test_shapenet_modify.ipynb
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"valid.lmdb를 대상으로 \n",
"1. cd, emd cost function 값 확인\n",
"2. 각 표본에 대한 결과 출력\n",
"3. pcd값 저장해둬서 어떤 결과인지 직접 확인하자 - (이게 발표자료로서 의미가 있을것 같음)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" num_eval_steps = num_valid // args.batch_size\n",
" total_loss = 0\n",
" total_time = 0\n",
" sess.run(tf.local_variables_initializer())\n",
" for i in range(num_eval_steps):\n",
" start = time.time()\n",
" ids, inputs, npts, gt = next(valid_gen)\n",
" feed_dict = {inputs_pl: inputs,my_inputs_pl:my_inputs, npts_pl: npts, gt_pl: gt, is_training_pl: False}\n",
" loss, _ = sess.run([model.loss, model.update], feed_dict=feed_dict)\n",
" total_loss += loss\n",
" total_time += time.time() - start\n",
" summary = sess.run(valid_summary, feed_dict={is_training_pl: False})\n",
" writer.add_summary(summary, step)\n",
" print(colored('epoch %d step %d loss %.8f - time per batch %.4f' %\n",
" (epoch, step, total_loss / num_eval_steps, total_time / num_eval_steps),\n",
" 'grey', 'on_green'))\n",
" total_time = 0\n",
" if step % args.steps_per_visu == 0:\n",
" all_pcds = sess.run(model.visualize_ops, feed_dict=feed_dict)\n",
" for i in range(0, args.batch_size, args.visu_freq):\n",
" plot_path = os.path.join(args.log_dir, 'plots',\n",
" 'epoch_%d_step_%d_%s.png' % (epoch, step, ids[i]))\n",
" pcds = [x[i] for x in all_pcds]\n",
" plot_pcd_three_views(plot_path, pcds, model.visualize_titles)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:From /tf/tensorflow-tutorials/pcn_modify/pcn/models/pcn_emd.py:21: The name tf.variable_scope is deprecated. Please use tf.compat.v1.variable_scope instead.\n",
"\n",
"WARNING:tensorflow:From /tf/tensorflow-tutorials/pcn_modify/pcn/models/pcn_emd.py:21: The name tf.AUTO_REUSE is deprecated. Please use tf.compat.v1.AUTO_REUSE instead.\n",
"\n",
"WARNING:tensorflow:\n",
"The TensorFlow contrib module will not be included in TensorFlow 2.0.\n",
"For more information, please see:\n",
" * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md\n",
" * https://github.com/tensorflow/addons\n",
" * https://github.com/tensorflow/io (for I/O related ops)\n",
"If you depend on functionality not listed there, please file an issue.\n",
"\n",
"WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow_core/contrib/layers/python/layers/layers.py:1057: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.\n",
"Instructions for updating:\n",
"Please use `layer.__call__` method instead.\n",
"WARNING:tensorflow:From /tf/tensorflow-tutorials/pcn_modify/pcn/tf_util.py:71: The name tf.summary.scalar is deprecated. Please use tf.compat.v1.summary.scalar instead.\n",
"\n",
"WARNING:tensorflow:From /tf/tensorflow-tutorials/pcn_modify/pcn/tf_util.py:75: The name tf.metrics.mean is deprecated. Please use tf.compat.v1.metrics.mean instead.\n",
"\n",
"INFO:tensorflow:Restoring parameters from ./log/pcn_emd_car_modify/model-26000\n",
"Average time: 0.049774\n",
"Average Chamfer distance: 0.009361\n",
"Average Earth mover distance: 0.051862\n",
"Chamfer distance per category\n",
"02958343 0.009361\n",
"Earth mover distance per category\n",
"02958343 0.051862\n"
]
}
],
"source": [
"# Author: Wentao Yuan (wyuan1@cs.cmu.edu) 05/31/2018\n",
