test_bsplines.py 42.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
import numpy as np
from numpy.testing import (assert_equal, assert_allclose, assert_,
                           suppress_warnings)
from pytest import raises as assert_raises
import pytest

from scipy.interpolate import (BSpline, BPoly, PPoly, make_interp_spline,
        make_lsq_spline, _bspl, splev, splrep, splprep, splder, splantider,
         sproot, splint, insert)
import scipy.linalg as sl
from scipy._lib import _pep440

from scipy.interpolate._bsplines import _not_a_knot, _augknt
import scipy.interpolate._fitpack_impl as _impl
from scipy.interpolate._fitpack import _splint


class TestBSpline(object):

    def test_ctor(self):
        # knots should be an ordered 1-D array of finite real numbers
        assert_raises((TypeError, ValueError), BSpline,
                **dict(t=[1, 1.j], c=[1.], k=0))
        with np.errstate(invalid='ignore'):
            assert_raises(ValueError, BSpline, **dict(t=[1, np.nan], c=[1.], k=0))
        assert_raises(ValueError, BSpline, **dict(t=[1, np.inf], c=[1.], k=0))
        assert_raises(ValueError, BSpline, **dict(t=[1, -1], c=[1.], k=0))
        assert_raises(ValueError, BSpline, **dict(t=[[1], [1]], c=[1.], k=0))

        # for n+k+1 knots and degree k need at least n coefficients
        assert_raises(ValueError, BSpline, **dict(t=[0, 1, 2], c=[1], k=0))
        assert_raises(ValueError, BSpline,
                **dict(t=[0, 1, 2, 3, 4], c=[1., 1.], k=2))

        # non-integer orders
        assert_raises(TypeError, BSpline,
                **dict(t=[0., 0., 1., 2., 3., 4.], c=[1., 1., 1.], k="cubic"))
        assert_raises(TypeError, BSpline,
                **dict(t=[0., 0., 1., 2., 3., 4.], c=[1., 1., 1.], k=2.5))

        # basic interval cannot have measure zero (here: [1..1])
        assert_raises(ValueError, BSpline,
                **dict(t=[0., 0, 1, 1, 2, 3], c=[1., 1, 1], k=2))

        # tck vs self.tck
        n, k = 11, 3
        t = np.arange(n+k+1)
        c = np.random.random(n)
        b = BSpline(t, c, k)

        assert_allclose(t, b.t)
        assert_allclose(c, b.c)
        assert_equal(k, b.k)

    def test_tck(self):
        b = _make_random_spline()
        tck = b.tck

        assert_allclose(b.t, tck[0], atol=1e-15, rtol=1e-15)
        assert_allclose(b.c, tck[1], atol=1e-15, rtol=1e-15)
        assert_equal(b.k, tck[2])

        # b.tck is read-only
        with pytest.raises(AttributeError):
            b.tck = 'foo'

    def test_degree_0(self):
        xx = np.linspace(0, 1, 10)

        b = BSpline(t=[0, 1], c=[3.], k=0)
        assert_allclose(b(xx), 3)

        b = BSpline(t=[0, 0.35, 1], c=[3, 4], k=0)
        assert_allclose(b(xx), np.where(xx < 0.35, 3, 4))

    def test_degree_1(self):
        t = [0, 1, 2, 3, 4]
        c = [1, 2, 3]
        k = 1
        b = BSpline(t, c, k)

        x = np.linspace(1, 3, 50)
        assert_allclose(c[0]*B_012(x) + c[1]*B_012(x-1) + c[2]*B_012(x-2),
                        b(x), atol=1e-14)
        assert_allclose(splev(x, (t, c, k)), b(x), atol=1e-14)

    def test_bernstein(self):
        # a special knot vector: Bernstein polynomials
        k = 3
        t = np.asarray([0]*(k+1) + [1]*(k+1))
        c = np.asarray([1., 2., 3., 4.])
        bp = BPoly(c.reshape(-1, 1), [0, 1])
        bspl = BSpline(t, c, k)

        xx = np.linspace(-1., 2., 10)
        assert_allclose(bp(xx, extrapolate=True),
                        bspl(xx, extrapolate=True), atol=1e-14)
        assert_allclose(splev(xx, (t, c, k)),
                        bspl(xx), atol=1e-14)

    def test_rndm_naive_eval(self):
        # test random coefficient spline *on the base interval*,
        # t[k] <= x < t[-k-1]
        b = _make_random_spline()
        t, c, k = b.tck
        xx = np.linspace(t[k], t[-k-1], 50)
        y_b = b(xx)

        y_n = [_naive_eval(x, t, c, k) for x in xx]
        assert_allclose(y_b, y_n, atol=1e-14)

        y_n2 = [_naive_eval_2(x, t, c, k) for x in xx]
        assert_allclose(y_b, y_n2, atol=1e-14)

    def test_rndm_splev(self):
        b = _make_random_spline()
        t, c, k = b.tck
        xx = np.linspace(t[k], t[-k-1], 50)
        assert_allclose(b(xx), splev(xx, (t, c, k)), atol=1e-14)

    def test_rndm_splrep(self):
        np.random.seed(1234)
        x = np.sort(np.random.random(20))
        y = np.random.random(20)

        tck = splrep(x, y)
        b = BSpline(*tck)

        t, k = b.t, b.k
        xx = np.linspace(t[k], t[-k-1], 80)
        assert_allclose(b(xx), splev(xx, tck), atol=1e-14)

    def test_rndm_unity(self):
        b = _make_random_spline()
        b.c = np.ones_like(b.c)
        xx = np.linspace(b.t[b.k], b.t[-b.k-1], 100)
        assert_allclose(b(xx), 1.)

    def test_vectorization(self):
        n, k = 22, 3
        t = np.sort(np.random.random(n))
        c = np.random.random(size=(n, 6, 7))
        b = BSpline(t, c, k)
        tm, tp = t[k], t[-k-1]
        xx = tm + (tp - tm) * np.random.random((3, 4, 5))
        assert_equal(b(xx).shape, (3, 4, 5, 6, 7))

    def test_len_c(self):
        # for n+k+1 knots, only first n coefs are used.
        # and BTW this is consistent with FITPACK
        n, k = 33, 3
        t = np.sort(np.random.random(n+k+1))
        c = np.random.random(n)

