train.py 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
import argparse
import datetime
import logging
import os
import shutil
import time

import numpy as np
import PIL
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import adabound
import torch.utils.data
from torch.utils.data.sampler import SubsetRandomSampler
import torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torchvision.utils import save_image
from PIL.ImageOps import grayscale
from PIL import Image
from get_mean_std import get_params

import random
from tensorboard_logger import configure, log_value
from model import mobilenetv3, EfficientNet
from focal_loss import FocalLoss
from utils import get_args_from_yaml, accuracy, precision, recall, AverageMeter, printlog, FastDataLoader
import threading

# make Logger
logger = logging.getLogger('Techwing_log_file')
logger.setLevel(logging.INFO)

# make Logger stream (콘솔창에 띄우고 싶으면 해당 주석처리 제거)
#streamHandler = logging.StreamHandler()
#logger.addHandler(streamHandler)

# used for logging to TensorBoard
best_prec1 = 0
print_dataset_statestics = False

# Set Ratio test & train set
validation_ratio = 0.1
random_seed = 10

#confidence
seed = random.randint(1,1000)

# UI 단에서 실행하는 Train 방식.
def UI_train(mode, q, **kwargs):
    try:
        if mode == 'Error':
            args = get_args_from_yaml("configs/Error_config.yml")
        elif mode == 'Type':
            args = get_args_from_yaml('configs/ErrorType_config.yml')
        else:
            args = get_args_from_yaml('configs/All_config.yml')

        args['model']['blocks'] = kwargs['blocknum']
        args['data']['train'] = kwargs["data_path"]
        args['train']['epochs'] = kwargs["epoch"]
        args['optimizer']['type'] = kwargs["optim"]
        args['optimizer']['lr'] = kwargs["lr"]
        args['train']["batch-size"] = kwargs["batch_size"]
        args['predict']['batch-size'] = kwargs["batch_size"]
        args['train']['size'] = kwargs["size"]

        if kwargs['resume']:
            q.put(f"resume training with checkpoint : {kwargs['ck_path']}")
            args['train']['resume'] = kwargs['ck_path']

        timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
        args['id'] = "train_" + timestring
        main(args, q=q)
    except Exception as ex:
        q.put(f"실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요")
        logger.info(ex)

# args: user hyperparameters, q: Queue of UI
def main(args, q=None):
    try:
        logdir = f"logs/{args['task']}/"
        
        if not os.path.exists(logdir):
            os.makedirs(logdir)

        if q == None:
            streamHandler = logging.StreamHandler()
            logger.addHandler(streamHandler)

        # 따로 적는 Logfile 설정 및 stream 설정.
        fileHandler = logging.FileHandler(logdir + f"{args['id']}_{args['modelname']}_block_{args['model']['blocks']}.log")
        logger.addHandler(fileHandler)

        timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
        logger.info(timestring)
        
        # Train & Validate
        run_model(args, q)

        timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
        logger.info(timestring)
        logging.info(f"[{args['id']}] done")

    except Exception:
        logger.error("Fatal error in main loop", exc_info=True)
        logger.warn(f"[{args['id']}] failed")

# args : Yaml에서 가져온 설정 파일, q : Dialog 에 입력하기 위하여 쓰인 Queue
def run_model(args, q=None):
    global best_prec1
    
    #실험 정보 기입. (task= All, id= 랜덤 자연수, model= mobilenetv3, epoch= 1~3000, block= 1~11, class= 2~8)
    args['task'] = "%s/%s_model=%s-ep=%s-block=%s-class=%s" % (
        args['task'],
        args['id'],
        args['modelname'],
        args['train']['epochs'],
        args['model']['blocks'],
        args['model']['class'])

    logger.info(f"use seed {seed}")
    logger.info(f"use dataset : {args['data']['train']}")

    # get GPU information from configs file
    logger.info(args)
    gpus = args['gpu']
    resize_size = args['train']['size']

    ############################# 데이터 불러오는 과정 #############################
    # Data loading code
    #feature 노말라이즈 적용.
    mean, std = get_params(args['data']['train'], resize_size)
    normalize = transforms.Normalize(mean=[mean[0].item()],
                         std=[std[0].item()])

