test.py 19.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
import argparse
import csv
import logging
import os
import shutil
import time
import sys
import zipfile
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
import PIL
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import torch.nn.functional as F

import cv2
import matplotlib.pyplot as plt
import pandas as pd
from get_mean_std import get_params

sys.path.append(os.path.join(os.path.dirname(__name__)))

from model import mobilenetv3, EfficientNet
from torchvision.utils import save_image
from focal_loss import FocalLoss
from visualize.grad_cam import make_grad_cam
from utils import accuracy, AverageMeter, get_args_from_yaml, MyImageFolder, printlog, FastDataLoader
from PIL import Image
import torchvision.transforms.functional as TF
#from utils import restapi, preprocessing

global error_case_idx, correct_case_idx

logger = logging.getLogger(os.path.dirname(__name__))
logger.setLevel(logging.INFO)

streamHandler = logging.StreamHandler()
logger.addHandler(streamHandler)

def make_type_dir():
    if not os.path.exists('test_result'):
        os.mkdir('test_result')
    if not os.path.exists('test_result/Type'):
        os.mkdir('test_result/Type')  
    if not os.path.exists('test_result/Type/Double'):
        os.mkdir('test_result/Type/Double')
    if not os.path.exists('test_result/Type/Flip'):
        os.mkdir('test_result/Type/Flip')
    if not os.path.exists('test_result/Type/Scratch'):
        os.mkdir('test_result/Type/Scratch')
    if not os.path.exists('test_result/Type/Leave'):
        os.mkdir('test_result/Type/Leave')
    if not os.path.exists('test_result/Type/Empty'):
        os.mkdir('test_result/Type/Empty')
    if not os.path.exists('test_result/Type/Crack'):
        os.mkdir('test_result/Type/Crack')

def make_all_dir():
    if not os.path.exists('test_result'):
        os.mkdir('test_result')
    if not os.path.exists('test_result/All'):
        os.mkdir('test_result/All')  
    if not os.path.exists('test_result/All/Double'):
        os.mkdir('test_result/All/Double')
    if not os.path.exists('test_result/All/Flip'):
        os.mkdir('test_result/All/Flip')
    if not os.path.exists('test_result/All/Scratch'):
        os.mkdir('test_result/All/Scratch')
    if not os.path.exists('test_result/All/Leave'):
        os.mkdir('test_result/All/Leave')
    if not os.path.exists('test_result/All/Normal'):
        os.mkdir('test_result/All/Normal')
    if not os.path.exists('test_result/All/Empty'):
        os.mkdir('test_result/All/Empty')
    if not os.path.exists('test_result/All/Crack'):
        os.mkdir('test_result/All/Crack')
    if not os.path.exists('test_result/All/Normal'):
        os.mkdir('test_result/All/Normal')

def make_error_dir():
    if not os.path.exists('test_result'):
        os.mkdir('test_result')
    if not os.path.exists('test_result/Error'):
        os.mkdir('test_result/Error')
    if not os.path.exists('test_result/Error/Normal'):
        os.mkdir('test_result/Error/Normal')
    if not os.path.exists('test_result/Error/Error'):
        os.mkdir('test_result/Error/Error')

def get_savepath_classes_args(mode):
    if mode == "Error":
        save_path = './test_result/Error'
        classes = ['Error', 'Normal']
        args = get_args_from_yaml("configs/Error_config.yml")

    elif mode == "Type":
        save_path = './test_result/Type'
        classes = ['Crack', 'Double', 'Empty', 'Flip', 'Leave','Pollute', 'Scratch']
        args = get_args_from_yaml('configs/ErrorType_config.yml')

    else:
        save_path = './test_result/All'
        classes = ['Crack','Double', 'Empty', 'Flip', 'Leave', 'Normal','Pollute', 'Scratch']
        args = get_args_from_yaml('configs/All_config.yml')

    return save_path, classes, args
    

# 여러개의 인풋을 Test 수행할 때 사용되는 함수.
def test(testloader, model, mode):
     with torch.no_grad():
        save_path, classes, _ = get_savepath_classes_args(mode)
        model.eval()
        for _, data in enumerate(testloader):
            (input, _), (path, _) = data
            if torch.cuda.is_available():
                input = input.cuda()

            output = model(input)
            prob = F.softmax(output, dim=1)

            for idx, p in enumerate(prob):
                values = torch.topk(p,2).values.tolist()
                indices = torch.topk(p,2).indices.tolist()
                img = cv2.imread(path[idx])
                cv2.imwrite(f"{save_path}/{classes[indices[0]]}/{classes[indices[0]]}={values[0]}__{classes[indices[1]]}={values[1]}.bmp", img)