"\n",
"import argparse\n",
"import csv\n",
"import importlib\n",
"import models\n",
"import numpy as np\n",
"import os\n",
"import tensorflow as tf\n",
"import time\n",
"\n",
"from tf_util import chamfer, earth_mover\n",
"from visu_util import plot_pcd_three_views\n",
"from data_util import lmdb_dataflow, get_queued_data, resample_pcd\n",
"\n",
"##################\n",
"#from io_util import read_pcd, save_pcd 이부분 그냥 포함시켜버렸다...ㅎㅎ\n",
"import numpy as np\n",
"#from open3d import *\n",
"import open3d as o3d\n",
"\n",
"\n",
"def read_pcd(filename):\n",
" pcd = o3d.io.read_point_cloud(filename)\n",
" return np.array(pcd.points)\n",
"\n",
"\n",
"def save_pcd(filename, points):\n",
" pcd = o3d.geometry.PointCloud()\n",
" pcd.points = o3d.utility.Vector3dVector(points)\n",
" o3d.io.write_point_cloud(filename, pcd)\n",
"##################\n",
"\n",
"list_path ='../../data/shapenet/car_test.list' \n",
"data_dir = '../../data/shapenet/test'\n",
"model_type = 'pcn_emd'\n",
"checkpoint = './log/pcn_emd_car_modify'\n",
"results_dir ='results/shapenet_pcn_emd_car_modify'\n",
"num_gt_points = 16384\n",
"plot_freq = 1\n",
"_save_pcd = True\n",
"lmdb_valid = ''\n",
"num_input_points=3000\n",
"\n",
"def test():\n",
" inputs = tf.placeholder(tf.float32, (1, None, 3))\n",
" my_inputs = tf.placeholder(tf.float32, (1, None, 3))\n",
" npts = tf.placeholder(tf.int32, (1,))\n",
" gt = tf.placeholder(tf.float32, (1, num_gt_points, 3))\n",
" model_module = importlib.import_module('.%s' % model_type, 'models')\n",
" model = model_module.Model(inputs,my_inputs, npts, gt, tf.constant(1.0))\n",
"\n",
" output = tf.placeholder(tf.float32, (1, num_gt_points, 3))\n",
" cd_op = chamfer(output, gt)\n",
" emd_op = earth_mover(output, gt)\n",
"\n",
" #####\n",
" df_valid, num_valid = lmdb_dataflow(\n",
" lmdb_valid, 1, num_input_points, num_gt_points, is_training=False)\n",
" valid_gen = df_valid.get_data()\n",
" #####\n",
" \n",
" config = tf.ConfigProto()\n",
" config.gpu_options.allow_growth = True\n",
" config.allow_soft_placement = True\n",
" sess = tf.Session(config=config)\n",
"\n",
" saver = tf.train.Saver()\n",
" saver.restore(sess, tf.train.latest_checkpoint(checkpoint))\n",
"\n",
" os.makedirs(results_dir, exist_ok=True)\n",
" csv_file = open(os.path.join(results_dir, 'results.csv'), 'w') # 각 항목별로 cd, emd 구해줌.\n",
" writer = csv.writer(csv_file)\n",
" writer.writerow(['id', 'cd', 'emd'])\n",
"\n",
" with open(list_path) as file:\n",
" model_list = file.read().splitlines()\n",
" total_time = 0\n",
" total_cd = 0\n",
" total_emd = 0\n",
" cd_per_cat = {}\n",
" emd_per_cat = {}\n",
" for i, model_id in enumerate(model_list):\n",
" partial = read_pcd(os.path.join(data_dir, 'partial', '%s.pcd' % model_id))\n",
" complete = read_pcd(os.path.join(data_dir, 'complete', '%s.pcd' % model_id))\n",
" start = time.time()\n",
" completion = sess.run(model.outputs, feed_dict={inputs: [partial],my_inputs:[partial], npts: [partial.shape[0]]})\n",
" total_time += time.time() - start\n",
" cd, emd = sess.run([cd_op, emd_op], feed_dict={output: completion, gt: [complete]})\n",
" total_cd += cd\n",
" total_emd += emd\n",
" writer.writerow([model_id, cd, emd]) #항목별 cd,emd 써줌\n",
"\n",
" # 카테고리별 cd,emd 얻음\n",