        # pad coefficients with random garbage
        c_pad = np.r_[c, np.random.random(k+1)]

        b, b_pad = BSpline(t, c, k), BSpline(t, c_pad, k)

        dt = t[-1] - t[0]
        xx = np.linspace(t[0] - dt, t[-1] + dt, 50)
        assert_allclose(b(xx), b_pad(xx), atol=1e-14)
        assert_allclose(b(xx), splev(xx, (t, c, k)), atol=1e-14)
        assert_allclose(b(xx), splev(xx, (t, c_pad, k)), atol=1e-14)

    def test_endpoints(self):
        # base interval is closed
        b = _make_random_spline()
        t, _, k = b.tck
        tm, tp = t[k], t[-k-1]
        for extrap in (True, False):
            assert_allclose(b([tm, tp], extrap),
                            b([tm + 1e-10, tp - 1e-10], extrap), atol=1e-9)

    def test_continuity(self):
        # assert continuity at internal knots
        b = _make_random_spline()
        t, _, k = b.tck
        assert_allclose(b(t[k+1:-k-1] - 1e-10), b(t[k+1:-k-1] + 1e-10),
                atol=1e-9)

    def test_extrap(self):
        b = _make_random_spline()
        t, c, k = b.tck
        dt = t[-1] - t[0]
        xx = np.linspace(t[k] - dt, t[-k-1] + dt, 50)
        mask = (t[k] < xx) & (xx < t[-k-1])

        # extrap has no effect within the base interval
        assert_allclose(b(xx[mask], extrapolate=True),
                        b(xx[mask], extrapolate=False))

        # extrapolated values agree with FITPACK
        assert_allclose(b(xx, extrapolate=True),
                splev(xx, (t, c, k), ext=0))

    def test_default_extrap(self):
        # BSpline defaults to extrapolate=True
        b = _make_random_spline()
        t, _, k = b.tck
        xx = [t[0] - 1, t[-1] + 1]
        yy = b(xx)
        assert_(not np.all(np.isnan(yy)))

    def test_periodic_extrap(self):
        np.random.seed(1234)
        t = np.sort(np.random.random(8))
        c = np.random.random(4)
        k = 3
        b = BSpline(t, c, k, extrapolate='periodic')
        n = t.size - (k + 1)

        dt = t[-1] - t[0]
        xx = np.linspace(t[k] - dt, t[n] + dt, 50)
        xy = t[k] + (xx - t[k]) % (t[n] - t[k])
        assert_allclose(b(xx), splev(xy, (t, c, k)))

        # Direct check
        xx = [-1, 0, 0.5, 1]
        xy = t[k] + (xx - t[k]) % (t[n] - t[k])
        assert_equal(b(xx, extrapolate='periodic'), b(xy, extrapolate=True))

    def test_ppoly(self):
        b = _make_random_spline()
        t, c, k = b.tck
        pp = PPoly.from_spline((t, c, k))

        xx = np.linspace(t[k], t[-k], 100)
        assert_allclose(b(xx), pp(xx), atol=1e-14, rtol=1e-14)

    def test_derivative_rndm(self):
        b = _make_random_spline()
        t, c, k = b.tck
        xx = np.linspace(t[0], t[-1], 50)
        xx = np.r_[xx, t]

        for der in range(1, k+1):
            yd = splev(xx, (t, c, k), der=der)
            assert_allclose(yd, b(xx, nu=der), atol=1e-14)

        # higher derivatives all vanish
        assert_allclose(b(xx, nu=k+1), 0, atol=1e-14)

    def test_derivative_jumps(self):
        # example from de Boor, Chap IX, example (24)
        # NB: knots augmented & corresp coefs are zeroed out
        # in agreement with the convention (29)
        k = 2
        t = [-1, -1, 0, 1, 1, 3, 4, 6, 6, 6, 7, 7]
        np.random.seed(1234)
        c = np.r_[0, 0, np.random.random(5), 0, 0]
        b = BSpline(t, c, k)

        # b is continuous at x != 6 (triple knot)
        x = np.asarray([1, 3, 4, 6])
        assert_allclose(b(x[x != 6] - 1e-10),
                        b(x[x != 6] + 1e-10))
        assert_(not np.allclose(b(6.-1e-10), b(6+1e-10)))

        # 1st derivative jumps at double knots, 1 & 6:
        x0 = np.asarray([3, 4])
        assert_allclose(b(x0 - 1e-10, nu=1),
                        b(x0 + 1e-10, nu=1))
        x1 = np.asarray([1, 6])
        assert_(not np.all(np.allclose(b(x1 - 1e-10, nu=1),
                                       b(x1 + 1e-10, nu=1))))

        # 2nd derivative is not guaranteed to be continuous either
        assert_(not np.all(np.allclose(b(x - 1e-10, nu=2),
                                       b(x + 1e-10, nu=2))))

    def test_basis_element_quadratic(self):
        xx = np.linspace(-1, 4, 20)
        b = BSpline.basis_element(t=[0, 1, 2, 3])
        assert_allclose(b(xx),
                        splev(xx, (b.t, b.c, b.k)), atol=1e-14)
        assert_allclose(b(xx),
                        B_0123(xx), atol=1e-14)

        b = BSpline.basis_element(t=[0, 1, 1, 2])
        xx = np.linspace(0, 2, 10)
        assert_allclose(b(xx),
                np.where(xx < 1, xx*xx, (2.-xx)**2), atol=1e-14)

    def test_basis_element_rndm(self):
        b = _make_random_spline()
        t, c, k = b.tck
        xx = np.linspace(t[k], t[-k-1], 20)
        assert_allclose(b(xx), _sum_basis_elements(xx, t, c, k), atol=1e-14)

    def test_cmplx(self):
        b = _make_random_spline()
        t, c, k = b.tck
        cc = c * (1. + 3.j)

        b = BSpline(t, cc, k)
        b_re = BSpline(t, b.c.real, k)
        b_im = BSpline(t, b.c.imag, k)

        xx = np.linspace(t[k], t[-k-1], 20)
        assert_allclose(b(xx).real, b_re(xx), atol=1e-14)
        assert_allclose(b(xx).imag, b_im(xx), atol=1e-14)

    def test_nan(self):
        # nan in, nan out.
        b = BSpline.basis_element([0, 1, 1, 2])
        assert_(np.isnan(b(np.nan)))

    def test_derivative_method(self):
        b = _make_random_spline(k=5)
        t, c, k = b.tck
        b0 = BSpline(t, c, k)
        xx = np.linspace(t[k], t[-k-1], 20)
        for j in range(1, k):
            b = b.derivative()
            assert_allclose(b0(xx, j), b(xx), atol=1e-12, rtol=1e-12)

    def test_antiderivative_method(self):
        b = _make_random_spline()
        t, c, k = b.tck
        xx = np.linspace(t[k], t[-k-1], 20)
        assert_allclose(b.antiderivative().derivative()(xx),
                        b(xx), atol=1e-14, rtol=1e-14)

