bert_news_label body.ipynb 43.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "bert news label.ipynb",
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "metadata": {
        "id": "58B51bnMtDVX",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 122
        },
        "outputId": "6e85676a-2b15-4885-b467-3358de1e7189"
      },
      "source": [
        "from google.colab import auth\n",
        "auth.authenticate_user()\n",
        "\n",
        "from google.colab import drive\n",
        "drive.mount('/content/gdrive')"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly\n",
            "\n",
            "Enter your authorization code:\n",
            "··········\n",
            "Mounted at /content/gdrive\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "2GWn_WDkvp3g",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "import pandas as pd\n",
        "combined_data = pd.read_csv('gdrive/My Drive/capstone 2/event_embedding/Thesis_data/combined_data3.csv', encoding='utf-8') \n",
        "combined_data\n",
        "\n",
        "\n",
        "path = \"gdrive/My Drive/capstone 2/\""
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "ovci8fVpZUmN",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 419
        },
        "outputId": "55dddc67-b92a-4cc6-a9b8-152e594441ce"
      },
      "source": [
        "combined_data"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/html": [
              "<div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>time</th>\n",
              "      <th>headline</th>\n",
              "      <th>body</th>\n",
              "      <th>Price</th>\n",
              "      <th>Open</th>\n",
              "      <th>High</th>\n",
              "      <th>Low</th>\n",
              "      <th>Vol</th>\n",
              "      <th>Change</th>\n",
              "      <th>index</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>20050107</td>\n",
              "      <td>Stocks End Lower</td>\n",
              "      <td>Monday. Among some of the other highlights, c...</td>\n",
              "      <td>4.93</td>\n",
              "      <td>4.99</td>\n",
              "      <td>5.05</td>\n",
              "      <td>4.85</td>\n",
              "      <td>434.26M</td>\n",
              "      <td>-0.40%</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>20050107</td>\n",
              "      <td>Vital Signs for the Week of Jan. 10</td>\n",
              "      <td>Palo Alto, Calif.                EARNINGS REP...</td>\n",
              "      <td>4.93</td>\n",
              "      <td>4.99</td>\n",
              "      <td>5.05</td>\n",
              "      <td>4.85</td>\n",
              "      <td>434.26M</td>\n",
              "      <td>-0.40%</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>20050110</td>\n",
              "      <td>Tightwad IT Buyers Loosen Up</td>\n",
              "      <td>plain-vanilla desktops, according to NPD Grou...</td>\n",
              "      <td>4.61</td>\n",
              "      <td>4.88</td>\n",
              "      <td>4.94</td>\n",
              "      <td>4.58</td>\n",
              "      <td>654.04M</td>\n",
              "      <td>-6.49%</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>20050110</td>\n",
              "      <td>Stocks Finish Slightly Higher</td>\n",
              "      <td>regular session.       Looking ahead this wee...</td>\n",
              "      <td>4.61</td>\n",
              "      <td>4.88</td>\n",
              "      <td>4.94</td>\n",
              "      <td>4.58</td>\n",
              "      <td>654.04M</td>\n",
              "      <td>-6.49%</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>20050110</td>\n",
              "      <td>Commentary: The New Driver In Chipland</td>\n",
              "      <td>easy to see the consumer influence. Digital c...</td>\n",
              "      <td>4.61</td>\n",
              "      <td>4.88</td>\n",
              "      <td>4.94</td>\n",
              "      <td>4.58</td>\n",
              "      <td>654.04M</td>\n",
              "      <td>-6.49%</td>\n",
              "      <td>0</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>...</th>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "      <td>...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>24046</th>\n",
              "      <td>20150108</td>\n",
              "      <td>Israel's Water Ninja</td>\n",
              "      <td>influenced by his grandfather, who built Tel ...</td>\n",
              "      <td>112.01</td>\n",
              "      <td>112.67</td>\n",
              "      <td>113.25</td>\n",
              "      <td>110.21</td>\n",
