flattening the array, before
# we write the bytes. The bytes have to be written in
# Fortran order.
n_chars = np.prod(shape)
st_arr = np.ndarray(shape=(),
dtype=arr_dtype_number(arr, n_chars),
buffer=arr.T.copy()) # Fortran order
# Recode with codec to give byte string
st = st_arr.item().encode(codec)
# Reconstruct as 1-D byte array
arr = np.ndarray(shape=(len(st),),
dtype='S1',
buffer=st)
self.write_element(arr, mdtype=miUTF8)
def write_sparse(self, arr):
''' Sparse matrices are 2D
'''
A = arr.tocsc() # convert to sparse CSC format
A.sort_indices() # MATLAB expects sorted row indices
is_complex = (A.dtype.kind == 'c')
is_logical = (A.dtype.kind == 'b')
nz = A.nnz
self.write_header(matdims(arr, self.oned_as),
mxSPARSE_CLASS,
is_complex=is_complex,
is_logical=is_logical,
# matlab won't load file with 0 nzmax
nzmax=1 if nz == 0 else nz)
self.write_element(A.indices.astype('i4'))
self.write_element(A.indptr.astype('i4'))
self.write_element(A.data.real)
if is_complex:
self.write_element(A.data.imag)
def write_cells(self, arr):
self.write_header(matdims(arr, self.oned_as),
mxCELL_CLASS)
# loop over data, column major
A = np.atleast_2d(arr).flatten('F')
for el in A:
self.write(el)
def write_empty_struct(self):
self.write_header((1, 1), mxSTRUCT_CLASS)
# max field name length set to 1 in an example matlab struct
self.write_element(np.array(1, dtype=np.int32))
# Field names element is empty
self.write_element(np.array([], dtype=np.int8))
def write_struct(self, arr):
self.write_header(matdims(arr, self.oned_as),
mxSTRUCT_CLASS)
self._write_items(arr)
def _write_items(self, arr):
# write fieldnames
fieldnames = [f[0] for f in arr.dtype.descr]
length = max([len(fieldname) for fieldname in fieldnames])+1
max_length = (self.long_field_names and 64) or 32
if length > max_length:
raise ValueError("Field names are restricted to %d characters" %
(max_length-1))
self.write_element(np.array([length], dtype='i4'))
self.write_element(
np.array(fieldnames, dtype='S%d' % (length)),
mdtype=miINT8)
A = np.atleast_2d(arr).flatten('F')
for el in A:
for f in fieldnames:
self.write(el[f])
def write_object(self, arr):
'''Same as writing structs, except different mx class, and extra
classname element after header
'''
self.write_header(matdims(arr, self.oned_as),
mxOBJECT_CLASS)
self.write_element(np.array(arr.classname, dtype='S'),
mdtype=miINT8)
self._write_items(arr)
class MatFile5Writer(object):
''' Class for writing mat5 files '''
@docfiller
def __init__(self, file_stream,
do_compression=False,
unicode_strings=False,
global_vars=None,
long_field_names=False,
oned_as='row'):
''' Initialize writer for matlab 5 format files
Parameters
----------
%(do_compression)s
%(unicode_strings)s
global_vars : None or sequence of strings, optional
Names of variables to be marked as global for matlab
%(long_fields)s
%(oned_as)s
'''
self.file_stream = file_stream
self.do_compression = do_compression
self.unicode_strings = unicode_strings
if global_vars:
self.global_vars = global_vars
else:
self.global_vars = []
self.long_field_names = long_field_names
self.oned_as = oned_as
self._matrix_writer = None
def write_file_header(self):
# write header
hdr = np.zeros((), NDT_FILE_HDR)
hdr['description'] = 'MATLAB 5.0 MAT-file Platform: %s, Created on: %s' \
% (os.name,time.asctime())
hdr['version'] = 0x0100
hdr['endian_test'] = np.ndarray(shape=(),
dtype='S2',
buffer=np.uint16(0x4d49))
self.file_stream.write(hdr.tobytes())
def put_variables(self, mdict, write_header=None):
''' Write variables in `mdict` to stream
Parameters
----------
mdict : mapping
mapping with method ``items`` returns name, contents pairs where
``name`` which will appear in the matlab workspace in file load, and
``contents`` is something writeable to a matlab file, such as a NumPy
array.
write_header : {None, True, False}, optional
If True, then write the matlab file header before writing the
variables. If None (the default) then write the file header
if we are at position 0 in the stream. By setting False
here, and setting the stream position to the end of the file,
you can append variables to a matlab file
'''
# write header if requested, or None and start of file
if write_header is None:
write_header = self.file_stream.tell() == 0
if write_header:
self.write_file_header()
self._matrix_writer = VarWriter5(self)
for name, var in mdict.items():
if name[0] == '_':
continue
is_global = name in self.global_vars
if self.do_compression:
stream = BytesIO()
self._matrix_writer.file_stream = stream
self._matrix_writer.write_top(var, asbytes(name), is_global)
out_str = zlib.compress(stream.getvalue())
tag = np.empty((), NDT_TAG_FULL)
tag['mdtype'] = miCOMPRESSED
tag['byte_count'] = len(out_str)
self.file_stream.write(tag.tobytes())
self.file_stream.write(out_str)
else: # not compressing
self._matrix_writer.write_top(var, asbytes(name), is_global)