    #Train data loader에 적용하는 함수 (순서대로 적용됨.)
    if args['train']['augment']:
        transform_train = transforms.Compose([
            transforms.Resize((resize_size, resize_size)),      # 가로세로 크기 조정
            transforms.ColorJitter(0.2,0.2,0.2),                # 밝기, 대비, 채도 조정
            transforms.RandomRotation(2),                       # -2~ 2도 만큼 회전
            transforms.RandomAffine(5),                         # affine 변환 (평행사변형이 된다든지, 사다리꼴이 된다든지)
            transforms.RandomCrop(resize_size, padding=2),      # 원본에서 padding을 상하좌우 2로 둔 뒤, 64만큼 자름
            transforms.RandomHorizontalFlip(),                  # Data 변환 좌우 반전
            transforms.Grayscale(),
            transforms.ToTensor(),
            normalize
        ])
    # option not augment
    else:
        transform_train = transforms.Compose([
            transforms.Resize((resize_size, resize_size)),
            transforms.ToTensor(),
            normalize
        ])

    # Test loader에 적용하는 함수.
    transform_test = transforms.Compose([
        transforms.Resize((resize_size, resize_size)),
        transforms.Grayscale(),
        transforms.ToTensor(),
        normalize
    ])

    # num workers : GPU의 스레드개수, Pin memory는 GPU에 데이터를 올리는 설정.
    kwargs = {'num_workers': args['train']['worker'], 'pin_memory': True}

    # image Folder config에서 설정한 path로 해주면 해당 디렉토리 안의 디렉토리의 이름이 Class가 된다.
    train_data = datasets.ImageFolder(args['data']['train'], transform_train)
    val_data = datasets.ImageFolder(args['data']['train'],transform_test)

    # Train data를 전체 데이터로 설정하였기 때문에 validation을 진행하기 위해서
    # validation ratio = 0.1 즉 10%를 validation set으로 설정.
    random_seed = 10
    validation_ratio = 0.1
    num_train = len(train_data)
    indices = list(range(num_train))
    split = int(np.floor(validation_ratio * num_train))

    # 랜덤 시드 설정. (Train이나 ,Test 일때 모두 10 이므로 같은 데이터셋이라 할 수 있다)
    np.random.seed(random_seed)
    np.random.shuffle(indices)

    # Train set, Validation set 나누기.
    train_idx, valid_idx = indices[split:], indices[:split]
    train_sampler = SubsetRandomSampler(train_idx)
    valid_sampler = SubsetRandomSampler(valid_idx)
    train_loader = FastDataLoader(
        train_data, batch_size=args['train']['batch-size'], sampler=train_sampler,      #shuffle = True
        **kwargs)
    val_loader = FastDataLoader(
        val_data, batch_size=args['train']['batch-size'], sampler=valid_sampler,        #shuffle = False
        **kwargs)

    ############################## 모델 설정 과정 #############################
    # Convolution 초기화 할 때 Random이 사용되는데 그때 사용되는 Seed 설정.
    torch.manual_seed(seed)

    # 각 클래스마다 weight를 주어서 차등적으로 학습
    class_weights = torch.FloatTensor(args['train']['weight'])
    
    # Loss 함수 설정. Cross entropy 사용.
    criterion = nn.CrossEntropyLoss(weight=class_weights)
    
    # 모델로는 Mobilenet V3 사용
    model = mobilenetv3(n_class=args['model']['class'], blocknum=args['model']['blocks'], dropout=0.5)
  
    # SGD를 사용. (Adam이 성능이 우월하지만 Tuning을 잘한 SGD가 Adam보다 성능이 좋을 때가 많기 때문에 SGD 사용.)
    if args['optimizer']['type'] == "SGD":
        optimizer = torch.optim.SGD(model.parameters(), args['optimizer']['lr'],
                                momentum=args['optimizer']['momentum'],
                                nesterov=True,
                                weight_decay=args['optimizer']['weight_decay'])
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader))
        
    else:
        optimizer = torch.optim.Adam(model.parameters(), args['optimizer']['lr'],
                                  weight_decay=args['optimizer']['weight_decay'])
        scheduler = None            #Adam을 사용하면 Optimizer에서 LR을 줄여주므로 스케쥴러 사용하지 않음.

    # get the number of model parameters
    logger.info('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))

    # for training on multiple GPUs.
    # Use CUDA_VISIBLE_DEVICES=0,1 to specify which GPUs to use
    # 멀티 GPU 설정.
    if torch.cuda.is_available():
        torch.cuda.set_device(gpus[0])
        with torch.cuda.device(gpus[0]):
            model = model.cuda()
            criterion = criterion.cuda()
        model = torch.nn.DataParallel(model, device_ids=gpus, output_device=gpus[0])        # 모델을 다른 GPU에 뿌려준 다음 Gradient를 한 군데에서 계산하기 때문에 보통 0번 GPU에 많은 메로리가 할당됨.
                                                                                            # 하나의 GPU에 많은 메모리가 할당되면 batchsize를 늘릴 수 없기 때문에 이를 해결하기 위하여 output_device를 할당.
                                                                                            # 해당 코드는 데이터의 크기가 작기 때문에 0번에다가 모두 처리하는 것으로 설정.
    else:
        model = torch.nn.DataParallel(model)
        device = torch.device("cpu")
        model.to(device)
        criterion.to(device)

