test_polynomial.py 19.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
"""Tests for polynomial module.

"""
from functools import reduce

import numpy as np
import numpy.polynomial.polynomial as poly
from numpy.testing import (
    assert_almost_equal, assert_raises, assert_equal, assert_,
    assert_warns, assert_array_equal, assert_raises_regex)


def trim(x):
    return poly.polytrim(x, tol=1e-6)

T0 = [1]
T1 = [0, 1]
T2 = [-1, 0, 2]
T3 = [0, -3, 0, 4]
T4 = [1, 0, -8, 0, 8]
T5 = [0, 5, 0, -20, 0, 16]
T6 = [-1, 0, 18, 0, -48, 0, 32]
T7 = [0, -7, 0, 56, 0, -112, 0, 64]
T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]

Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]


class TestConstants:

    def test_polydomain(self):
        assert_equal(poly.polydomain, [-1, 1])

    def test_polyzero(self):
        assert_equal(poly.polyzero, [0])

    def test_polyone(self):
        assert_equal(poly.polyone, [1])

    def test_polyx(self):
        assert_equal(poly.polyx, [0, 1])


class TestArithmetic:

    def test_polyadd(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                tgt = np.zeros(max(i, j) + 1)
                tgt[i] += 1
                tgt[j] += 1
                res = poly.polyadd([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_polysub(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                tgt = np.zeros(max(i, j) + 1)
                tgt[i] += 1
                tgt[j] -= 1
                res = poly.polysub([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_polymulx(self):
        assert_equal(poly.polymulx([0]), [0])
        assert_equal(poly.polymulx([1]), [0, 1])
        for i in range(1, 5):
            ser = [0]*i + [1]
            tgt = [0]*(i + 1) + [1]
            assert_equal(poly.polymulx(ser), tgt)

    def test_polymul(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                tgt = np.zeros(i + j + 1)
                tgt[i + j] += 1
                res = poly.polymul([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_polydiv(self):
        # check zero division
        assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])

        # check scalar division
        quo, rem = poly.polydiv([2], [2])
        assert_equal((quo, rem), (1, 0))
        quo, rem = poly.polydiv([2, 2], [2])
        assert_equal((quo, rem), ((1, 1), 0))

        # check rest.
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                ci = [0]*i + [1, 2]
                cj = [0]*j + [1, 2]
                tgt = poly.polyadd(ci, cj)
                quo, rem = poly.polydiv(tgt, ci)
                res = poly.polyadd(poly.polymul(quo, ci), rem)
                assert_equal(res, tgt, err_msg=msg)

    def test_polypow(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                c = np.arange(i + 1)
                tgt = reduce(poly.polymul, [c]*j, np.array([1]))
                res = poly.polypow(c, j) 
                assert_equal(trim(res), trim(tgt), err_msg=msg)


class TestEvaluation:
    # coefficients of 1 + 2*x + 3*x**2
    c1d = np.array([1., 2., 3.])
    c2d = np.einsum('i,j->ij', c1d, c1d)
    c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)

    # some random values in [-1, 1)
    x = np.random.random((3, 5))*2 - 1
    y = poly.polyval(x, [1., 2., 3.])

    def test_polyval(self):
        #check empty input
        assert_equal(poly.polyval([], [1]).size, 0)

        #check normal input)
        x = np.linspace(-1, 1)
        y = [x**i for i in range(5)]
        for i in range(5):
            tgt = y[i]
            res = poly.polyval(x, [0]*i + [1])
            assert_almost_equal(res, tgt)
        tgt = x*(x**2 - 1)
        res = poly.polyval(x, [0, -1, 0, 1])
        assert_almost_equal(res, tgt)

        #check that shape is preserved
        for i in range(3):
            dims = [2]*i
            x = np.zeros(dims)
            assert_equal(poly.polyval(x, [1]).shape, dims)
            assert_equal(poly.polyval(x, [1, 0]).shape, dims)
            assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)