        # repeat with N-D array for c
        c = np.c_[c, c, c]
        c = np.dstack((c, c))
        b = BSpline(t, c, k)
        assert_allclose(b.antiderivative().derivative()(xx),
                        b(xx), atol=1e-14, rtol=1e-14)

    def test_integral(self):
        b = BSpline.basis_element([0, 1, 2])  # x for x < 1 else 2 - x
        assert_allclose(b.integrate(0, 1), 0.5)
        assert_allclose(b.integrate(1, 0), -1 * 0.5)
        assert_allclose(b.integrate(1, 0), -0.5)

        # extrapolate or zeros outside of [0, 2]; default is yes
        assert_allclose(b.integrate(-1, 1), 0)
        assert_allclose(b.integrate(-1, 1, extrapolate=True), 0)
        assert_allclose(b.integrate(-1, 1, extrapolate=False), 0.5)
        assert_allclose(b.integrate(1, -1, extrapolate=False), -1 * 0.5)

        # Test ``_fitpack._splint()``
        t, c, k = b.tck
        assert_allclose(b.integrate(1, -1, extrapolate=False),
                        _splint(t, c, k, 1, -1)[0])

        # Test ``extrapolate='periodic'``.
        b.extrapolate = 'periodic'
        i = b.antiderivative()
        period_int = i(2) - i(0)

        assert_allclose(b.integrate(0, 2), period_int)
        assert_allclose(b.integrate(2, 0), -1 * period_int)
        assert_allclose(b.integrate(-9, -7), period_int)
        assert_allclose(b.integrate(-8, -4), 2 * period_int)

        assert_allclose(b.integrate(0.5, 1.5), i(1.5) - i(0.5))
        assert_allclose(b.integrate(1.5, 3), i(1) - i(0) + i(2) - i(1.5))
        assert_allclose(b.integrate(1.5 + 12, 3 + 12),
                        i(1) - i(0) + i(2) - i(1.5))
        assert_allclose(b.integrate(1.5, 3 + 12),
                        i(1) - i(0) + i(2) - i(1.5) + 6 * period_int)

        assert_allclose(b.integrate(0, -1), i(0) - i(1))
        assert_allclose(b.integrate(-9, -10), i(0) - i(1))
        assert_allclose(b.integrate(0, -9), i(1) - i(2) - 4 * period_int)

    def test_integrate_ppoly(self):
        # test .integrate method to be consistent with PPoly.integrate
        x = [0, 1, 2, 3, 4]
        b = make_interp_spline(x, x)
        b.extrapolate = 'periodic'
        p = PPoly.from_spline(b)

        for x0, x1 in [(-5, 0.5), (0.5, 5), (-4, 13)]:
            assert_allclose(b.integrate(x0, x1),
                            p.integrate(x0, x1))

    def test_subclassing(self):
        # classmethods should not decay to the base class
        class B(BSpline):
            pass

        b = B.basis_element([0, 1, 2, 2])
        assert_equal(b.__class__, B)
        assert_equal(b.derivative().__class__, B)
        assert_equal(b.antiderivative().__class__, B)

    @pytest.mark.parametrize('axis', range(-4, 4))
    def test_axis(self, axis):
        n, k = 22, 3
        t = np.linspace(0, 1, n + k + 1)
        sh = [6, 7, 8]
        # We need the positive axis for some of the indexing and slices used
        # in this test.
        pos_axis = axis % 4
        sh.insert(pos_axis, n)   # [22, 6, 7, 8] etc
        c = np.random.random(size=sh)
        b = BSpline(t, c, k, axis=axis)
        assert_equal(b.c.shape,
                     [sh[pos_axis],] + sh[:pos_axis] + sh[pos_axis+1:])

        xp = np.random.random((3, 4, 5))
        assert_equal(b(xp).shape,
                     sh[:pos_axis] + list(xp.shape) + sh[pos_axis+1:])

        # -c.ndim <= axis < c.ndim
        for ax in [-c.ndim - 1, c.ndim]:
            assert_raises(np.AxisError, BSpline,
                          **dict(t=t, c=c, k=k, axis=ax))

        # derivative, antiderivative keeps the axis
        for b1 in [BSpline(t, c, k, axis=axis).derivative(),
                   BSpline(t, c, k, axis=axis).derivative(2),
                   BSpline(t, c, k, axis=axis).antiderivative(),
                   BSpline(t, c, k, axis=axis).antiderivative(2)]:
            assert_equal(b1.axis, b.axis)

    def test_neg_axis(self):
        k = 2
        t = [0, 1, 2, 3, 4, 5, 6]
        c = np.array([[-1, 2, 0, -1], [2, 0, -3, 1]])

        spl = BSpline(t, c, k, axis=-1)
        spl0 = BSpline(t, c[0], k)
        spl1 = BSpline(t, c[1], k)
        assert_equal(spl(2.5), [spl0(2.5), spl1(2.5)])


def test_knots_multiplicity():
    # Take a spline w/ random coefficients, throw in knots of varying
    # multiplicity.

    def check_splev(b, j, der=0, atol=1e-14, rtol=1e-14):
        # check evaluations against FITPACK, incl extrapolations
        t, c, k = b.tck
        x = np.unique(t)
        x = np.r_[t[0]-0.1, 0.5*(x[1:] + x[:1]), t[-1]+0.1]
        assert_allclose(splev(x, (t, c, k), der), b(x, der),
                atol=atol, rtol=rtol, err_msg='der = %s  k = %s' % (der, b.k))

