EventEmbedding.py
12.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 25 17:36:33 2017
@author: red-sky
"""
import sys
import json
import theano
import pickle
import os.path
import numpy as np
import theano.tensor as T
from SmallUtils import createShareVar, ADAM_OPTIMIZER
from EmbeddingLayer import EmbeddingLayer
from RoleDependentLayer import RoleDependentLayer
class Input(object):
def __init__(self, object1, object1_fake, action, object2, rng,
vovab_length=4000, wordDim=100, trainedWordsVectors=None,):
# Init Embeding layer, input vector of index and ouput average
# of word vector as ref Ding et al 2014
self.EMBD = EmbeddingLayer(vovab_length, wordDim, rng=rng,
embedding_w=trainedWordsVectors)
object1_vector, _ = self.EMBD.words_ind_2vec(object1)
action_vector, _ = self.EMBD.words_ind_2vec(action)
object2_vector, _ = self.EMBD.words_ind_2vec(object2)
object1_vector_fake, _ = self.EMBD.words_ind_2vec(object1_fake)
self.output = [object1_vector, object1_vector_fake,
action_vector, object2_vector]
self.params = self.EMBD.params
def get_params(self):
trainParams = {
"WordWvec": self.EMBD.embedding_w.get_value()
}
return(trainParams)
class ModelBody(object):
def __init__(self, vectorObjects, rng, n_out, n_in,
trainedModelParams=None):
if trainedModelParams is None:
trainedModelParams = {
"roleDependentLayer1_": {
"T": None, "W1": None, "W2": None, "b": None
},
"roleDependentLayer2_": {
"T": None, "W1": None, "W2": None, "b": None
},
"roleDependentLayer3_": {
"T": None, "W1": None, "W2": None, "b": None
}
}
Obj1, Ob1_fake, Act, Obj2 = vectorObjects
self.RoleDepen1 = RoleDependentLayer(
left_dependent=T.stack([Obj1, Ob1_fake], axis=0),
right_dependent=Act,
n_in=n_in, n_out=n_out, rng=rng,
trainedParams=trainedModelParams,
name="roleDependentLayer1_"
)
self.RoleDepen1_output = self.RoleDepen1.output
self.RoleDepen2 = RoleDependentLayer(
left_dependent=Obj2,
right_dependent=Act,
n_in=n_in, n_out=n_out, rng=rng,
trainedParams=trainedModelParams,
name="roleDependentLayer2_"
)
self.RoleDepen2_output = T.flatten(self.RoleDepen2.output, outdim=1)
self.RoleDepen3 = RoleDependentLayer(
left_dependent=self.RoleDepen1_output,
right_dependent=self.RoleDepen2_output,
n_in=n_out, n_out=n_out, rng=rng,
trainedParams=trainedModelParams,
name="roleDependentLayer3_"
)
self.params = self.RoleDepen1.params + self.RoleDepen2.params + \
self.RoleDepen3.params
self.L2 = (
self.RoleDepen1.L2 +
self.RoleDepen2.L2 +
self.RoleDepen3.L2
)
self.output = self.RoleDepen3.output
def get_params(self):
trainedModelParams = {
"roleDependentLayer1_": self.RoleDepen1.get_params(),
"roleDependentLayer2_": self.RoleDepen2.get_params(),
"roleDependentLayer3_": self.RoleDepen3.get_params()
}
return(trainedModelParams)
class LogisticRegression(object):
def __init__(self, rng, layerInput, n_in, n_out,
paramsLayer=None,
name="LogisticRegression_"):
self.layerInput = layerInput
if paramsLayer is None:
self.W = createShareVar(rng=rng, name=name+"W",
factor_for_init=n_out + n_in,
dim=(n_in, n_out))
else:
self.W = theano.shared(value=paramsLayer["W"],
name=name+"W", borrow=True)
if paramsLayer is None:
b_values = np.zeros((n_out,), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values,
name=name+"b", borrow=True)