        #check masked arrays are processed correctly
        mask = [False, True, False]
        mx = np.ma.array([1, 2, 3], mask=mask)
        res = np.polyval([7, 5, 3], mx)
        assert_array_equal(res.mask, mask)

        #check subtypes of ndarray are preserved
        class C(np.ndarray):
            pass

        cx = np.array([1, 2, 3]).view(C)
        assert_equal(type(np.polyval([2, 3, 4], cx)), C)

    def test_polyvalfromroots(self):
        # check exception for broadcasting x values over root array with
        # too few dimensions
        assert_raises(ValueError, poly.polyvalfromroots,
                      [1], [1], tensor=False)

        # check empty input
        assert_equal(poly.polyvalfromroots([], [1]).size, 0)
        assert_(poly.polyvalfromroots([], [1]).shape == (0,))

        # check empty input + multidimensional roots
        assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
        assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))

        # check scalar input
        assert_equal(poly.polyvalfromroots(1, 1), 0)
        assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))

        # check normal input)
        x = np.linspace(-1, 1)
        y = [x**i for i in range(5)]
        for i in range(1, 5):
            tgt = y[i]
            res = poly.polyvalfromroots(x, [0]*i)
            assert_almost_equal(res, tgt)
        tgt = x*(x - 1)*(x + 1)
        res = poly.polyvalfromroots(x, [-1, 0, 1])
        assert_almost_equal(res, tgt)

        # check that shape is preserved
        for i in range(3):
            dims = [2]*i
            x = np.zeros(dims)
            assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
            assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
            assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)

        # check compatibility with factorization
        ptest = [15, 2, -16, -2, 1]
        r = poly.polyroots(ptest)
        x = np.linspace(-1, 1)
        assert_almost_equal(poly.polyval(x, ptest),
                            poly.polyvalfromroots(x, r))

        # check multidimensional arrays of roots and values
        # check tensor=False
        rshape = (3, 5)
        x = np.arange(-3, 2)
        r = np.random.randint(-5, 5, size=rshape)
        res = poly.polyvalfromroots(x, r, tensor=False)
        tgt = np.empty(r.shape[1:])
        for ii in range(tgt.size):
            tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
        assert_equal(res, tgt)

        # check tensor=True
        x = np.vstack([x, 2*x])
        res = poly.polyvalfromroots(x, r, tensor=True)
        tgt = np.empty(r.shape[1:] + x.shape)
        for ii in range(r.shape[1]):
            for jj in range(x.shape[0]):
                tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
        assert_equal(res, tgt)

    def test_polyval2d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test exceptions
        assert_raises_regex(ValueError, 'incompatible',
                            poly.polyval2d, x1, x2[:2], self.c2d)

        #test values
        tgt = y1*y2
        res = poly.polyval2d(x1, x2, self.c2d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = poly.polyval2d(z, z, self.c2d)
        assert_(res.shape == (2, 3))

    def test_polyval3d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test exceptions
        assert_raises_regex(ValueError, 'incompatible',
                      poly.polyval3d, x1, x2, x3[:2], self.c3d)

        #test values
        tgt = y1*y2*y3
        res = poly.polyval3d(x1, x2, x3, self.c3d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = poly.polyval3d(z, z, z, self.c3d)
        assert_(res.shape == (2, 3))

    def test_polygrid2d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test values
        tgt = np.einsum('i,j->ij', y1, y2)
        res = poly.polygrid2d(x1, x2, self.c2d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = poly.polygrid2d(z, z, self.c2d)
        assert_(res.shape == (2, 3)*2)

    def test_polygrid3d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test values
        tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
        res = poly.polygrid3d(x1, x2, x3, self.c3d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = poly.polygrid3d(z, z, z, self.c3d)
        assert_(res.shape == (2, 3)*3)


class TestIntegral:

    def test_polyint(self):
        # check exceptions
        assert_raises(TypeError, poly.polyint, [0], .5)
        assert_raises(ValueError, poly.polyint, [0], -1)
        assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
        assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
        assert_raises(ValueError, poly.polyint, [0], scl=[0])
        assert_raises(TypeError, poly.polyint, [0], axis=.5)
        with assert_warns(DeprecationWarning):
            poly.polyint([1, 1], 1.)