" synset_id, model_id = model_id.split('/')\n",
" if not cd_per_cat.get(synset_id):\n",
" cd_per_cat[synset_id] = []\n",
" if not emd_per_cat.get(synset_id):\n",
" emd_per_cat[synset_id] = []\n",
" cd_per_cat[synset_id].append(cd)\n",
" emd_per_cat[synset_id].append(emd)\n",
" \n",
" # 3가지 view에서 모델 input,gt,output보여줌.\n",
" if i % plot_freq == 0:\n",
" os.makedirs(os.path.join(results_dir, 'plots', synset_id), exist_ok=True)\n",
" plot_path = os.path.join(results_dir, 'plots', synset_id, '%s.png' % model_id)\n",
" plot_pcd_three_views(plot_path, [partial, completion[0], complete],\n",
" ['input', 'output', 'ground truth'],\n",
" 'CD %.4f EMD %.4f' % (cd, emd),\n",
" [5, 0.5, 0.5])\n",
" if _save_pcd:\n",
" os.makedirs(os.path.join(results_dir, 'pcds', synset_id), exist_ok=True)\n",
" save_pcd(os.path.join(results_dir, 'pcds', '%s.pcd' % model_id), completion[0])\n",
" csv_file.close()\n",
" sess.close()\n",
"\n",
" print('Average time: %f' % (total_time / len(model_list)))\n",
" print('Average Chamfer distance: %f' % (total_cd / len(model_list)))\n",
" print('Average Earth mover distance: %f' % (total_emd / len(model_list)))\n",
" print('Chamfer distance per category')\n",
" for synset_id in cd_per_cat.keys():\n",
" print(synset_id, '%f' % np.mean(cd_per_cat[synset_id]))\n",
" print('Earth mover distance per category')\n",
" for synset_id in emd_per_cat.keys():\n",
" print(synset_id, '%f' % np.mean(emd_per_cat[synset_id]))\n",
"'''\n",
"\n",
"if __name__ == '__main__':\n",
" parser = argparse.ArgumentParser()\n",
" parser.add_argument('--list_path', default='data/shapenet/test.list')\n",
" parser.add_argument('--data_dir', default='data/shapenet/test')\n",
" parser.add_argument('--model_type', default='pcn_emd')\n",
" parser.add_argument('--checkpoint', default='data/trained_models/pcn_emd')\n",
" parser.add_argument('--results_dir', default='results/shapenet_pcn_emd')\n",
" parser.add_argument('--num_gt_points', type=int, default=16384)\n",
" parser.add_argument('--plot_freq', type=int, default=100)\n",
" parser.add_argument('--save_pcd', action='store_true')\n",
" args = parser.parse_args()\n",
"\n",
" test(args)\n",
"'''\n",
"test()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "read_point_cloud(): incompatible function arguments. The following argument types are supported:\n 1. (filename: str, format: str = 'auto', remove_nan_points: bool = True, remove_infinite_points: bool = True, print_progress: bool = False) -> open3d.open3d.geometry.PointCloud\n\nInvoked with: ",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-9-77d1fb1ef881>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mopen3d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mio\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_point_cloud\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: read_point_cloud(): incompatible function arguments. The following argument types are supported:\n 1. (filename: str, format: str = 'auto', remove_nan_points: bool = True, remove_infinite_points: bool = True, print_progress: bool = False) -> open3d.open3d.geometry.PointCloud\n\nInvoked with: "
]
}
],
"source": [
"from open3d import *\n",
"io.read_point_cloud()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}