else:
self.b = theano.shared(value=paramsLayer["b"],
name=name+"b", borrow=True)
step1 = T.dot(self.layerInput, self.W)
self.prob_givenX = T.tanh(step1 + self.b)
self.y_predict = T.argmax(self.prob_givenX, axis=1)
self.params = [self.W, self.b]
self.L2 = sum([(param**2).sum() for param in self.params])
def get_params(self):
trainedParams = {
"W": self.W.get_value(), "b": self.b.get_value()
}
return(trainedParams)
def neg_log_likelihood(self, y_true):
y_true = T.cast(y_true, "int32")
log_prob = T.log(self.prob_givenX)
nll = -T.mean(log_prob[T.arange(y_true.shape[0]), y_true])
return nll
def margin_loss(self):
loss = T.max([0, 1 - self.prob_givenX[0, 0] + self.prob_givenX[1, 0]])
return loss
def cal_errors(self, y_true):
if y_true.ndim != self.y_predict.ndim:
raise TypeError(
"y should have the same shape as self.y_pred",
("y_true", y_true.ndim, "y_pred", self.y_predict.ndim)
)
if y_true.dtype.startswith("int"):
return T.mean(T.neq(self.y_predict, y_true))
else:
raise TypeError(
"y_true should have type int ...",
("y_true", y_true.type, "y_pred", self.y_predict.type)
)
def main(dataPath, trainedParamsPath="modelTrained.pickle",
outputVectorPath="resultEmbeding.pickle",
learning_rate=0.005, L2_reg=0.0001,
n_epochs=500, num_K=150, word_dim=150):
# CONSTANT VARIABLES
RNG = np.random.RandomState(220495 + 280295 + 1)
LABEL_NUM = 2
if os.path.isfile(trainedParamsPath):
with open(trainedParamsPath, 'rb') as handle:
trainedParams = pickle.load(handle)
else:
print("No Trained Model, create new")
trainedParams = {
"Input": {"WordWvec": None}, "Body": None, "Output": None
}
OPTIMIZER = ADAM_OPTIMIZER
# INPUT DATA
data_indexed_events = np.load(dataPath,allow_pickle=True)
N_sample = len(data_indexed_events)
# N_sample = 1
all_index = list(set(sum(np.concatenate(data_indexed_events).ravel(), [])))
# all_train_index = list(set(np.hstack(data_indexed_events[0:NNN].flat)))
# Snip tensor at begin
object1 = T.ivector("object1")
object1_fake = T.ivector("object1_fake")
action = T.ivector("action")
object2 = T.ivector("object2")
constainY = theano.shared(
np.asarray([1, 0], dtype=theano.config.floatX),
borrow=True
)
# WORDS EMBEDING VECTOR
wordsEmbedLayer = Input(
object1=object1, object1_fake=object1_fake,
action=action, object2=object2, rng=RNG,
wordDim=word_dim, vovab_length=len(all_index),
trainedWordsVectors=trainedParams["Input"]["WordWvec"]
)
Obj1, Ob1_fake, Act, Obj2 = wordsEmbedLayer.output
# EVENTS EMBEDING LAYER - THREE ROLE DEPENTDENT LAYER
eventsEmbedingLayer = ModelBody(
vectorObjects=wordsEmbedLayer.output,
n_out=num_K, n_in=word_dim, rng=RNG,
trainedModelParams=trainedParams["Body"]
)
# CLASSIFY LAYER
predict_layers = LogisticRegression(
layerInput=eventsEmbedingLayer.output,
rng=RNG, n_in=num_K, n_out=1,
paramsLayer=trainedParams["Output"]
)
# COST FUNCTION
COST = (
predict_layers.margin_loss() +
L2_reg * predict_layers.L2 +
L2_reg * eventsEmbedingLayer.L2
)
# GRADIENT CALCULATION and UPDATE
all_params = wordsEmbedLayer.params + \
eventsEmbedingLayer.params + predict_layers.params
print("TRAIN: ", all_params)
UPDATE = OPTIMIZER(COST, all_params, learning_rate=learning_rate)
# TRAIN MODEL
GET_COST = theano.function(
inputs=[object1, object1_fake, action, object2],