              "      <td>53.70M</td>\n",
              "      <td>0.11%</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>24047</th>\n",
              "      <td>20150108</td>\n",
              "      <td>What Drivers Want: Design Lessons From Ford's ...</td>\n",
              "      <td>faster, simpler, and easier to use. Will the ...</td>\n",
              "      <td>112.01</td>\n",
              "      <td>112.67</td>\n",
              "      <td>113.25</td>\n",
              "      <td>110.21</td>\n",
              "      <td>53.70M</td>\n",
              "      <td>0.11%</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>24048</th>\n",
              "      <td>20150108</td>\n",
              "      <td>AT&amp;T May Face FCC Fine Over Mobile Data Slowdo...</td>\n",
              "      <td>halting the practice and millions of dollars ...</td>\n",
              "      <td>112.01</td>\n",
              "      <td>112.67</td>\n",
              "      <td>113.25</td>\n",
              "      <td>110.21</td>\n",
              "      <td>53.70M</td>\n",
              "      <td>0.11%</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>24049</th>\n",
              "      <td>20150108</td>\n",
              "      <td>Is Samsung Feeling the Squeeze From Apple?</td>\n",
              "      <td>UBS Managing Director Steve Milunovich \\ndisc...</td>\n",
              "      <td>112.01</td>\n",
              "      <td>112.67</td>\n",
              "      <td>113.25</td>\n",
              "      <td>110.21</td>\n",
              "      <td>53.70M</td>\n",
              "      <td>0.11%</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>24050</th>\n",
              "      <td>20150108</td>\n",
              "      <td>Company News: Auto Industry, U.S. Steel, Veriz...</td>\n",
              "      <td>billion sale to Apple last year. The complain...</td>\n",
              "      <td>112.01</td>\n",
              "      <td>112.67</td>\n",
              "      <td>113.25</td>\n",
              "      <td>110.21</td>\n",
              "      <td>53.70M</td>\n",
              "      <td>0.11%</td>\n",
              "      <td>1</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "<p>24051 rows × 10 columns</p>\n",
              "</div>"
            ],
            "text/plain": [
              "           time  ... index\n",
              "0      20050107  ...     0\n",
              "1      20050107  ...     0\n",
              "2      20050110  ...     0\n",
              "3      20050110  ...     0\n",
              "4      20050110  ...     0\n",
              "...         ...  ...   ...\n",
              "24046  20150108  ...     1\n",
              "24047  20150108  ...     1\n",
              "24048  20150108  ...     1\n",
              "24049  20150108  ...     1\n",
              "24050  20150108  ...     1\n",
              "\n",
              "[24051 rows x 10 columns]"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 3
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "XBgA_6YRv3KB",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 1000
        },
        "outputId": "73a28fca-497e-4b21-a3f1-1e4de356f3e6"
      },
      "source": [
        "%tensorflow_version 1.x\n",
        "import tensorflow as tf\n",
        "\n",
        "import pandas as pd\n",
        "import numpy as np  \n",
        "import re\n",
        "import pickle\n",
        "\n",
        "import keras as keras\n",
        "from keras.models import load_model\n",
        "from keras import backend as K\n",
        "from keras import Input, Model\n",
        "from keras import optimizers\n",
        "\n",
        "import codecs\n",
        "from tqdm import tqdm\n",
        "import shutil\n",
        "import warnings\n",
        "import tensorflow as tf\n",
        "import os\n",
        "warnings.filterwarnings(action='ignore')\n",
        "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' \n",
        "tf.logging.set_verbosity(tf.logging.ERROR)\n",
        "\n",
        "!pip install keras-bert\n",
        "!pip install keras-radam"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "TensorFlow 1.x selected.\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "stream",
          "text": [
            "Using TensorFlow backend.\n"
          ],
          "name": "stderr"
        },
        {
          "output_type": "stream",
          "text": [
            "Collecting keras-bert\n",
            "  Downloading https://files.pythonhosted.org/packages/2c/0f/cdc886c1018943ea62d3209bc964413d5aa9d0eb7e493abd8545be679294/keras-bert-0.81.0.tar.gz\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from keras-bert) (1.18.4)\n",