        # test integration of zero polynomial
        for i in range(2, 5):
            k = [0]*(i - 2) + [1]
            res = poly.polyint([0], m=i, k=k)
            assert_almost_equal(res, [0, 1])

        # check single integration with integration constant
        for i in range(5):
            scl = i + 1
            pol = [0]*i + [1]
            tgt = [i] + [0]*i + [1/scl]
            res = poly.polyint(pol, m=1, k=[i])
            assert_almost_equal(trim(res), trim(tgt))

        # check single integration with integration constant and lbnd
        for i in range(5):
            scl = i + 1
            pol = [0]*i + [1]
            res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
            assert_almost_equal(poly.polyval(-1, res), i)

        # check single integration with integration constant and scaling
        for i in range(5):
            scl = i + 1
            pol = [0]*i + [1]
            tgt = [i] + [0]*i + [2/scl]
            res = poly.polyint(pol, m=1, k=[i], scl=2)
            assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with default k
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = poly.polyint(tgt, m=1)
                res = poly.polyint(pol, m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with defined k
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = poly.polyint(tgt, m=1, k=[k])
                res = poly.polyint(pol, m=j, k=list(range(j)))
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with lbnd
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
                res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with scaling
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
                res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
                assert_almost_equal(trim(res), trim(tgt))

    def test_polyint_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
        res = poly.polyint(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([poly.polyint(c) for c in c2d])
        res = poly.polyint(c2d, axis=1)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
        res = poly.polyint(c2d, k=3, axis=1)
        assert_almost_equal(res, tgt)


class TestDerivative:

    def test_polyder(self):
        # check exceptions
        assert_raises(TypeError, poly.polyder, [0], .5)
        assert_raises(ValueError, poly.polyder, [0], -1)

        # check that zeroth derivative does nothing
        for i in range(5):
            tgt = [0]*i + [1]
            res = poly.polyder(tgt, m=0)
            assert_equal(trim(res), trim(tgt))

        # check that derivation is the inverse of integration
        for i in range(5):
            for j in range(2, 5):
                tgt = [0]*i + [1]
                res = poly.polyder(poly.polyint(tgt, m=j), m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check derivation with scaling
        for i in range(5):
            for j in range(2, 5):
                tgt = [0]*i + [1]
                res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
                assert_almost_equal(trim(res), trim(tgt))

    def test_polyder_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
        res = poly.polyder(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([poly.polyder(c) for c in c2d])
        res = poly.polyder(c2d, axis=1)
        assert_almost_equal(res, tgt)


class TestVander:
    # some random values in [-1, 1)
    x = np.random.random((3, 5))*2 - 1

    def test_polyvander(self):
        # check for 1d x
        x = np.arange(3)
        v = poly.polyvander(x, 3)
        assert_(v.shape == (3, 4))
        for i in range(4):
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], poly.polyval(x, coef))

        # check for 2d x
        x = np.array([[1, 2], [3, 4], [5, 6]])
        v = poly.polyvander(x, 3)
        assert_(v.shape == (3, 2, 4))
        for i in range(4):
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], poly.polyval(x, coef))

    def test_polyvander2d(self):
        # also tests polyval2d for non-square coefficient array
        x1, x2, x3 = self.x
        c = np.random.random((2, 3))
        van = poly.polyvander2d(x1, x2, [1, 2])
        tgt = poly.polyval2d(x1, x2, c)
        res = np.dot(van, c.flat)
        assert_almost_equal(res, tgt)