    # test loop itself
    # [the index `j` is for interpreting the traceback in case of a failure]
    for k in [1, 2, 3, 4, 5]:
        b = _make_random_spline(k=k)
        for j, b1 in enumerate(_make_multiples(b)):
            check_splev(b1, j)
            for der in range(1, k+1):
                check_splev(b1, j, der, 1e-12, 1e-12)


### stolen from @pv, verbatim
def _naive_B(x, k, i, t):
    """
    Naive way to compute B-spline basis functions. Useful only for testing!
    computes B(x; t[i],..., t[i+k+1])
    """
    if k == 0:
        return 1.0 if t[i] <= x < t[i+1] else 0.0
    if t[i+k] == t[i]:
        c1 = 0.0
    else:
        c1 = (x - t[i])/(t[i+k] - t[i]) * _naive_B(x, k-1, i, t)
    if t[i+k+1] == t[i+1]:
        c2 = 0.0
    else:
        c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * _naive_B(x, k-1, i+1, t)
    return (c1 + c2)


### stolen from @pv, verbatim
def _naive_eval(x, t, c, k):
    """
    Naive B-spline evaluation. Useful only for testing!
    """
    if x == t[k]:
        i = k
    else:
        i = np.searchsorted(t, x) - 1
    assert t[i] <= x <= t[i+1]
    assert i >= k and i < len(t) - k
    return sum(c[i-j] * _naive_B(x, k, i-j, t) for j in range(0, k+1))


def _naive_eval_2(x, t, c, k):
    """Naive B-spline evaluation, another way."""
    n = len(t) - (k+1)
    assert n >= k+1
    assert len(c) >= n
    assert t[k] <= x <= t[n]
    return sum(c[i] * _naive_B(x, k, i, t) for i in range(n))


def _sum_basis_elements(x, t, c, k):
    n = len(t) - (k+1)
    assert n >= k+1
    assert len(c) >= n
    s = 0.
    for i in range(n):
        b = BSpline.basis_element(t[i:i+k+2], extrapolate=False)(x)
        s += c[i] * np.nan_to_num(b)   # zero out out-of-bounds elements
    return s


def B_012(x):
    """ A linear B-spline function B(x | 0, 1, 2)."""
    x = np.atleast_1d(x)
    return np.piecewise(x, [(x < 0) | (x > 2),
                            (x >= 0) & (x < 1),
                            (x >= 1) & (x <= 2)],
                           [lambda x: 0., lambda x: x, lambda x: 2.-x])


def B_0123(x, der=0):
    """A quadratic B-spline function B(x | 0, 1, 2, 3)."""
    x = np.atleast_1d(x)
    conds = [x < 1, (x > 1) & (x < 2), x > 2]
    if der == 0:
        funcs = [lambda x: x*x/2.,
                 lambda x: 3./4 - (x-3./2)**2,
                 lambda x: (3.-x)**2 / 2]
    elif der == 2:
        funcs = [lambda x: 1.,
                 lambda x: -2.,
                 lambda x: 1.]
    else:
        raise ValueError('never be here: der=%s' % der)
    pieces = np.piecewise(x, conds, funcs)
    return pieces


def _make_random_spline(n=35, k=3):
    np.random.seed(123)
    t = np.sort(np.random.random(n+k+1))
    c = np.random.random(n)
    return BSpline.construct_fast(t, c, k)


def _make_multiples(b):
    """Increase knot multiplicity."""
    c, k = b.c, b.k

    t1 = b.t.copy()
    t1[17:19] = t1[17]
    t1[22] = t1[21]
    yield BSpline(t1, c, k)

    t1 = b.t.copy()
    t1[:k+1] = t1[0]
    yield BSpline(t1, c, k)

    t1 = b.t.copy()
    t1[-k-1:] = t1[-1]
    yield BSpline(t1, c, k)


class TestInterop(object):
    #
    # Test that FITPACK-based spl* functions can deal with BSpline objects
    #
    def setup_method(self):
        xx = np.linspace(0, 4.*np.pi, 41)
        yy = np.cos(xx)
        b = make_interp_spline(xx, yy)
        self.tck = (b.t, b.c, b.k)
        self.xx, self.yy, self.b = xx, yy, b

        self.xnew = np.linspace(0, 4.*np.pi, 21)

        c2 = np.c_[b.c, b.c, b.c]
        self.c2 = np.dstack((c2, c2))
        self.b2 = BSpline(b.t, self.c2, b.k)

    def test_splev(self):
        xnew, b, b2 = self.xnew, self.b, self.b2

        # check that splev works with 1-D array of coefficients
        # for array and scalar `x`
        assert_allclose(splev(xnew, b),
                        b(xnew), atol=1e-15, rtol=1e-15)
        assert_allclose(splev(xnew, b.tck),
                        b(xnew), atol=1e-15, rtol=1e-15)
        assert_allclose([splev(x, b) for x in xnew],
                        b(xnew), atol=1e-15, rtol=1e-15)

        # With N-D coefficients, there's a quirck:
        # splev(x, BSpline) is equivalent to BSpline(x)
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning,
                       "Calling splev.. with BSpline objects with c.ndim > 1 is not recommended.")
            assert_allclose(splev(xnew, b2), b2(xnew), atol=1e-15, rtol=1e-15)

        # However, splev(x, BSpline.tck) needs some transposes. This is because
        # BSpline interpolates along the first axis, while the legacy FITPACK
        # wrapper does list(map(...)) which effectively interpolates along the
        # last axis. Like so:
        sh = tuple(range(1, b2.c.ndim)) + (0,)   # sh = (1, 2, 0)
        cc = b2.c.transpose(sh)
        tck = (b2.t, cc, b2.k)
        assert_allclose(splev(xnew, tck),
                        b2(xnew).transpose(sh), atol=1e-15, rtol=1e-15)

    def test_splrep(self):
        x, y = self.xx, self.yy
        # test that "new" splrep is equivalent to _impl.splrep
        tck = splrep(x, y)
        t, c, k = _impl.splrep(x, y)
        assert_allclose(tck[0], t, atol=1e-15)
        assert_allclose(tck[1], c, atol=1e-15)
        assert_equal(tck[2], k)