            "Requirement already satisfied: Keras in /usr/local/lib/python3.6/dist-packages (from keras-bert) (2.3.1)\n",
            "Collecting keras-transformer>=0.30.0\n",
            "  Downloading https://files.pythonhosted.org/packages/22/b9/9040ec948ef895e71df6bee505a1f7e1c99ffedb409cb6eb329f04ece6e0/keras-transformer-0.33.0.tar.gz\n",
            "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from Keras->keras-bert) (2.10.0)\n",
            "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-bert) (1.1.2)\n",
            "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-bert) (1.12.0)\n",
            "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-bert) (1.4.1)\n",
            "Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-bert) (1.0.8)\n",
            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from Keras->keras-bert) (3.13)\n",
            "Collecting keras-pos-embd>=0.10.0\n",
            "  Downloading https://files.pythonhosted.org/packages/09/70/b63ed8fc660da2bb6ae29b9895401c628da5740c048c190b5d7107cadd02/keras-pos-embd-0.11.0.tar.gz\n",
            "Collecting keras-multi-head>=0.22.0\n",
            "  Downloading https://files.pythonhosted.org/packages/a5/f0/a9a7528b8fefacaa9c5db736036fd8c061d754830a29c34129f6847bd338/keras-multi-head-0.24.0.tar.gz\n",
            "Collecting keras-layer-normalization>=0.12.0\n",
            "  Downloading https://files.pythonhosted.org/packages/a4/0e/d1078df0494bac9ce1a67954e5380b6e7569668f0f3b50a9531c62c1fc4a/keras-layer-normalization-0.14.0.tar.gz\n",
            "Collecting keras-position-wise-feed-forward>=0.5.0\n",
            "  Downloading https://files.pythonhosted.org/packages/e3/59/f0faa1037c033059e7e9e7758e6c23b4d1c0772cd48de14c4b6fd4033ad5/keras-position-wise-feed-forward-0.6.0.tar.gz\n",
            "Collecting keras-embed-sim>=0.7.0\n",
            "  Downloading https://files.pythonhosted.org/packages/bc/20/735fd53f6896e2af63af47e212601c1b8a7a80d00b6126c388c9d1233892/keras-embed-sim-0.7.0.tar.gz\n",
            "Collecting keras-self-attention==0.41.0\n",
            "  Downloading https://files.pythonhosted.org/packages/1b/1c/01599219bef7266fa43b3316e4f55bcb487734d3bafdc60ffd564f3cfe29/keras-self-attention-0.41.0.tar.gz\n",
            "Building wheels for collected packages: keras-bert, keras-transformer, keras-pos-embd, keras-multi-head, keras-layer-normalization, keras-position-wise-feed-forward, keras-embed-sim, keras-self-attention\n",
            "  Building wheel for keras-bert (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-bert: filename=keras_bert-0.81.0-cp36-none-any.whl size=37913 sha256=f6e87897fa56346f3a9bd0607c976c0fb72e1d4f5d5798159416838347b34b2f\n",
            "  Stored in directory: /root/.cache/pip/wheels/bd/27/da/ffc2d573aa48b87440ec4f98bc7c992e3a2d899edb2d22ef9e\n",
            "  Building wheel for keras-transformer (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-transformer: filename=keras_transformer-0.33.0-cp36-none-any.whl size=13260 sha256=4cf6dcab922b6caf627c1ba6adc5dbe6e8e2e4d7f59247b710d043b3bc5f8da2\n",
            "  Stored in directory: /root/.cache/pip/wheels/26/98/13/a28402939e1d48edd8704e6b02f223795af4a706815f4bf6d8\n",
            "  Building wheel for keras-pos-embd (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-pos-embd: filename=keras_pos_embd-0.11.0-cp36-none-any.whl size=7554 sha256=8d7fac58ed8196ae123121c05fc80e7cdbcd03425613de81b7512c0a270a4ba2\n",
            "  Stored in directory: /root/.cache/pip/wheels/5b/a1/a0/ce6b1d49ba1a9a76f592e70cf297b05c96bc9f418146761032\n",
            "  Building wheel for keras-multi-head (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-multi-head: filename=keras_multi_head-0.24.0-cp36-none-any.whl size=15511 sha256=965f1fd64d0293581290a3590617435dce809574fa0029af5b70f2a827244133\n",
            "  Stored in directory: /root/.cache/pip/wheels/b6/84/01/dbcb50629030c8647a19dd0b7134574fad56c531bdb243bd20\n",
            "  Building wheel for keras-layer-normalization (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-layer-normalization: filename=keras_layer_normalization-0.14.0-cp36-none-any.whl size=5268 sha256=c9f4b2d27ebb8746e641efeaa10ccd6d26ccecf07851d6faebe0ffb4863deaa1\n",
            "  Stored in directory: /root/.cache/pip/wheels/54/80/22/a638a7d406fd155e507aa33d703e3fa2612b9eb7bb4f4fe667\n",
            "  Building wheel for keras-position-wise-feed-forward (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-position-wise-feed-forward: filename=keras_position_wise_feed_forward-0.6.0-cp36-none-any.whl size=5623 sha256=d502009afa989aa58bd189344430c7c5518e9465a0a1c6e4ef21d77a162d9c97\n",
