test.py
19.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import argparse
import csv
import logging
import os
import shutil
import time
import sys
import zipfile
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
import PIL
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
import pandas as pd
from get_mean_std import get_params
sys.path.append(os.path.join(os.path.dirname(__name__)))
from model import mobilenetv3, EfficientNet
from torchvision.utils import save_image
from focal_loss import FocalLoss
from visualize.grad_cam import make_grad_cam
from utils import accuracy, AverageMeter, get_args_from_yaml, MyImageFolder, printlog, FastDataLoader
from PIL import Image
import torchvision.transforms.functional as TF
#from utils import restapi, preprocessing
global error_case_idx, correct_case_idx
logger = logging.getLogger(os.path.dirname(__name__))
logger.setLevel(logging.INFO)
streamHandler = logging.StreamHandler()
logger.addHandler(streamHandler)
def make_type_dir():
if not os.path.exists('test_result'):
os.mkdir('test_result')
if not os.path.exists('test_result/Type'):
os.mkdir('test_result/Type')
if not os.path.exists('test_result/Type/Double'):
os.mkdir('test_result/Type/Double')
if not os.path.exists('test_result/Type/Flip'):
os.mkdir('test_result/Type/Flip')
if not os.path.exists('test_result/Type/Scratch'):
os.mkdir('test_result/Type/Scratch')
if not os.path.exists('test_result/Type/Leave'):
os.mkdir('test_result/Type/Leave')
if not os.path.exists('test_result/Type/Empty'):
os.mkdir('test_result/Type/Empty')
if not os.path.exists('test_result/Type/Crack'):
os.mkdir('test_result/Type/Crack')
def make_all_dir():
if not os.path.exists('test_result'):
os.mkdir('test_result')
if not os.path.exists('test_result/All'):
os.mkdir('test_result/All')
if not os.path.exists('test_result/All/Double'):
os.mkdir('test_result/All/Double')
if not os.path.exists('test_result/All/Flip'):
os.mkdir('test_result/All/Flip')
if not os.path.exists('test_result/All/Scratch'):
os.mkdir('test_result/All/Scratch')
if not os.path.exists('test_result/All/Leave'):
os.mkdir('test_result/All/Leave')
if not os.path.exists('test_result/All/Normal'):
os.mkdir('test_result/All/Normal')
if not os.path.exists('test_result/All/Empty'):
os.mkdir('test_result/All/Empty')
if not os.path.exists('test_result/All/Crack'):
os.mkdir('test_result/All/Crack')
if not os.path.exists('test_result/All/Normal'):
os.mkdir('test_result/All/Normal')
def make_error_dir():
if not os.path.exists('test_result'):
os.mkdir('test_result')
if not os.path.exists('test_result/Error'):
os.mkdir('test_result/Error')
if not os.path.exists('test_result/Error/Normal'):
os.mkdir('test_result/Error/Normal')
if not os.path.exists('test_result/Error/Error'):
os.mkdir('test_result/Error/Error')
def get_savepath_classes_args(mode):
if mode == "Error":
save_path = './test_result/Error'
classes = ['Error', 'Normal']
args = get_args_from_yaml("configs/Error_config.yml")
elif mode == "Type":
save_path = './test_result/Type'
classes = ['Crack', 'Double', 'Empty', 'Flip', 'Leave','Pollute', 'Scratch']
args = get_args_from_yaml('configs/ErrorType_config.yml')
else:
save_path = './test_result/All'
classes = ['Crack','Double', 'Empty', 'Flip', 'Leave', 'Normal','Pollute', 'Scratch']
args = get_args_from_yaml('configs/All_config.yml')
return save_path, classes, args
# 여러개의 인풋을 Test 수행할 때 사용되는 함수.
def test(testloader, model, mode):
with torch.no_grad():
save_path, classes, _ = get_savepath_classes_args(mode)
model.eval()
for _, data in enumerate(testloader):
(input, _), (path, _) = data
if torch.cuda.is_available():
input = input.cuda()
output = model(input)
prob = F.softmax(output, dim=1)
for idx, p in enumerate(prob):
values = torch.topk(p,2).values.tolist()
indices = torch.topk(p,2).indices.tolist()
img = cv2.imread(path[idx])
cv2.imwrite(f"{save_path}/{classes[indices[0]]}/{classes[indices[0]]}={values[0]}__{classes[indices[1]]}={values[1]}.bmp", img)