        # also cover the `full_output=True` branch
        tck_f, _, _, _ = splrep(x, y, full_output=True)
        assert_allclose(tck_f[0], t, atol=1e-15)
        assert_allclose(tck_f[1], c, atol=1e-15)
        assert_equal(tck_f[2], k)

        # test that the result of splrep roundtrips with splev:
        # evaluate the spline on the original `x` points
        yy = splev(x, tck)
        assert_allclose(y, yy, atol=1e-15)

        # ... and also it roundtrips if wrapped in a BSpline
        b = BSpline(*tck)
        assert_allclose(y, b(x), atol=1e-15)

    @pytest.mark.xfail(_pep440.parse(np.__version__) < _pep440.Version('1.14.0'),
                       reason='requires NumPy >= 1.14.0')
    def test_splrep_errors(self):
        # test that both "old" and "new" splrep raise for an N-D ``y`` array
        # with n > 1
        x, y = self.xx, self.yy
        y2 = np.c_[y, y]
        with assert_raises(ValueError):
            splrep(x, y2)
        with assert_raises(ValueError):
            _impl.splrep(x, y2)

        # input below minimum size
        with assert_raises(TypeError, match="m > k must hold"):
            splrep(x[:3], y[:3])
        with assert_raises(TypeError, match="m > k must hold"):
            _impl.splrep(x[:3], y[:3])

    def test_splprep(self):
        x = np.arange(15).reshape((3, 5))
        b, u = splprep(x)
        tck, u1 = _impl.splprep(x)

        # test the roundtrip with splev for both "old" and "new" output
        assert_allclose(u, u1, atol=1e-15)
        assert_allclose(splev(u, b), x, atol=1e-15)
        assert_allclose(splev(u, tck), x, atol=1e-15)

        # cover the ``full_output=True`` branch
        (b_f, u_f), _, _, _ = splprep(x, s=0, full_output=True)
        assert_allclose(u, u_f, atol=1e-15)
        assert_allclose(splev(u_f, b_f), x, atol=1e-15)

    def test_splprep_errors(self):
        # test that both "old" and "new" code paths raise for x.ndim > 2
        x = np.arange(3*4*5).reshape((3, 4, 5))
        with assert_raises(ValueError, match="too many values to unpack"):
            splprep(x)
        with assert_raises(ValueError, match="too many values to unpack"):
            _impl.splprep(x)

        # input below minimum size
        x = np.linspace(0, 40, num=3)
        with assert_raises(TypeError, match="m > k must hold"):
            splprep([x])
        with assert_raises(TypeError, match="m > k must hold"):
            _impl.splprep([x])

        # automatically calculated parameters are non-increasing
        # see gh-7589
        x = [-50.49072266, -50.49072266, -54.49072266, -54.49072266]
        with assert_raises(ValueError, match="Invalid inputs"):
            splprep([x])
        with assert_raises(ValueError, match="Invalid inputs"):
            _impl.splprep([x])

        # given non-increasing parameter values u
        x = [1, 3, 2, 4]
        u = [0, 0.3, 0.2, 1]
        with assert_raises(ValueError, match="Invalid inputs"):
            splprep(*[[x], None, u])

    def test_sproot(self):
        b, b2 = self.b, self.b2
        roots = np.array([0.5, 1.5, 2.5, 3.5])*np.pi
        # sproot accepts a BSpline obj w/ 1-D coef array
        assert_allclose(sproot(b), roots, atol=1e-7, rtol=1e-7)
        assert_allclose(sproot((b.t, b.c, b.k)), roots, atol=1e-7, rtol=1e-7)

        # ... and deals with trailing dimensions if coef array is N-D
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning,
                       "Calling sproot.. with BSpline objects with c.ndim > 1 is not recommended.")
            r = sproot(b2, mest=50)
        r = np.asarray(r)

        assert_equal(r.shape, (3, 2, 4))
        assert_allclose(r - roots, 0, atol=1e-12)

        # and legacy behavior is preserved for a tck tuple w/ N-D coef
        c2r = b2.c.transpose(1, 2, 0)
        rr = np.asarray(sproot((b2.t, c2r, b2.k), mest=50))
        assert_equal(rr.shape, (3, 2, 4))
        assert_allclose(rr - roots, 0, atol=1e-12)

    def test_splint(self):
        # test that splint accepts BSpline objects
        b, b2 = self.b, self.b2
        assert_allclose(splint(0, 1, b),
                        splint(0, 1, b.tck), atol=1e-14)
        assert_allclose(splint(0, 1, b),
                        b.integrate(0, 1), atol=1e-14)

        # ... and deals with N-D arrays of coefficients
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning,
                       "Calling splint.. with BSpline objects with c.ndim > 1 is not recommended.")
            assert_allclose(splint(0, 1, b2), b2.integrate(0, 1), atol=1e-14)

        # and the legacy behavior is preserved for a tck tuple w/ N-D coef
        c2r = b2.c.transpose(1, 2, 0)
        integr = np.asarray(splint(0, 1, (b2.t, c2r, b2.k)))
        assert_equal(integr.shape, (3, 2))
        assert_allclose(integr,
                        splint(0, 1, b), atol=1e-14)

    def test_splder(self):
        for b in [self.b, self.b2]:
            # pad the c array (FITPACK convention)
            ct = len(b.t) - len(b.c)
            if ct > 0:
                b.c = np.r_[b.c, np.zeros((ct,) + b.c.shape[1:])]

            for n in [1, 2, 3]:
                bd = splder(b)
                tck_d = _impl.splder((b.t, b.c, b.k))
                assert_allclose(bd.t, tck_d[0], atol=1e-15)
                assert_allclose(bd.c, tck_d[1], atol=1e-15)
                assert_equal(bd.k, tck_d[2])
                assert_(isinstance(bd, BSpline))
                assert_(isinstance(tck_d, tuple))  # back-compat: tck in and out

    def test_splantider(self):
        for b in [self.b, self.b2]:
            # pad the c array (FITPACK convention)
            ct = len(b.t) - len(b.c)
            if ct > 0:
                b.c = np.r_[b.c, np.zeros((ct,) + b.c.shape[1:])]

            for n in [1, 2, 3]:
                bd = splantider(b)
                tck_d = _impl.splantider((b.t, b.c, b.k))
                assert_allclose(bd.t, tck_d[0], atol=1e-15)
                assert_allclose(bd.c, tck_d[1], atol=1e-15)
                assert_equal(bd.k, tck_d[2])
                assert_(isinstance(bd, BSpline))
                assert_(isinstance(tck_d, tuple))  # back-compat: tck in and out

    def test_insert(self):
        b, b2, xx = self.b, self.b2, self.xx

        j = b.t.size // 2
        tn = 0.5*(b.t[j] + b.t[j+1])

        bn, tck_n = insert(tn, b), insert(tn, (b.t, b.c, b.k))
        assert_allclose(splev(xx, bn),
                        splev(xx, tck_n), atol=1e-15)
        assert_(isinstance(bn, BSpline))
        assert_(isinstance(tck_n, tuple))   # back-compat: tck in, tck out