# Test input이 하나의 파일일 때 사용되는 함수.
# Path = 데이터 원본의 경로, mode = 수행하는 Task.
def single_file_test(input, model, path, mode, q):
    with torch.no_grad():
        save_path, classes, _ = get_savepath_classes_args(mode)
        model.eval()
        if torch.cuda.is_available():
            input = input.cuda()

        start = time.time()    
        output = model(input)
        prob = F.softmax(output, dim=1)
        q.put(f"Inference time 1 image : {str(round(time.time() - start , 5))}")

        for idx, p in enumerate(prob):
            values = torch.topk(p,2).values.tolist()        # 확률
            indices = torch.topk(p,2).indices.tolist()      # 인덱스
            img = cv2.imread(path)
            cv2.imwrite(f"{save_path}/{classes[indices[0]]}/{classes[indices[0]]}={values[0]}__{classes[indices[1]]}={values[1]}.bmp", img)
                
# 유저가 지정해준 checkpoint가 없으면 config 에 있는 checkpoint를 사용.
# data는 config에 지정된 data를 활용.
def UI_validate(mode, q, **kwargs):
    try:
        _, _, args = get_savepath_classes_args(mode)
        args['model']['blocks'] = kwargs['blocknum']
        args['data']['val'] = kwargs["data_path"]

        q.put(f"using user's checkpoint {kwargs['ck_path']}")
        args['checkpoint'] = kwargs['ck_path']

        timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
        args['id'] = "validate_" + timestring
        main(args, q)
    except Exception as ex:
        q.put(f"실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.")
        logger.info(ex)

# test는 항상 유저가 지정해주는 data를 활용.
# 만약 없다면 demo 즉 UI단에서 지정한 default data를 활용.
# mode: Error, ErrorType, All
# path: data path
# test_mode: File or dir
def UI_test(mode, path, test_mode, q, **kwargs):
    try:
        _, _, args = get_savepath_classes_args(mode)
        make_error_dir()
        make_type_dir()
        make_all_dir()

        args['model']['blocks'] = kwargs['blocknum']
        args['train']['size'] = kwargs['size']

        q.put(f"using user's checkpoint {kwargs['ck_path']}")
        args['checkpoint'] = kwargs['ck_path']

        timestring = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
        args['id'] = "test_" + timestring
        gpus = args['gpu']
        resize_size = args['train']['size']
        model = mobilenetv3(n_class=args['model']['class'], blocknum=args['model']['blocks'])
        if torch.cuda.is_available():
            torch.cuda.set_device(gpus[0])
            with torch.cuda.device(gpus[0]):
                model = model.cuda()
            model = torch.nn.DataParallel(model, device_ids=gpus, output_device=gpus[0])
        else:
            model = torch.nn.DataParallel(model)
            device = torch.device("cpu")
            model.to(device)

        q.put("loading checkpoint...")
        if torch.cuda.is_available():
            checkpoint = torch.load(args['checkpoint'])
        else:
            checkpoint = torch.load(args['checkpoint'],map_location=torch.device('cpu'))

        model.load_state_dict(checkpoint['state_dict'])
        q.put("checkpoint already loaded!")
        q.put("start test")

        # 테스트 데이터가 디렉토일 경우.
        # 다중 데이터를 받아야 하므로 Pytorch에서 구성된 Dataloader 이용.
        # 해당 코드에서는 Data의 Path까지 출력해주는 Loader을 추가로 구성함. (저장하기 위하여)
        if test_mode == 'dir':
            normalize = transforms.Normalize(mean=[0.4015], std=[0.2165])
            transform_test = transforms.Compose([
                transforms.Resize((resize_size,resize_size)),
                transforms.Grayscale(),
                transforms.ToTensor(),
                normalize
            ])
            q.put(f"data path directory is {path}")
            testset = MyImageFolder(path, transform=transform_test)
            test_loader = FastDataLoader(testset, batch_size=args['predict']['batch-size'], shuffle=False, num_workers=8)
            start = time.time()
            test(test_loader, model, mode)
            q.put(f"Inference time {len(testset)} images : {str(round(time.time() - start , 5))}")
        