    # 유저가 입력한 Checkpoint에서 다시 retraining 한다고 설정을 하였을 때.
    if args['train']['resume']:
        # 해당 경로에 실제로 파일이 있으면.
        if os.path.isfile(args['train']['resume']):
            logger.info(f"=> loading checkpoint '{args['train']['resume']}'")

            if torch.cuda.is_available():
                checkpoint = torch.load(args['train']['resume'])
            else:
                checkpoint = torch.load(args['train']['resume'], map_location=torch.device('cpu'))
            
            # 시작 Epoch또한 checkpoint의 epoch로 설정.
            args['train']['start-epoch'] = checkpoint['epoch']
            
            # checkpoint에서 나온 Best accuracy를 가져옴.
            best_prec1 = checkpoint['best_prec1']

            # 앞서 선언한 모델에 weight들을 설정.
            model.load_state_dict(checkpoint['state_dict'])
            logger.info(f"=> loaded checkpoint '{args['train']['resume']}' (epoch {checkpoint['epoch']})")
        # 파일이 없다면
        else:
            logger.info(f"=> no checkpoint found at '{args.resume}'")

    # True를 설정하면 Cudnn 라이브러리에서 hardware에 따라 사용하는 내부 알고리즘을 바꾸어 준다.
    # Tensor의 크기나 Gpu Memory에 따라 효율적인 convolution 알고리즘이 다르기 때문.
    cudnn.benchmark = True
    
    for epoch in range(args['train']['start-epoch'], args['train']['epochs']):
        # train for one epoch
        train(train_loader, model, criterion, optimizer, scheduler, epoch, args, q)

        # evaluate on validation set
        prec1, prec, rec = validate(val_loader, model, criterion, epoch, args, q)

        # remember best prec@1 and save checkpoint
        is_best = prec1 >= best_prec1

        best_prec1 = max(prec1, best_prec1)
        checkpoint = save_checkpoint({
            'epoch': epoch + 1,
            'state_dict': model.state_dict(),
            'best_prec1': best_prec1,
        }, is_best, args, args['model']['blocks'], q)

    printlog(f'Best accuracy: {best_prec1}', logger, q)

    if args['model']['class'] !=2:
        for i in range(len(prec)):
            logger.info(' * Precision {prec.avg:.3f}'.format(prec=prec[i]))
            logger.info(' * recall {rec.avg:.3f}'.format(rec=rec[i]))
    else:
        logger.info(' * Precision {prec.avg:.3f}'.format(prec=prec))
        logger.info(' * recall {rec.avg:.3f}'.format(rec=rec))

    #count = count + 1 
    return checkpoint

# train_loader : 데이터 로더 
# Model : MobilenetV3(default).
# criterion : Crossentropy (default).
# scheduler : CosineAnnealing.
# epoch : 3000.
# args : config parameters. yaml 파일에서 확인하실 수 있습니다.
# q : UI창에서 글을 쓰는 역활을 하는 Queue. (쓰레드에서 Queue에서 지속적으로 가지고와서 입력.)
def train(train_loader, model, criterion, optimizer, scheduler, epoch, args, q=None):
    """Train for one epoch on the training set"""
    batch_time = AverageMeter()
    losses = AverageMeter()
    top1 = AverageMeter()
    prec = AverageMeter()

    # switch to train mode
    model.train()
    end = time.time()
    for i, (input, target) in enumerate(train_loader):
        if torch.cuda.is_available():
            target = target.cuda()
            input = input.cuda()
        # compute output
        output = model(input)
        loss = criterion(output, target)
        # measure accuracy and record loss
        prec1 = accuracy(output, target, topk=(1,))[0]

        losses.update(loss.item(), input.size(0))
        top1.update(prec1.item(), input.size(0))
        
        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if scheduler != None:
            scheduler.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args['etc']['print_freq'] == 0:
            # Error / Normal Case를 분류하는 Task의 결과 string.
            if args['model']['class'] == 2:
                logger.info('Epoch: [{0}][{1}/{2}]\t'
                            'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                            'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                            'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                            'Precision {prec.val:.3f} ({prec.avg:.3f})'
                            .format(
                                epoch, i, len(train_loader), batch_time=batch_time,
                                loss=losses, top1=top1, prec=prec))
            # All task나 ErrorType Task를 실행하였을 때의 결과 string. (6개 이상의 Class의 Prcision을 표현하기에는 문제가 있을것 같아서 
            # precision 부분은 맨 마지막에 호출하는 것으로 구성.)
            else:
                logger.info('Epoch: [{0}][{1}/{2}]\t'
                            'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                            'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                            'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                            .format(
                                epoch, i, len(train_loader), batch_time=batch_time,
                                loss=losses, top1=top1))
                                