        # check shape
        van = poly.polyvander2d([x1], [x2], [1, 2])
        assert_(van.shape == (1, 5, 6))

    def test_polyvander3d(self):
        # also tests polyval3d for non-square coefficient array
        x1, x2, x3 = self.x
        c = np.random.random((2, 3, 4))
        van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
        tgt = poly.polyval3d(x1, x2, x3, c)
        res = np.dot(van, c.flat)
        assert_almost_equal(res, tgt)

        # check shape
        van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
        assert_(van.shape == (1, 5, 24))


class TestCompanion:

    def test_raises(self):
        assert_raises(ValueError, poly.polycompanion, [])
        assert_raises(ValueError, poly.polycompanion, [1])

    def test_dimensions(self):
        for i in range(1, 5):
            coef = [0]*i + [1]
            assert_(poly.polycompanion(coef).shape == (i, i))

    def test_linear_root(self):
        assert_(poly.polycompanion([1, 2])[0, 0] == -.5)


class TestMisc:

    def test_polyfromroots(self):
        res = poly.polyfromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1, 5):
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            tgt = Tlist[i]
            res = poly.polyfromroots(roots)*2**(i-1)
            assert_almost_equal(trim(res), trim(tgt))

    def test_polyroots(self):
        assert_almost_equal(poly.polyroots([1]), [])
        assert_almost_equal(poly.polyroots([1, 2]), [-.5])
        for i in range(2, 5):
            tgt = np.linspace(-1, 1, i)
            res = poly.polyroots(poly.polyfromroots(tgt))
            assert_almost_equal(trim(res), trim(tgt))

    def test_polyfit(self):
        def f(x):
            return x*(x - 1)*(x - 2)

        def f2(x):
            return x**4 + x**2 + 1

        # Test exceptions
        assert_raises(ValueError, poly.polyfit, [1], [1], -1)
        assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
        assert_raises(TypeError, poly.polyfit, [], [1], 0)
        assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
        assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
        assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
        assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
        assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
        assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
        assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
        assert_raises(TypeError, poly.polyfit, [1], [1], [])

        # Test fit
        x = np.linspace(0, 2)
        y = f(x)
        #
        coef3 = poly.polyfit(x, y, 3)
        assert_equal(len(coef3), 4)
        assert_almost_equal(poly.polyval(x, coef3), y)
        coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
        assert_equal(len(coef3), 4)
        assert_almost_equal(poly.polyval(x, coef3), y)
        #
        coef4 = poly.polyfit(x, y, 4)
        assert_equal(len(coef4), 5)
        assert_almost_equal(poly.polyval(x, coef4), y)
        coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
        assert_equal(len(coef4), 5)
        assert_almost_equal(poly.polyval(x, coef4), y)
        #
        coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
        coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
        # test weighting
        w = np.zeros_like(x)
        yw = y.copy()
        w[1::2] = 1
        yw[0::2] = 0
        wcoef3 = poly.polyfit(x, yw, 3, w=w)
        assert_almost_equal(wcoef3, coef3)
        wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
        assert_almost_equal(wcoef3, coef3)
        #
        wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
        wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
        # test scaling with complex values x points whose square
        # is zero when summed.
        x = [1, 1j, -1, -1j]
        assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
        assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
        # test fitting only even Polyendre polynomials
        x = np.linspace(-1, 1)
        y = f2(x)
        coef1 = poly.polyfit(x, y, 4)
        assert_almost_equal(poly.polyval(x, coef1), y)
        coef2 = poly.polyfit(x, y, [0, 2, 4])
        assert_almost_equal(poly.polyval(x, coef2), y)
        assert_almost_equal(coef1, coef2)

    def test_polytrim(self):
        coef = [2, -1, 1, 0]

        # Test exceptions
        assert_raises(ValueError, poly.polytrim, coef, -1)

        # Test results
        assert_equal(poly.polytrim(coef), coef[:-1])
        assert_equal(poly.polytrim(coef, 1), coef[:-3])
        assert_equal(poly.polytrim(coef, 2), [0])

    def test_polyline(self):
        assert_equal(poly.polyline(3, 4), [3, 4])