            "  Stored in directory: /root/.cache/pip/wheels/39/e2/e2/3514fef126a00574b13bc0b9e23891800158df3a3c19c96e3b\n",
            "  Building wheel for keras-embed-sim (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-embed-sim: filename=keras_embed_sim-0.7.0-cp36-none-any.whl size=4676 sha256=c7445fbf736a11babf19d02ddb3d76f098a00706c800f3080ebc9a55745ca146\n",
            "  Stored in directory: /root/.cache/pip/wheels/d1/bc/b1/b0c45cee4ca2e6c86586b0218ffafe7f0703c6d07fdf049866\n",
            "  Building wheel for keras-self-attention (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-self-attention: filename=keras_self_attention-0.41.0-cp36-none-any.whl size=17288 sha256=bdeda9b286ae3be34885c5183effca526d866cba7dd00c740f02eb340e1fab42\n",
            "  Stored in directory: /root/.cache/pip/wheels/cc/dc/17/84258b27a04cd38ac91998abe148203720ca696186635db694\n",
            "Successfully built keras-bert keras-transformer keras-pos-embd keras-multi-head keras-layer-normalization keras-position-wise-feed-forward keras-embed-sim keras-self-attention\n",
            "Installing collected packages: keras-pos-embd, keras-self-attention, keras-multi-head, keras-layer-normalization, keras-position-wise-feed-forward, keras-embed-sim, keras-transformer, keras-bert\n",
            "Successfully installed keras-bert-0.81.0 keras-embed-sim-0.7.0 keras-layer-normalization-0.14.0 keras-multi-head-0.24.0 keras-pos-embd-0.11.0 keras-position-wise-feed-forward-0.6.0 keras-self-attention-0.41.0 keras-transformer-0.33.0\n",
            "Collecting keras-radam\n",
            "  Downloading https://files.pythonhosted.org/packages/46/8d/b83ccaa94253fbc920b21981f038393041d92236bb541751b98a66a2ac1d/keras-radam-0.15.0.tar.gz\n",
            "Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from keras-radam) (1.18.4)\n",
            "Requirement already satisfied: Keras in /usr/local/lib/python3.6/dist-packages (from keras-radam) (2.3.1)\n",
            "Requirement already satisfied: h5py in /usr/local/lib/python3.6/dist-packages (from Keras->keras-radam) (2.10.0)\n",
            "Requirement already satisfied: scipy>=0.14 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-radam) (1.4.1)\n",
            "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from Keras->keras-radam) (3.13)\n",
            "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-radam) (1.12.0)\n",
            "Requirement already satisfied: keras-applications>=1.0.6 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-radam) (1.0.8)\n",
            "Requirement already satisfied: keras-preprocessing>=1.0.5 in /usr/local/lib/python3.6/dist-packages (from Keras->keras-radam) (1.1.2)\n",
            "Building wheels for collected packages: keras-radam\n",
            "  Building wheel for keras-radam (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for keras-radam: filename=keras_radam-0.15.0-cp36-none-any.whl size=14685 sha256=60abbb595b856dbbf59934ad85b8754fc6d57e41d84bce2fee5b922a3717fc8a\n",
            "  Stored in directory: /root/.cache/pip/wheels/79/a0/c0/670b0a118e8f078539fafec7bd02eba0af921f745660c7f83f\n",
            "Successfully built keras-radam\n",
            "Installing collected packages: keras-radam\n",
            "Successfully installed keras-radam-0.15.0\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "V7_zjhL5wGeB",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "from keras_bert import load_trained_model_from_checkpoint, load_vocabulary\n",
        "from keras_bert import Tokenizer\n",
        "from keras_bert import AdamWarmup, calc_train_steps\n",
        "\n",
        "from keras_radam import RAdam"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "RE5pjPZjwG3q",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 102
        },
        "outputId": "2b293bd2-7d77-4a03-a8fe-af5896058933"
      },
      "source": [
        "os.listdir(path+'/bert')"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "['bert_config.json',\n",
              " 'vocab.txt',\n",
              " 'bert_model.ckpt.index',\n",
              " 'bert_model.ckpt.data-00000-of-00001',\n",
              " 'bert_model.ckpt.meta']"
            ]
          },
          "metadata": {
            "tags": []
          },
          "execution_count": 6
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "yWqOLyGWwIMf",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "SEQ_LEN = 256\n",
        "BATCH_SIZE = 8\n",
        "EPOCHS=2\n",
        "LR=1e-5\n",
        "\n",
        "pretrained_path = path+\"/bert\"\n",
        "config_path = os.path.join(pretrained_path, 'bert_config.json')\n",
