train_model_LSTM.py
3.16 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 13 17:01:36 2017
@author: red-sky
"""
import sys
import numpy as np
np.random.seed(280295)
import keras.backend as K
from keras.models import Sequential
from keras import regularizers, optimizers
from keras.layers import Dense, Activation, LSTM, Dropout
from keras.callbacks import ModelCheckpoint, EarlyStopping
def recall(y_true, y_pred):
"""Recall metric.
Only computes a batch-wise average of recall.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true[:, 0] * y_pred[:, 0], 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true[:, 0], 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
"""Precision metric.
Only computes a batch-wise average of precision.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true[:, 0] * y_pred[:, 0], 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred[:, 0], 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def fbeta_score(y_true, y_pred):
# If there are no true positives, fix the F score at 0 like sklearn.
if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:
return 0
p = precision(y_true, y_pred)
r = recall(y_true, y_pred)
bb = 1 ** 2
fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())
return fbeta_score
def main(dataX_path, dataY_path, result_path,
n_epoch, input_dim, days):
# load data
np.random.seed(2204)
X = np.load(dataX_path)
Y = np.load(dataY_path)
# build Model
model = Sequential()
model.add(LSTM(256, input_shape=(days, input_dim),
kernel_regularizer=regularizers.l2(0.001)))
model.add(Dropout(0.6))
model.add(Dense(2, activation='softmax',
kernel_regularizer=regularizers.l2(0.001)))
adam = optimizers.Adam(lr=0.001)
model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=['accuracy', recall, precision, fbeta_score])
# model Compile
model_name = result_path+'model2_price_move_predict.hdf5'
checkpointer = ModelCheckpoint(filepath=model_name,
monitor='val_fbeta_score', mode="max",
verbose=2, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=20, verbose=2)
outmodel = open(result_path+'model2_price_move_predict.json', 'w')
outmodel.write(model.to_json())
outmodel.close()
# process Training
model.fit(X, Y, batch_size=32, verbose=2,
validation_split=0.1, epochs=n_epoch,
callbacks=[checkpointer])
if __name__ == "__main__":
dataX = sys.argv[1]
dataY = sys.argv[2]
model_path = sys.argv[3]
n_epoch = int(sys.argv[4])
input_dim = int(sys.argv[5])
days = int(sys.argv[6])
main(dataX, dataY, model_path, n_epoch, input_dim, days)