tf_nndistance.py 3.21 KB
import os, sys
import tensorflow as tf
from tensorflow.python.framework import ops
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
nn_distance_module=tf.load_op_library(os.path.join(BASE_DIR, 'tf_nndistance_so.so'))

def nn_distance(xyz1,xyz2):
	'''
Computes the distance of nearest neighbors for a pair of point clouds
input: xyz1: (batch_size,#points_1,3)  the first point cloud
input: xyz2: (batch_size,#points_2,3)  the second point cloud
output: dist1: (batch_size,#point_1)   distance from first to second
output: idx1:  (batch_size,#point_1)   nearest neighbor from first to second
output: dist2: (batch_size,#point_2)   distance from second to first
output: idx2:  (batch_size,#point_2)   nearest neighbor from second to first
	'''
	return nn_distance_module.nn_distance(xyz1,xyz2)
#@tf.RegisterShape('NnDistance')
#def _nn_distance_shape(op):
	#shape1=op.inputs[0].get_shape().with_rank(3)
	#shape2=op.inputs[1].get_shape().with_rank(3)
	#return [tf.TensorShape([shape1.dims[0],shape1.dims[1]]),tf.TensorShape([shape1.dims[0],shape1.dims[1]]),
		#tf.TensorShape([shape2.dims[0],shape2.dims[1]]),tf.TensorShape([shape2.dims[0],shape2.dims[1]])]
@ops.RegisterGradient('NnDistance')
def _nn_distance_grad(op,grad_dist1,grad_idx1,grad_dist2,grad_idx2):
	xyz1=op.inputs[0]
	xyz2=op.inputs[1]
	idx1=op.outputs[1]
	idx2=op.outputs[3]
	return nn_distance_module.nn_distance_grad(xyz1,xyz2,grad_dist1,idx1,grad_dist2,idx2)


if __name__=='__main__':
	import numpy as np
	import random
	import time
	from tensorflow.python.ops.gradient_checker import compute_gradient
	random.seed(100)
	np.random.seed(100)
	with tf.Session('') as sess:
		xyz1=np.random.randn(32,16384,3).astype('float32')
		xyz2=np.random.randn(32,1024,3).astype('float32')
		#with tf.device('/gpu:0'):
		if True:
			inp1=tf.Variable(xyz1)
			inp2=tf.constant(xyz2)
			reta,retb,retc,retd=nn_distance(inp1,inp2)
			loss=tf.reduce_sum(reta)+tf.reduce_sum(retc)
			train=tf.train.GradientDescentOptimizer(learning_rate=0.05).minimize(loss)
		sess.run(tf.initialize_all_variables())
		t0=time.time()
		t1=t0
		best=1e100
		for i in xrange(100):
			trainloss,_=sess.run([loss,train])
			newt=time.time()
			best=min(best,newt-t1)
			print(i,trainloss,(newt-t0)/(i+1),best)
			t1=newt
		#print sess.run([inp1,retb,inp2,retd])
		#grads=compute_gradient([inp1,inp2],[(16,32,3),(16,32,3)],loss,(1,),[xyz1,xyz2])
		#for i,j in grads:
			#print i.shape,j.shape,np.mean(np.abs(i-j)),np.mean(np.abs(i)),np.mean(np.abs(j))
		#for i in xrange(10):
			#t0=time.time()
			#a,b,c,d=sess.run([reta,retb,retc,retd],feed_dict={inp1:xyz1,inp2:xyz2})
			#print 'time',time.time()-t0
		#print a.shape,b.shape,c.shape,d.shape
		#print a.dtype,b.dtype,c.dtype,d.dtype
		#samples=np.array(random.sample(range(xyz2.shape[1]),100),dtype='int32')
		#dist1=((xyz1[:,samples,None,:]-xyz2[:,None,:,:])**2).sum(axis=-1).min(axis=-1)
		#idx1=((xyz1[:,samples,None,:]-xyz2[:,None,:,:])**2).sum(axis=-1).argmin(axis=-1)
		#print np.abs(dist1-a[:,samples]).max()
		#print np.abs(idx1-b[:,samples]).max()
		#dist2=((xyz2[:,samples,None,:]-xyz1[:,None,:,:])**2).sum(axis=-1).min(axis=-1)
		#idx2=((xyz2[:,samples,None,:]-xyz1[:,None,:,:])**2).sum(axis=-1).argmin(axis=-1)
		#print np.abs(dist2-c[:,samples]).max()
		#print np.abs(idx2-d[:,samples]).max()