        "checkpoint_path = os.path.join(pretrained_path, 'bert_model.ckpt')\n",
        "vocab_path = os.path.join(pretrained_path, 'vocab.txt')\n",
        "\n",
        "DATA_COLUMN = \"body\"\n",
        "LABEL_COLUMN = \"index\""
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "G4E3vhF5wKmg",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "token_dict = {}\n",
        "with codecs.open(vocab_path, 'r', 'utf8') as reader:\n",
        "    for line in reader:\n",
        "        token = line.strip()\n",
        "        if \"_\" in token:\n",
        "          token = token.replace(\"_\",\"\")\n",
        "          token = \"##\" + token\n",
        "        token_dict[token] = len(token_dict)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "c5a7hPzfwRcr",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "tokenizer = Tokenizer(token_dict)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "vehabKa5wTKG",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "def convert_data(data_df):\n",
        "    global tokenizer\n",
        "    indices, targets = [], []\n",
        "    for i in tqdm(range(len(data_df))):\n",
        "        ids, segments = tokenizer.encode((data_df.iloc[i])[DATA_COLUMN], max_len=SEQ_LEN)\n",
        "        indices.append(ids)\n",
        "        targets.append((data_df.iloc[i])[LABEL_COLUMN])\n",
        "    items = list(zip(indices, targets))\n",
        "    \n",
        "    indices, targets = zip(*items)\n",
        "    indices = np.array(indices)\n",
        "    return [indices, np.zeros_like(indices)], np.array(targets)\n",
        "\n",
        "def load_data(pandas_dataframe):\n",
        "    data_df = pandas_dataframe\n",
        "    # data_df[\"actor\"] = data_df[\"actor\"].astype(str)\n",
        "    # data_df[\"action\"] = data_df[\"action\"].astype(str)\n",
        "    # data_df[\"object\"] = data_df[\"object\"].astype(str)\n",
        "    data_x, data_y = convert_data(data_df)\n",
        "\n",
        "    return data_x, data_y"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "V8xrXJlywXG-",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 51
        },
        "outputId": "1c560b33-635a-4eca-df3c-eae387590031"
      },
      "source": [
        "from sklearn.model_selection import train_test_split\n",
        "train,val = train_test_split(combined_data,test_size = 0.2)\n",
        "\n",
        "train_x, train_y = load_data(train)\n",
        "test_x, test_y = load_data(val)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "100%|██████████| 19240/19240 [00:14<00:00, 1307.17it/s]\n",
            "100%|██████████| 4811/4811 [00:03<00:00, 1265.52it/s]\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "VyyTba9swZgM",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "layer_num = 12\n",
        "model = load_trained_model_from_checkpoint(\n",
        "    config_path,\n",
        "    checkpoint_path,\n",
        "    training=True,\n",
        "    trainable=True,\n",
        "    seq_len=SEQ_LEN,)"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "7jO_vzY6w_qa",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "from keras.callbacks import ModelCheckpoint, EarlyStopping\n",
        "def recall(y_true, y_pred):\n",
        "    \"\"\"Recall metric.\n",
        "\n",
        "    Only computes a batch-wise average of recall.\n",
        "\n",
        "    Computes the recall, a metric for multi-label classification of\n",
        "    how many relevant items are selected.\n",
        "    \"\"\"\n",
        "    true_positives = K.sum(K.round(K.clip(y_true[:, 0] * y_pred[:, 0], 0, 1)))\n",
        "    possible_positives = K.sum(K.round(K.clip(y_true[:, 0], 0, 1)))\n",
        "    recall = true_positives / (possible_positives + K.epsilon())\n",
        "    return recall\n",
        "\n",
        "\n",
        "def precision(y_true, y_pred):\n",
        "    \"\"\"Precision metric.\n",
        "\n",
        "    Only computes a batch-wise average of precision.\n",
        "\n",
        "    Computes the precision, a metric for multi-label classification of\n",
        "    how many selected items are relevant.\n",
        "    \"\"\"\n",
        "    true_positives = K.sum(K.round(K.clip(y_true[:, 0] * y_pred[:, 0], 0, 1)))\n",
        "    predicted_positives = K.sum(K.round(K.clip(y_pred[:, 0], 0, 1)))\n",
        "    precision = true_positives / (predicted_positives + K.epsilon())\n",
        "    return precision\n",
        "\n",
        "\n",
        "def fbeta_score(y_true, y_pred):\n",
        "\n",
        "    # If there are no true positives, fix the F score at 0 like sklearn.\n",
        "    if K.sum(K.round(K.clip(y_true, 0, 1))) == 0:\n",