# Test input이 하나의 파일일 때 사용되는 함수.
# Path = 데이터 원본의 경로, mode = 수행하는 Task.
def single_file_test(input, model, path, mode, q):
with torch.no_grad():
save_path, classes, _ = get_savepath_classes_args(mode)
model.eval()
if torch.cuda.is_available():
input = input.cuda()
start = time.time()
output = model(input)
prob = F.softmax(output, dim=1)
q.put(f"Inference time 1 image : {str(round(time.time() - start , 5))}")
for idx, p in enumerate(prob):
values = torch.topk(p,2).values.tolist() # 확률
indices = torch.topk(p,2).indices.tolist() # 인덱스
img = cv2.imread(path)
cv2.imwrite(f"{save_path}/{classes[indices[0]]}/{classes[indices[0]]}={values[0]}__{classes[indices[1]]}={values[1]}.bmp", img)
# 유저가 지정해준 checkpoint가 없으면 config 에 있는 checkpoint를 사용.
# data는 config에 지정된 data를 활용.
def UI_validate(mode, q, **kwargs):
try:
_, _, args = get_savepath_classes_args(mode)
args['model']['blocks'] = kwargs['blocknum']
args['data']['val'] = kwargs["data_path"]
q.put(f"using user's checkpoint {kwargs['ck_path']}")
args['checkpoint'] = kwargs['ck_path']
timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
args['id'] = "validate_" + timestring
main(args, q)
except Exception as ex:
q.put(f"실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.")
logger.info(ex)
# test는 항상 유저가 지정해주는 data를 활용.
# 만약 없다면 demo 즉 UI단에서 지정한 default data를 활용.
# mode: Error, ErrorType, All
# path: data path
# test_mode: File or dir
def UI_test(mode, path, test_mode, q, **kwargs):
try:
_, _, args = get_savepath_classes_args(mode)
make_error_dir()
make_type_dir()
make_all_dir()
args['model']['blocks'] = kwargs['blocknum']
args['train']['size'] = kwargs['size']
q.put(f"using user's checkpoint {kwargs['ck_path']}")
args['checkpoint'] = kwargs['ck_path']
timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
args['id'] = "test_" + timestring
gpus = args['gpu']
resize_size = args['train']['size']
model = mobilenetv3(n_class=args['model']['class'], blocknum=args['model']['blocks'])
if torch.cuda.is_available():
torch.cuda.set_device(gpus[0])
with torch.cuda.device(gpus[0]):
model = model.cuda()
model = torch.nn.DataParallel(model, device_ids=gpus, output_device=gpus[0])
else:
model = torch.nn.DataParallel(model)
device = torch.device("cpu")
model.to(device)
q.put("loading checkpoint...")
if torch.cuda.is_available():
checkpoint = torch.load(args['checkpoint'])
else:
checkpoint = torch.load(args['checkpoint'],map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['state_dict'])
q.put("checkpoint already loaded!")
q.put("start test")
# 테스트 데이터가 디렉토일 경우.
# 다중 데이터를 받아야 하므로 Pytorch에서 구성된 Dataloader 이용.
# 해당 코드에서는 Data의 Path까지 출력해주는 Loader을 추가로 구성함. (저장하기 위하여)
if test_mode == 'dir':
normalize = transforms.Normalize(mean=[0.4015], std=[0.2165])
transform_test = transforms.Compose([
transforms.Resize((resize_size,resize_size)),
transforms.Grayscale(),
transforms.ToTensor(),
normalize
])
q.put(f"data path directory is {path}")
testset = MyImageFolder(path, transform=transform_test)
test_loader = FastDataLoader(testset, batch_size=args['predict']['batch-size'], shuffle=False, num_workers=8)
start = time.time()
test(test_loader, model, mode)
q.put(f"Inference time {len(testset)} images : {str(round(time.time() - start , 5))}")
# 테스트 데이터가 하나의 파일일 경우.
# 하나의 데이터이므로 바로 이미지를 텐서로 바꿈.
# Dataloader에서는 transforms.compose로 데이터 Preprocessing을 묶었지만
# 여기서는 Dataloader를 사용하지 않기 때문에 transforms.functional을 이용하여 직접 변경.
# trasnforms 함수와 같은 형태를 가지고 있기 때문에 쉽게 이해 가능.
else:
image = Image.open(path)
x = TF.resize(image, (resize_size,resize_size)) # 리사이즈
x = TF.to_grayscale(x) # 그레이스케일 적용
x = TF.to_tensor(x) # 텐서 변환.