        # for N-D array of coefficients, BSpline.c needs to be transposed
        # after that, the results are equivalent.
        sh = tuple(range(b2.c.ndim))
        c_ = b2.c.transpose(sh[1:] + (0,))
        tck_n2 = insert(tn, (b2.t, c_, b2.k))

        bn2 = insert(tn, b2)

        # need a transpose for comparing the results, cf test_splev
        assert_allclose(np.asarray(splev(xx, tck_n2)).transpose(2, 0, 1),
                        bn2(xx), atol=1e-15)
        assert_(isinstance(bn2, BSpline))
        assert_(isinstance(tck_n2, tuple))   # back-compat: tck in, tck out


class TestInterp(object):
    #
    # Test basic ways of constructing interpolating splines.
    #
    xx = np.linspace(0., 2.*np.pi)
    yy = np.sin(xx)

    def test_non_int_order(self):
        with assert_raises(TypeError):
            make_interp_spline(self.xx, self.yy, k=2.5)

    def test_order_0(self):
        b = make_interp_spline(self.xx, self.yy, k=0)
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
        b = make_interp_spline(self.xx, self.yy, k=0, axis=-1)
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)

    def test_linear(self):
        b = make_interp_spline(self.xx, self.yy, k=1)
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
        b = make_interp_spline(self.xx, self.yy, k=1, axis=-1)
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)

    def test_not_a_knot(self):
        for k in [3, 5]:
            b = make_interp_spline(self.xx, self.yy, k)
            assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)

    def test_quadratic_deriv(self):
        der = [(1, 8.)]  # order, value: f'(x) = 8.

        # derivative at right-hand edge
        b = make_interp_spline(self.xx, self.yy, k=2, bc_type=(None, der))
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
        assert_allclose(b(self.xx[-1], 1), der[0][1], atol=1e-14, rtol=1e-14)

        # derivative at left-hand edge
        b = make_interp_spline(self.xx, self.yy, k=2, bc_type=(der, None))
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
        assert_allclose(b(self.xx[0], 1), der[0][1], atol=1e-14, rtol=1e-14)

    def test_cubic_deriv(self):
        k = 3

        # first derivatives at left & right edges:
        der_l, der_r = [(1, 3.)], [(1, 4.)]
        b = make_interp_spline(self.xx, self.yy, k, bc_type=(der_l, der_r))
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
        assert_allclose([b(self.xx[0], 1), b(self.xx[-1], 1)],
                        [der_l[0][1], der_r[0][1]], atol=1e-14, rtol=1e-14)

        # 'natural' cubic spline, zero out 2nd derivatives at the boundaries
        der_l, der_r = [(2, 0)], [(2, 0)]
        b = make_interp_spline(self.xx, self.yy, k, bc_type=(der_l, der_r))
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)

    def test_quintic_derivs(self):
        k, n = 5, 7
        x = np.arange(n).astype(np.float_)
        y = np.sin(x)
        der_l = [(1, -12.), (2, 1)]
        der_r = [(1, 8.), (2, 3.)]
        b = make_interp_spline(x, y, k=k, bc_type=(der_l, der_r))
        assert_allclose(b(x), y, atol=1e-14, rtol=1e-14)
        assert_allclose([b(x[0], 1), b(x[0], 2)],
                        [val for (nu, val) in der_l])
        assert_allclose([b(x[-1], 1), b(x[-1], 2)],
                        [val for (nu, val) in der_r])

    @pytest.mark.xfail(reason='unstable')
    def test_cubic_deriv_unstable(self):
        # 1st and 2nd derivative at x[0], no derivative information at x[-1]
        # The problem is not that it fails [who would use this anyway],
        # the problem is that it fails *silently*, and I've no idea
        # how to detect this sort of instability.
        # In this particular case: it's OK for len(t) < 20, goes haywire
        # at larger `len(t)`.
        k = 3
        t = _augknt(self.xx, k)

        der_l = [(1, 3.), (2, 4.)]
        b = make_interp_spline(self.xx, self.yy, k, t, bc_type=(der_l, None))
        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)

    def test_knots_not_data_sites(self):
        # Knots need not coincide with the data sites.
        # use a quadratic spline, knots are at data averages,
        # two additional constraints are zero 2nd derivatives at edges
        k = 2
        t = np.r_[(self.xx[0],)*(k+1),
                  (self.xx[1:] + self.xx[:-1]) / 2.,
                  (self.xx[-1],)*(k+1)]
        b = make_interp_spline(self.xx, self.yy, k, t,
                               bc_type=([(2, 0)], [(2, 0)]))

        assert_allclose(b(self.xx), self.yy, atol=1e-14, rtol=1e-14)
        assert_allclose([b(self.xx[0], 2), b(self.xx[-1], 2)], [0., 0.],
                atol=1e-14)

    def test_minimum_points_and_deriv(self):
        # interpolation of f(x) = x**3 between 0 and 1. f'(x) = 3 * xx**2 and
        # f'(0) = 0, f'(1) = 3.
        k = 3
        x = [0., 1.]
        y = [0., 1.]
        b = make_interp_spline(x, y, k, bc_type=([(1, 0.)], [(1, 3.)]))

        xx = np.linspace(0., 1.)
        yy = xx**3
        assert_allclose(b(xx), yy, atol=1e-14, rtol=1e-14)

    def test_deriv_spec(self):
        # If one of the derivatives is omitted, the spline definition is
        # incomplete.
        x = y = [1.0, 2, 3, 4, 5, 6]

        with assert_raises(ValueError):
            make_interp_spline(x, y, bc_type=([(1, 0.)], None))

        with assert_raises(ValueError):
            make_interp_spline(x, y, bc_type=(1, 0.))