        "        return 0\n",
        "\n",
        "    p = precision(y_true, y_pred)\n",
        "    r = recall(y_true, y_pred)\n",
        "    bb = 1 ** 2\n",
        "    fbeta_score = (1 + bb) * (p * r) / (bb * p + r + K.epsilon())\n",
        "    return fbeta_score\n",
        "\n",
        "def get_bert_finetuning_model(model):\n",
        "  inputs = model.inputs[:2]\n",
        "  dense = model.layers[-3].output\n",
        "\n",
        "  outputs = keras.layers.Dense(1, activation='sigmoid',kernel_initializer=keras.initializers.TruncatedNormal(stddev=0.02),\n",
        "                              name = 'real_output')(dense)\n",
        "\n",
        "\n",
        "\n",
        "  bert_model = keras.models.Model(inputs, outputs)\n",
        "  bert_model.compile(\n",
        "      optimizer=RAdam(learning_rate=0.00001, weight_decay=0.0025),\n",
        "      loss='binary_crossentropy',\n",
        "      metrics=['accuracy', recall, precision, fbeta_score])\n",
        "  \n",
        "  return bert_model\n",
        "  \n",
        "model_name = path + \"event_news_label_bert.h5\"\n",
        "checkpointer = ModelCheckpoint(filepath=model_name,\n",
        "                                monitor='val_fbeta_score', mode=\"max\",\n",
        "                                verbose=2, save_best_only=True)\n",
        "earlystopper = EarlyStopping(monitor='val_loss', patience=20, verbose=2, mode = \"min\")"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "XQDRjG2vbKKs",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 938
        },
        "outputId": "7fbefaa0-2ad0-4c1d-d486-27379af24381"
      },
      "source": [
        "with K.tensorflow_backend.tf.device('/gpu:0'):\n",
        "  sess = K.get_session()\n",
        "  uninitialized_variables = set([i.decode('ascii') for i in sess.run(tf.report_uninitialized_variables())])\n",
        "  init = tf.variables_initializer([v for v in tf.global_variables() if v.name.split(':')[0] in uninitialized_variables])\n",
        "  sess.run(init)\n",
        "\n",
        "  bert_model = get_bert_finetuning_model(model)\n",
        "  history = bert_model.fit(train_x, train_y, epochs=30, batch_size=16, verbose = 1, validation_data=(test_x, test_y))\n",
        "  bert_model.save_weights(\"gdrive/My Drive/body_bert_256_epoch30.h5\")"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "Train on 19240 samples, validate on 4811 samples\n",
            "Epoch 1/30\n",
            "19240/19240 [==============================] - 1236s 64ms/step - loss: 0.6922 - accuracy: 0.5271 - recall: 0.9021 - precision: 0.5280 - fbeta_score: 0.6416 - val_loss: 0.6910 - val_accuracy: 0.5340 - val_recall: 1.0000 - val_precision: 0.5341 - val_fbeta_score: 0.6876\n",
            "Epoch 2/30\n",
            "19240/19240 [==============================] - 1228s 64ms/step - loss: 0.6914 - accuracy: 0.5291 - recall: 0.8927 - precision: 0.5204 - fbeta_score: 0.6347 - val_loss: 0.6919 - val_accuracy: 0.5340 - val_recall: 1.0000 - val_precision: 0.5341 - val_fbeta_score: 0.6876\n",
            "Epoch 3/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.6861 - accuracy: 0.5491 - recall: 0.7746 - precision: 0.5634 - fbeta_score: 0.6203 - val_loss: 0.6902 - val_accuracy: 0.5309 - val_recall: 0.7255 - val_precision: 0.5468 - val_fbeta_score: 0.6113\n",
            "Epoch 4/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.6125 - accuracy: 0.6657 - recall: 0.7281 - precision: 0.6842 - fbeta_score: 0.6798 - val_loss: 0.7663 - val_accuracy: 0.5259 - val_recall: 0.4899 - val_precision: 0.5644 - val_fbeta_score: 0.5093\n",
            "Epoch 5/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.3738 - accuracy: 0.8379 - recall: 0.8502 - precision: 0.8488 - fbeta_score: 0.8387 - val_loss: 1.0253 - val_accuracy: 0.5329 - val_recall: 0.6017 - val_precision: 0.5592 - val_fbeta_score: 0.5647\n",
            "Epoch 6/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.1909 - accuracy: 0.9276 - recall: 0.9332 - precision: 0.9313 - fbeta_score: 0.9271 - val_loss: 1.3036 - val_accuracy: 0.5319 - val_recall: 0.5900 - val_precision: 0.5597 - val_fbeta_score: 0.5601\n",
            "Epoch 7/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.1249 - accuracy: 0.9540 - recall: 0.9576 - precision: 0.9573 - fbeta_score: 0.9544 - val_loss: 1.6319 - val_accuracy: 0.5404 - val_recall: 0.6667 - val_precision: 0.5567 - val_fbeta_score: 0.5950\n",
            "Epoch 8/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.0950 - accuracy: 0.9663 - recall: 0.9678 - precision: 0.9675 - fbeta_score: 0.9655 - val_loss: 1.7987 - val_accuracy: 0.5383 - val_recall: 0.5949 - val_precision: 0.5670 - val_fbeta_score: 0.5654\n",