outputs=[predict_layers.margin_loss(),
predict_layers.prob_givenX],
)
# TEST = theano.function(
# inputs=[object1, object1_fake, action, object2],
# outputs=eventsEmbedingLayer.RoleDepen2.test,
# on_unused_input='warn'
# )
TRAIN = theano.function(
inputs=[object1, object1_fake, action, object2],
outputs=[predict_layers.margin_loss()],
updates=UPDATE
)
GET_EVENT_VECTOR = theano.function(
inputs=[object1, object1_fake, action, object2],
outputs=[predict_layers.margin_loss(),
eventsEmbedingLayer.output],
)
def generate_fake_object(all_index, RNG, obj):
fake_obj = list(RNG.choice(all_index, len(obj)))
while sorted(fake_obj) == sorted(obj):
print("WRONG faking object 1", obj)
fake_obj = list(RNG.choice(all_index, len(obj)))
return(fake_obj)
def generate_list_object(data_indexed_events, all_index, RNG):
list_fake_object1 = [
generate_fake_object(all_index, RNG, events[0])
for events in data_indexed_events
]
list_real_object = set([
"_".join([str(a) for a in sorted(events[0])])
for events in data_indexed_events
])
wrong = 0
while True:
valid = True
wrong += 1
for i, obj in enumerate(list_fake_object1):
s = "_".join([str(a) for a in sorted(obj)])
if s in list_real_object:
valid = valid and False
list_fake_object1[i] = \
generate_fake_object(all_index, RNG, s)
else:
valid = valid and True
if valid:
break
print("There are %d wrong random loops" % wrong)
return(list_fake_object1)
print("*"*72)
print("Begin Training process")
for epoch in range(n_epochs):
# create false label
print("Begin new epoch: %d" % epoch)
list_fake_object1 = generate_list_object(data_indexed_events,
all_index, RNG)
cost_of_epoch = []
set_index = set(range(N_sample))
temp_variable = N_sample
print("*" * 72+"\n")
print("*" * 72+"\n")
# train
model_train = {
"Input": wordsEmbedLayer.get_params(),
"Body": eventsEmbedingLayer.get_params(),
"Output": predict_layers.get_params()
}
RESULT = {}
outCOST = []
Max_inter = len(set_index)*2
iter_num = 0
while len(set_index) > 0 and iter_num <= Max_inter:
iter_num += 1
index = set_index.pop()
ob1_real, act, obj2 = data_indexed_events[index]
ob1_fake = list_fake_object1[index]
cost, probY = GET_COST(ob1_real, ob1_fake, act, obj2)
outCOST.append(cost)
# test = TEST(ob1_real, ob1_fake, act, obj2)
# for a in test:
# print(a, a.shape)
if cost > 0:
set_index.add(index)
c = TRAIN(ob1_real, ob1_fake, act, obj2)
else:
RESULT[index] = GET_EVENT_VECTOR(ob1_real, ob1_fake, act, obj2)
if (len(set_index) % 50 == 0 and
temp_variable != len(set_index)):
temp_variable = len(set_index)
print("There are %f %% left in this %d "
"epoch with average cost %f"
% (len(set_index)/float(N_sample)*100,
epoch, np.mean(outCOST[-50:])))
if iter_num > Max_inter - 5:
print(set_index, ob1_real, ob1_fake, act, obj2)
with open(trainedParamsPath, 'wb') as handle:
pickle.dump(model_train, handle,
protocol=pickle.HIGHEST_PROTOCOL)
with open(outputVectorPath, 'wb') as handle:
pickle.dump(RESULT, handle,
protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
# arg = ["", "Data/Query_Apple/2005-2010/IndexedEvents.npy",
# "Data/Query_Apple/2005-2010/linhtinh/", "20"]
arg = sys.argv
main(dataPath="../../Thesis_data/IndexedEvents.npy", trainedParamsPath="TrainedParams.pickle",
outputVectorPath="resultEmbeding.pickle", n_epochs=20)