        with assert_raises(ValueError):
            make_interp_spline(x, y, bc_type=[(1, 0.)])

        with assert_raises(ValueError):
            make_interp_spline(x, y, bc_type=42)

        # CubicSpline expects`bc_type=(left_pair, right_pair)`, while
        # here we expect `bc_type=(iterable, iterable)`.
        l, r = (1, 0.0), (1, 0.0)
        with assert_raises(ValueError):
            make_interp_spline(x, y, bc_type=(l, r))

    def test_complex(self):
        k = 3
        xx = self.xx
        yy = self.yy + 1.j*self.yy

        # first derivatives at left & right edges:
        der_l, der_r = [(1, 3.j)], [(1, 4.+2.j)]
        b = make_interp_spline(xx, yy, k, bc_type=(der_l, der_r))
        assert_allclose(b(xx), yy, atol=1e-14, rtol=1e-14)
        assert_allclose([b(xx[0], 1), b(xx[-1], 1)],
                        [der_l[0][1], der_r[0][1]], atol=1e-14, rtol=1e-14)

        # also test zero and first order
        for k in (0, 1):
            b = make_interp_spline(xx, yy, k=k)
            assert_allclose(b(xx), yy, atol=1e-14, rtol=1e-14)

    def test_int_xy(self):
        x = np.arange(10).astype(np.int_)
        y = np.arange(10).astype(np.int_)

        # Cython chokes on "buffer type mismatch" (construction) or
        # "no matching signature found" (evaluation)
        for k in (0, 1, 2, 3):
            b = make_interp_spline(x, y, k=k)
            b(x)

    def test_sliced_input(self):
        # Cython code chokes on non C contiguous arrays
        xx = np.linspace(-1, 1, 100)

        x = xx[::5]
        y = xx[::5]

        for k in (0, 1, 2, 3):
            make_interp_spline(x, y, k=k)

    def test_check_finite(self):
        # check_finite defaults to True; nans and such trigger a ValueError
        x = np.arange(10).astype(float)
        y = x**2

        for z in [np.nan, np.inf, -np.inf]:
            y[-1] = z
            assert_raises(ValueError, make_interp_spline, x, y)

    @pytest.mark.parametrize('k', [1, 2, 3, 5])
    def test_list_input(self, k):
        # regression test for gh-8714: TypeError for x, y being lists and k=2
        x = list(range(10))
        y = [a**2 for a in x]
        make_interp_spline(x, y, k=k)

    def test_multiple_rhs(self):
        yy = np.c_[np.sin(self.xx), np.cos(self.xx)]
        der_l = [(1, [1., 2.])]
        der_r = [(1, [3., 4.])]

        b = make_interp_spline(self.xx, yy, k=3, bc_type=(der_l, der_r))
        assert_allclose(b(self.xx), yy, atol=1e-14, rtol=1e-14)
        assert_allclose(b(self.xx[0], 1), der_l[0][1], atol=1e-14, rtol=1e-14)
        assert_allclose(b(self.xx[-1], 1), der_r[0][1], atol=1e-14, rtol=1e-14)

    def test_shapes(self):
        np.random.seed(1234)
        k, n = 3, 22
        x = np.sort(np.random.random(size=n))
        y = np.random.random(size=(n, 5, 6, 7))

        b = make_interp_spline(x, y, k)
        assert_equal(b.c.shape, (n, 5, 6, 7))

        # now throw in some derivatives
        d_l = [(1, np.random.random((5, 6, 7)))]
        d_r = [(1, np.random.random((5, 6, 7)))]
        b = make_interp_spline(x, y, k, bc_type=(d_l, d_r))
        assert_equal(b.c.shape, (n + k - 1, 5, 6, 7))

    def test_string_aliases(self):
        yy = np.sin(self.xx)

        # a single string is duplicated
        b1 = make_interp_spline(self.xx, yy, k=3, bc_type='natural')
        b2 = make_interp_spline(self.xx, yy, k=3, bc_type=([(2, 0)], [(2, 0)]))
        assert_allclose(b1.c, b2.c, atol=1e-15)

        # two strings are handled
        b1 = make_interp_spline(self.xx, yy, k=3,
                                bc_type=('natural', 'clamped'))
        b2 = make_interp_spline(self.xx, yy, k=3,
                                bc_type=([(2, 0)], [(1, 0)]))
        assert_allclose(b1.c, b2.c, atol=1e-15)

        # one-sided BCs are OK
        b1 = make_interp_spline(self.xx, yy, k=2, bc_type=(None, 'clamped'))
        b2 = make_interp_spline(self.xx, yy, k=2, bc_type=(None, [(1, 0.0)]))
        assert_allclose(b1.c, b2.c, atol=1e-15)

        # 'not-a-knot' is equivalent to None
        b1 = make_interp_spline(self.xx, yy, k=3, bc_type='not-a-knot')
        b2 = make_interp_spline(self.xx, yy, k=3, bc_type=None)
        assert_allclose(b1.c, b2.c, atol=1e-15)

        # unknown strings do not pass
        with assert_raises(ValueError):
            make_interp_spline(self.xx, yy, k=3, bc_type='typo')

        # string aliases are handled for 2D values
        yy = np.c_[np.sin(self.xx), np.cos(self.xx)]
        der_l = [(1, [0., 0.])]
        der_r = [(2, [0., 0.])]
        b2 = make_interp_spline(self.xx, yy, k=3, bc_type=(der_l, der_r))
        b1 = make_interp_spline(self.xx, yy, k=3,
                                bc_type=('clamped', 'natural'))
        assert_allclose(b1.c, b2.c, atol=1e-15)

        # ... and for N-D values:
        np.random.seed(1234)
        k, n = 3, 22
        x = np.sort(np.random.random(size=n))
        y = np.random.random(size=(n, 5, 6, 7))

        # now throw in some derivatives
        d_l = [(1, np.zeros((5, 6, 7)))]
        d_r = [(1, np.zeros((5, 6, 7)))]
        b1 = make_interp_spline(x, y, k, bc_type=(d_l, d_r))
        b2 = make_interp_spline(x, y, k, bc_type='clamped')
        assert_allclose(b1.c, b2.c, atol=1e-15)

    def test_full_matrix(self):
        np.random.seed(1234)
        k, n = 3, 7
        x = np.sort(np.random.random(size=n))
        y = np.random.random(size=n)
        t = _not_a_knot(x, k)

        b = make_interp_spline(x, y, k, t)
        cf = make_interp_full_matr(x, y, t, k)
        assert_allclose(b.c, cf, atol=1e-14, rtol=1e-14)


def make_interp_full_matr(x, y, t, k):
    """Assemble an spline order k with knots t to interpolate
    y(x) using full matrices.
    Not-a-knot BC only.