            "Epoch 9/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0802 - accuracy: 0.9715 - recall: 0.9726 - precision: 0.9745 - fbeta_score: 0.9717 - val_loss: 1.8214 - val_accuracy: 0.5311 - val_recall: 0.5689 - val_precision: 0.5639 - val_fbeta_score: 0.5503\n",
            "Epoch 10/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.0726 - accuracy: 0.9730 - recall: 0.9738 - precision: 0.9757 - fbeta_score: 0.9730 - val_loss: 1.9001 - val_accuracy: 0.5417 - val_recall: 0.6549 - val_precision: 0.5639 - val_fbeta_score: 0.5913\n",
            "Epoch 11/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.0618 - accuracy: 0.9768 - recall: 0.9769 - precision: 0.9794 - fbeta_score: 0.9767 - val_loss: 1.9707 - val_accuracy: 0.5350 - val_recall: 0.6545 - val_precision: 0.5576 - val_fbeta_score: 0.5870\n",
            "Epoch 12/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0607 - accuracy: 0.9779 - recall: 0.9785 - precision: 0.9805 - fbeta_score: 0.9780 - val_loss: 1.9424 - val_accuracy: 0.5371 - val_recall: 0.5922 - val_precision: 0.5664 - val_fbeta_score: 0.5638\n",
            "Epoch 13/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0521 - accuracy: 0.9796 - recall: 0.9808 - precision: 0.9814 - fbeta_score: 0.9798 - val_loss: 2.2737 - val_accuracy: 0.5383 - val_recall: 0.6275 - val_precision: 0.5605 - val_fbeta_score: 0.5782\n",
            "Epoch 14/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0514 - accuracy: 0.9797 - recall: 0.9803 - precision: 0.9818 - fbeta_score: 0.9797 - val_loss: 1.9318 - val_accuracy: 0.5309 - val_recall: 0.5317 - val_precision: 0.5681 - val_fbeta_score: 0.5332\n",
            "Epoch 15/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0449 - accuracy: 0.9813 - recall: 0.9797 - precision: 0.9844 - fbeta_score: 0.9808 - val_loss: 2.3235 - val_accuracy: 0.5277 - val_recall: 0.4475 - val_precision: 0.5793 - val_fbeta_score: 0.4868\n",
            "Epoch 16/30\n",
            "19240/19240 [==============================] - 1231s 64ms/step - loss: 0.0445 - accuracy: 0.9824 - recall: 0.9824 - precision: 0.9850 - fbeta_score: 0.9827 - val_loss: 2.1759 - val_accuracy: 0.5340 - val_recall: 0.4795 - val_precision: 0.5824 - val_fbeta_score: 0.5076\n",
            "Epoch 17/30\n",
            "19240/19240 [==============================] - 1231s 64ms/step - loss: 0.0412 - accuracy: 0.9827 - recall: 0.9822 - precision: 0.9854 - fbeta_score: 0.9827 - val_loss: 2.1135 - val_accuracy: 0.5390 - val_recall: 0.6302 - val_precision: 0.5630 - val_fbeta_score: 0.5813\n",
            "Epoch 18/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0418 - accuracy: 0.9828 - recall: 0.9826 - precision: 0.9852 - fbeta_score: 0.9828 - val_loss: 2.2571 - val_accuracy: 0.5394 - val_recall: 0.6241 - val_precision: 0.5648 - val_fbeta_score: 0.5785\n",
            "Epoch 19/30\n",
            "19240/19240 [==============================] - 1229s 64ms/step - loss: 0.0375 - accuracy: 0.9839 - recall: 0.9837 - precision: 0.9863 - fbeta_score: 0.9839 - val_loss: 2.4486 - val_accuracy: 0.5427 - val_recall: 0.6864 - val_precision: 0.5607 - val_fbeta_score: 0.6030\n",
            "Epoch 20/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0390 - accuracy: 0.9837 - recall: 0.9828 - precision: 0.9865 - fbeta_score: 0.9836 - val_loss: 2.3747 - val_accuracy: 0.5321 - val_recall: 0.5468 - val_precision: 0.5661 - val_fbeta_score: 0.5405\n",
            "Epoch 21/30\n",
            "19240/19240 [==============================] - 1231s 64ms/step - loss: 0.0347 - accuracy: 0.9852 - recall: 0.9846 - precision: 0.9878 - fbeta_score: 0.9854 - val_loss: 2.3107 - val_accuracy: 0.5375 - val_recall: 0.5940 - val_precision: 0.5656 - val_fbeta_score: 0.5647\n",
            "Epoch 22/30\n",
            "19240/19240 [==============================] - 1231s 64ms/step - loss: 0.0356 - accuracy: 0.9854 - recall: 0.9844 - precision: 0.9877 - fbeta_score: 0.9850 - val_loss: 2.4489 - val_accuracy: 0.5371 - val_recall: 0.6188 - val_precision: 0.5599 - val_fbeta_score: 0.5741\n",
            "Epoch 23/30\n",
            "19240/19240 [==============================] - 1230s 64ms/step - loss: 0.0368 - accuracy: 0.9837 - recall: 0.9825 - precision: 0.9863 - fbeta_score: 0.9832 - val_loss: 2.1525 - val_accuracy: 0.5271 - val_recall: 0.4709 - val_precision: 0.5715 - val_fbeta_score: 0.4996\n",
            "Epoch 24/30\n",
            "19240/19240 [==============================] - 1231s 64ms/step - loss: 0.0341 - accuracy: 0.9845 - recall: 0.9841 - precision: 0.9870 - fbeta_score: 0.9846 - val_loss: 2.1537 - val_accuracy: 0.5271 - val_recall: 0.5332 - val_precision: 0.5623 - val_fbeta_score: 0.5319\n",