x.unsqueeze_(0) # 0-dim에 차원 추가.
start = time.time()
single_file_test(x, model, path, mode, q)
q.put(f"Inference time 1 image : {str(round(time.time() - start , 5))}")
q.put('finish test')
except Exception as ex:
q.put("실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.")
logger.info(ex)
def UI_temp(path,q,model):
try:
resize_size = 64
image = Image.open(path)
x = TF.resize(image, (resize_size, resize_size))
x = TF.to_grayscale(x)
x = TF.to_tensor(x)
x.unsqueeze_(0)
single_file_test(x, model, path, "Error", q)
q.put('temp test finish')
except Exception as ex:
q.put("실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.")
logger.info(ex)
def UI_temp2():
batch_size = 256
train_transforms = transforms.Compose([
transforms.Resize((256,256)),
transforms.ToTensor()
])
train_dataset = datasets.ImageFolder("../data/Fifth_data/All", train_transforms)
train_loader = FastDataLoader(dataset=train_dataset,
batch_size=batch_size, shuffle=True)
i=0
start = time.time()
for x,y in train_loader:
i = i+1
pass
end = time.time()
print((end - start)/i)
def main(args, q=None):
try:
logdir = f'logs/runs/{args["task"]}/'
if not os.path.exists(logdir):
os.makedirs(logdir)
fileHandler = logging.FileHandler(logdir + f'{args["id"]}.log')
logger.addHandler(fileHandler)
# 2. eval
run_model(args, q)
# 3. Done
printlog(f"[{args['id']}] done", logger, q)
except Exception as ex:
printlog("실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.", logger, q)
logger.info(ex)
def run_model(args, q=None):
resize_size = args['train']['size']
gpus = args['gpu']
mean, std = get_params(args['data']['val'], resize_size)
normalize = transforms.Normalize(mean=[mean[0].item()],
std=[std[0].item()])
normalize_factor = [mean, std]
# data loader
transform_test = transforms.Compose([
transforms.Resize((resize_size,resize_size)),
transforms.Grayscale(),
transforms.ToTensor(),
normalize
])
kwargs = {'num_workers': args['predict']['worker'], 'pin_memory': True}
test_data = MyImageFolder(args['data']['val'], transform_test)
random_seed = 10
validation_ratio = 0.1
num_test = len(test_data)
indices = list(range(num_test))
split = int(np.floor(validation_ratio * num_test))
np.random.seed(random_seed)
np.random.shuffle(indices)
valid_idx = indices[:split]
valid_sampler = SubsetRandomSampler(valid_idx)
val_loader = FastDataLoader(
test_data, batch_size=args['predict']['batch-size'], sampler=valid_sampler,
**kwargs)
criterion = nn.CrossEntropyLoss()
# load model
model = mobilenetv3(n_class=args['model']['class'], blocknum=args['model']['blocks'])
# get the number of model parameters
logger.info('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
if torch.cuda.is_available():
torch.cuda.set_device(gpus[0])
with torch.cuda.device(gpus[0]):
model = model.cuda()
criterion = criterion.cuda()
model = torch.nn.DataParallel(model, device_ids=gpus, output_device=gpus[0])
else:
model = torch.nn.DataParallel(model)
device = torch.device("cpu")
model.to(device)
criterion.to(device)
logger.info("=> loading checkpoint '{}'".format(args['checkpoint']))
if torch.cuda.is_available():
checkpoint = torch.load(args['checkpoint'])
else:
checkpoint = torch.load(args['checkpoint'], map_location=torch.device('cpu'))
args['start_epoch'] = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
logger.info("=> loaded checkpoint '{}' (epoch {})"
.format(args['checkpoint'], checkpoint['epoch']))
cudnn.benchmark = True
# define loss function (option 2)
#criterion = FocalLoss(
# gamma=args['loss']['gamma'], alpha=args['loss']['alpha']).cuda()
# evaluate on validation set
prec1 = validate(val_loader, model, criterion, normalize_factor, args ,q)
# remember best prec@1 and save checkpoint
best_prec1 = max(prec1, best_prec1)
logger.info(f'Best accuracy: {best_prec1}')
def validate(val_loader, model, criterion, normalize_factor, args, q):
"""Perform validation on the validation set"""
with torch.no_grad():
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, data in enumerate(val_loader):
(input, target), (path, _) = data
if torch.cuda.is_available():
target = target.cuda()
input = input.cuda()
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
#save error case
#save correct = 맞은거 까지 저장하는지 마는지.