    # log to TensorBoard
    if args['etc']['tensorboard']:
        log_value('train_loss', losses.avg, epoch)
        log_value('train_acc', top1.avg, epoch)

def validate(val_loader, model, criterion, epoch, args, q=None):
    """Perform validaadd_model_to_queuetion on the validation set"""
    with torch.no_grad():
        batch_time = AverageMeter()
        losses = AverageMeter()
        top1 = AverageMeter()
        prec = []
        rec = []
        if args['model']['class'] == 2:
            prec = AverageMeter()
            rec = AverageMeter()
        else:
            for i in range(args['model']['class']):
                prec.append(AverageMeter())
                rec.append(AverageMeter())
        # switch to evaluate mode
        model.eval()
        end = time.time()

        for i, (input, target) in enumerate(val_loader):
            if torch.cuda.is_available():
                target = target.cuda()
                input = input.cuda()

            # compute output
            output = model(input)
            loss = criterion(output, target)

            # measure accuracy and record loss
            prec1 = accuracy(output.data, target, topk=(1,))[0]

            losses.update(loss.item(), input.size(0))
            top1.update(prec1.item(), input.size(0))
            if args['model']['class'] == 2:
                prec.update(precision(output.data, target, target_class=0), input.size(0))
                rec.update(recall(output.data, target, target_class=0), input.size(0))
            else:
                for k in range(args['model']['class']):
                    prec[k].update(precision(output.data, target, target_class=k), input.size(0))
                    rec[k].update(recall(output.data, target, target_class=k), input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % args['etc']['print_freq'] == 0:
                if args['model']['class'] == 2:
                    logger.info('Test: [{0}/{1}]\t'
                                'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                                'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                                'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                                'Precision {prec.val:.3f} ({prec.avg:.3f})'
                                .format(
                                    i, len(val_loader), batch_time=batch_time, loss=losses,
                                    top1=top1, prec=prec))
                else:
                    logger.info('Test: [{0}/{1}]\t'
                            'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                            'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                            'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'
                            .format(
                                i, len(val_loader), batch_time=batch_time, loss=losses,
                                top1=top1))

        printlog(' * epoch: {epoch} Prec@1 {top1.avg:.3f}'.format(epoch=epoch,top1=top1), logger, q)

        if args['model']['class'] == 2:
            logger.info(' * Precision {prec.avg:.3f}'.format(prec=prec))
            logger.info(' * recall {rec.avg:.3f}'.format(rec=rec))
        
        # log to TensorBoard
        if args['etc']['tensorboard']:
            log_value('val_loss', losses.avg, epoch)
            log_value('val_acc', top1.avg, epoch)
    return top1.avg, prec, rec


def save_checkpoint(state, is_best, args, block, q, filename='checkpoint.pth.tar'):
    """Saves checkpoint to disk"""
    directory = "%s/%s/" % (args['output'], args['task'])
    if not os.path.exists(directory):
        os.makedirs(directory)
    filename = directory + filename
    torch.save(state, filename)
    logger.info(f"Checkpoint Saved: {filename}")
    best_filename = f"{args['output']}/{args['task']}/model_best.pth.tar"
    if is_best:
        shutil.copyfile(filename, best_filename)
        logger.info(f"New Best Checkpoint saved: {best_filename}")

    return best_filename



def save_error_case(output, target,epoch, topk=(1,), input=None):
    maxk = max(topk)
    batch_size = target.size(0)
    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))
    pred = pred.view(batch_size)
    correct = correct.view(batch_size)

    for idx, correct_element in enumerate(correct):
        image = input[idx]
        save_image(image, f"error_case/epoch_{epoch}_idx_{idx}_case_{pred[idx]}_{target[idx]}.bmp")


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", required=True, help="train config file")       #config 파일을 디폴트로 받음.
    args = parser.parse_args()
    if args.config == 'Error':
        args = get_args_from_yaml("configs/Error_config.yml")
    elif args.config == 'ErrorType':
        args = get_args_from_yaml('configs/ErrorType_config.yml')
    else:
        args = get_args_from_yaml('configs/All_config.yml')
        
    
    #job id
    args['id'] = str(random.randint(0,99999))
    main(args)