            "Epoch 25/30\n",
            "19240/19240 [==============================] - 1231s 64ms/step - loss: 0.0313 - accuracy: 0.9857 - recall: 0.9853 - precision: 0.9879 - fbeta_score: 0.9856 - val_loss: 2.4771 - val_accuracy: 0.5309 - val_recall: 0.6418 - val_precision: 0.5529 - val_fbeta_score: 0.5808\n",
            "Epoch 26/30\n",
            "15408/19240 [=======================>......] - ETA: 3:48 - loss: 0.0320 - accuracy: 0.9859 - recall: 0.9857 - precision: 0.9883 - fbeta_score: 0.9861"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "jBpYE9eVxfXv",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "test = pd.read_csv('gdrive/My Drive/capstone 2/event_embedding/Thesis_data/combined_data2015.csv', encoding='utf-8') "
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "NQu0eoaWxfsv",
        "colab_type": "code",
        "colab": {}
      },
      "source": [
        "def predict_convert_data(data_df):\n",
        "    global tokenizer\n",
        "    indices = []\n",
        "    for i in tqdm(range(len(data_df))):\n",
        "        ids, segments = tokenizer.encode(data_df[DATA_COLUMN][i], max_len=SEQ_LEN)\n",
        "        indices.append(ids)\n",
        "        \n",
        "    items = indices\n",
        "    \n",
        "    \n",
        "    indices = np.array(indices)\n",
        "    return [indices, np.zeros_like(indices)]\n",
        "\n",
        "def predict_load_data(x): #Pandas Dataframe을 인풋으로 받는다\n",
        "    data_df = x\n",
        "    data_df[DATA_COLUMN] = data_df[DATA_COLUMN].astype(str)\n",
        "    data_x = predict_convert_data(data_df)\n",
        "\n",
        "    return data_x"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "DBY60yKJxnKL",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 34
        },
        "outputId": "87137a7f-a38e-4fe4-b29b-cfd867cedd80"
      },
      "source": [
        "test_set = predict_load_data(test)"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "100%|██████████| 3692/3692 [00:01<00:00, 2567.73it/s]\n"
          ],
          "name": "stderr"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yuZyrVFCo6_9",
        "colab_type": "text"
      },
      "source": [
        "# Body 128"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "jf9yeGiVbFxO",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 170
        },
        "outputId": "67adb4d9-670c-41e5-f0ac-d20e1c6caae2"
      },
      "source": [
        "bert_model = get_bert_finetuning_model(model)\n",
        "bert_model.load_weights(\"gdrive/My Drive/body_bert.h5\")\n",
        "preds = bert_model.predict(test_set)\n",
        "from sklearn.metrics import classification_report\n",
        "y_true = test['index']\n",
        "# F1 Score 확인\n",
        "print(classification_report(y_true, np.round(preds,0)))"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "              precision    recall  f1-score   support\n",
            "\n",
            "           0       0.51      0.24      0.33      1867\n",
            "           1       0.50      0.76      0.60      1825\n",
            "\n",
            "    accuracy                           0.50      3692\n",
            "   macro avg       0.51      0.50      0.47      3692\n",
            "weighted avg       0.51      0.50      0.46      3692\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CNChuUzCbY3t",
        "colab_type": "text"
      },
      "source": [
        "# Body 256 epoch 3"
      ]
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "y3l9jap3xpFB",
        "colab_type": "code",
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 170
        },
        "outputId": "5c1f17cb-0f0c-4899-b1bf-e4db6dfceb3a"
      },
      "source": [
        "bert_model = get_bert_finetuning_model(model)\n",
        "bert_model.load_weights(path+\"body_bert_512.h5\")\n",
        "preds = bert_model.predict(test_set)\n",
        "from sklearn.metrics import classification_report\n",
        "y_true = test['index']\n",
        "# F1 Score 확인\n",
        "print(classification_report(y_true, np.round(preds,0)))"
      ],
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "              precision    recall  f1-score   support\n",
            "\n",
            "           0       0.48      0.22      0.30      1867\n",
            "           1       0.49      0.76      0.59      1825\n",
            "\n",
            "    accuracy                           0.49      3692\n",
            "   macro avg       0.48      0.49      0.45      3692\n",
            "weighted avg       0.48      0.49      0.45      3692\n",
            "\n"
          ],
          "name": "stdout"
        }
      ]
    }
  ]
}