if args['predict']['save']:
save_error_case(output.data, target, path, args, topk=(1,), input=input, save_correct=False)
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 1 == 0:
logger.info('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
printlog(' * Prec@1 {top1.avg:.3f}'.format(top1=top1), logger, q)
if args["predict"]["cam"]:
logger.info("Creating CAM")
#print grad cam
if args['predict']['normalize']:
make_grad_cam(f"eval_results/{args['task']}/error_case",
f"eval_results/{args['task']}/error_case/cam" , model, normalize_factor, cam_class=args['predict']['cam-class'], args=args)
else:
make_grad_cam(f"eval_results/{args['task']}/error_case",
f"eval_results/{args['task']}/error_case/cam" , model, normalize_factor=None, cam_class=args['predict']['cam-class'], args = args)
return top1.avg
def save_error_case(output, target, path, args , topk=(1,), input=None, save_correct=False):
global error_case_idx, correct_case_idx
error_case_idx = 0
correct_case_idx = 0
_, class_arr, _ = get_savepath_classes_args(args['task'])
p = F.softmax(output, dim=1)
values = torch.topk(p,2).values.tolist()
indices = torch.topk(p,2).indices.tolist()
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
pred = pred.view(batch_size)
correct = correct.view(batch_size)
if not os.path.exists(f'eval_results'):
os.mkdir(f'eval_results')
if not os.path.exists(f"eval_results/{args['task']}"):
os.mkdir(f"eval_results/{args['task']}")
if not os.path.exists(f"eval_results/{args['task']}/error_case"):
os.mkdir(f"eval_results/{args['task']}/error_case")
if not os.path.exists(f"eval_results/{args['task']}/correct_case") and save_correct:
os.mkdir(f"eval_results/{args['task']}/correct_case")
for idx, correct_element in enumerate(correct):
# 틀린 경우
if correct_element.item() == 0:
#save_image(input[idx], f"eval_results/{args['task']}/error_case/idx_{error_case_idx}_label_{target[idx]}_pred_{pred[idx]}.bmp")
img = cv2.imread(path[idx])
cv2.imwrite(f"eval_results/{args['task']}/error_case/idx_{error_case_idx}_label_{class_arr[target[idx]]}_pred_{class_arr[indices[idx][0]]}={round(values[idx][0]*100,1)}_{class_arr[indices[idx][1]]}={round(values[idx][1]*100,1)}_real.bmp" ,img)
error_case_idx = error_case_idx + 1
# 맞는 경우에도 저장.
if save_correct and correct_element.item() == 1:
#save_image(input[idx], f"eval_results/{args['task']}/correct_case/idx_{correct_case_idx}_label_{target[idx]}.bmp")
img = cv2.imread(path[idx])
cv2.imwrite(f"eval_results/{args['task']}/correct_case/idx_{correct_case_idx}_label_{class_arr[target[idx]]}_real.bmp" ,img)
correct_case_idx = correct_case_idx + 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="configs/Error_config.yml", help="train config file") #config 파일을 디폴트로 받음.
args = parser.parse_args()
if args.config == 'Error':
args = get_args_from_yaml("configs/Error_config.yml")
elif args.config == 'Type':
args = get_args_from_yaml('configs/ErrorType_config.yml')
else:
args = get_args_from_yaml('configs/All_config.yml')
args['id'] = 'eval'
main(args)