    This routine is here for testing only (even though it's functional).
    """
    assert x.size == y.size
    assert t.size == x.size + k + 1
    n = x.size

    A = np.zeros((n, n), dtype=np.float_)

    for j in range(n):
        xval = x[j]
        if xval == t[k]:
            left = k
        else:
            left = np.searchsorted(t, xval) - 1

        # fill a row
        bb = _bspl.evaluate_all_bspl(t, k, xval, left)
        A[j, left-k:left+1] = bb

    c = sl.solve(A, y)
    return c


### XXX: 'periodic' interp spline using full matrices
def make_interp_per_full_matr(x, y, t, k):
    x, y, t = map(np.asarray, (x, y, t))

    n = x.size
    nt = t.size - k - 1

    # have `n` conditions for `nt` coefficients; need nt-n derivatives
    assert nt - n == k - 1

    # LHS: the collocation matrix + derivatives at edges
    A = np.zeros((nt, nt), dtype=np.float_)

    # derivatives at x[0]:
    offset = 0

    if x[0] == t[k]:
        left = k
    else:
        left = np.searchsorted(t, x[0]) - 1

    if x[-1] == t[k]:
        left2 = k
    else:
        left2 = np.searchsorted(t, x[-1]) - 1

    for i in range(k-1):
        bb = _bspl.evaluate_all_bspl(t, k, x[0], left, nu=i+1)
        A[i, left-k:left+1] = bb
        bb = _bspl.evaluate_all_bspl(t, k, x[-1], left2, nu=i+1)
        A[i, left2-k:left2+1] = -bb
        offset += 1

    # RHS
    y = np.r_[[0]*(k-1), y]

    # collocation matrix
    for j in range(n):
        xval = x[j]
        # find interval
        if xval == t[k]:
            left = k
        else:
            left = np.searchsorted(t, xval) - 1

        # fill a row
        bb = _bspl.evaluate_all_bspl(t, k, xval, left)
        A[j + offset, left-k:left+1] = bb

    c = sl.solve(A, y)
    return c


def make_lsq_full_matrix(x, y, t, k=3):
    """Make the least-square spline, full matrices."""
    x, y, t = map(np.asarray, (x, y, t))
    m = x.size
    n = t.size - k - 1

    A = np.zeros((m, n), dtype=np.float_)

    for j in range(m):
        xval = x[j]
        # find interval
        if xval == t[k]:
            left = k
        else:
            left = np.searchsorted(t, xval) - 1

        # fill a row
        bb = _bspl.evaluate_all_bspl(t, k, xval, left)
        A[j, left-k:left+1] = bb

    # have observation matrix, can solve the LSQ problem
    B = np.dot(A.T, A)
    Y = np.dot(A.T, y)
    c = sl.solve(B, Y)

    return c, (A, Y)


class TestLSQ(object):
    #
    # Test make_lsq_spline
    #
    np.random.seed(1234)
    n, k = 13, 3
    x = np.sort(np.random.random(n))
    y = np.random.random(n)
    t = _augknt(np.linspace(x[0], x[-1], 7), k)

    def test_lstsq(self):
        # check LSQ construction vs a full matrix version
        x, y, t, k = self.x, self.y, self.t, self.k

        c0, AY = make_lsq_full_matrix(x, y, t, k)
        b = make_lsq_spline(x, y, t, k)

        assert_allclose(b.c, c0)
        assert_equal(b.c.shape, (t.size - k - 1,))

        # also check against numpy.lstsq
        aa, yy = AY
        c1, _, _, _ = np.linalg.lstsq(aa, y, rcond=-1)
        assert_allclose(b.c, c1)

    def test_weights(self):
        # weights = 1 is same as None
        x, y, t, k = self.x, self.y, self.t, self.k
        w = np.ones_like(x)

        b = make_lsq_spline(x, y, t, k)
        b_w = make_lsq_spline(x, y, t, k, w=w)

        assert_allclose(b.t, b_w.t, atol=1e-14)
        assert_allclose(b.c, b_w.c, atol=1e-14)
        assert_equal(b.k, b_w.k)

    def test_multiple_rhs(self):
        x, t, k, n = self.x, self.t, self.k, self.n
        y = np.random.random(size=(n, 5, 6, 7))

        b = make_lsq_spline(x, y, t, k)
        assert_equal(b.c.shape, (t.size-k-1, 5, 6, 7))

    def test_complex(self):
        # cmplx-valued `y`
        x, t, k = self.x, self.t, self.k
        yc = self.y * (1. + 2.j)

        b = make_lsq_spline(x, yc, t, k)
        b_re = make_lsq_spline(x, yc.real, t, k)
        b_im = make_lsq_spline(x, yc.imag, t, k)

        assert_allclose(b(x), b_re(x) + 1.j*b_im(x), atol=1e-15, rtol=1e-15)

    def test_int_xy(self):
        x = np.arange(10).astype(np.int_)
        y = np.arange(10).astype(np.int_)
        t = _augknt(x, k=1)
        # Cython chokes on "buffer type mismatch"
        make_lsq_spline(x, y, t, k=1)

    def test_sliced_input(self):
        # Cython code chokes on non C contiguous arrays
        xx = np.linspace(-1, 1, 100)

        x = xx[::3]
        y = xx[::3]
        t = _augknt(x, 1)
        make_lsq_spline(x, y, t, k=1)

    def test_checkfinite(self):
        # check_finite defaults to True; nans and such trigger a ValueError
        x = np.arange(12).astype(float)
        y = x**2
        t = _augknt(x, 3)

        for z in [np.nan, np.inf, -np.inf]:
            y[-1] = z
            assert_raises(ValueError, make_lsq_spline, x, y, t)