        # 테스트 데이터가 하나의 파일일 경우.
        # 하나의 데이터이므로 바로 이미지를 텐서로 바꿈.
        # Dataloader에서는 transforms.compose로 데이터 Preprocessing을 묶었지만
        # 여기서는 Dataloader를 사용하지 않기 때문에 transforms.functional을 이용하여 직접 변경.
        # trasnforms 함수와 같은 형태를 가지고 있기 때문에 쉽게 이해 가능.
        else:
            image = Image.open(path)
            x = TF.resize(image, (resize_size,resize_size))     # 리사이즈
            x = TF.to_grayscale(x)                              # 그레이스케일 적용
            x = TF.to_tensor(x)                                 # 텐서 변환.
            x.unsqueeze_(0)                                     # 0-dim에 차원 추가.
            start = time.time()
            single_file_test(x, model, path, mode, q)
            q.put(f"Inference time 1 image : {str(round(time.time() - start , 5))}")
        q.put('finish test')

    except Exception as ex:
        q.put("실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.")
        logger.info(ex)

def UI_temp(path,q,model):
    try:
        resize_size = 64
        image = Image.open(path)
        x = TF.resize(image, (resize_size, resize_size))
        x = TF.to_grayscale(x)
        x = TF.to_tensor(x)
        x.unsqueeze_(0)
        
        single_file_test(x, model, path, "Error", q)
        
        q.put('temp test finish')
    except Exception as ex:
        q.put("실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.")
        logger.info(ex)

def UI_temp2():
    batch_size = 256

    train_transforms = transforms.Compose([
        transforms.Resize((256,256)),
        transforms.ToTensor()
    ])

    train_dataset = datasets.ImageFolder("../data/Fifth_data/All", train_transforms)

    train_loader = FastDataLoader(dataset=train_dataset,
    batch_size=batch_size, shuffle=True)
    i=0
    start = time.time()
    for x,y in train_loader:
        i = i+1
        pass
    end = time.time()
    print((end - start)/i)

def main(args, q=None):
    try:
        logdir = f'logs/runs/{args["task"]}/'
        
        if not os.path.exists(logdir):
            os.makedirs(logdir)

        fileHandler = logging.FileHandler(logdir + f'{args["id"]}.log')
        logger.addHandler(fileHandler)

        # 2. eval
        run_model(args, q)

        # 3. Done
        printlog(f"[{args['id']}] done", logger, q)

    except Exception as ex:
        printlog("실행 중 에러가 발생하였습니다. 자세한 사항은 보시려면 로그를 확인해 주세요.", logger, q)
        logger.info(ex)

def run_model(args, q=None):
    resize_size = args['train']['size']

    gpus = args['gpu']

    mean, std = get_params(args['data']['val'], resize_size)

    normalize = transforms.Normalize(mean=[mean[0].item()],
                         std=[std[0].item()])
    normalize_factor = [mean, std]

    # data loader
    transform_test = transforms.Compose([
        transforms.Resize((resize_size,resize_size)),
        transforms.Grayscale(),
        transforms.ToTensor(),
        normalize
    ])
    kwargs = {'num_workers': args['predict']['worker'], 'pin_memory': True}
    test_data = MyImageFolder(args['data']['val'], transform_test)

    random_seed = 10
    validation_ratio = 0.1
    num_test = len(test_data)
    indices = list(range(num_test))
    split = int(np.floor(validation_ratio * num_test))

    np.random.seed(random_seed)
    np.random.shuffle(indices)

    valid_idx = indices[:split]
    valid_sampler = SubsetRandomSampler(valid_idx)


    val_loader = FastDataLoader(
        test_data, batch_size=args['predict']['batch-size'], sampler=valid_sampler,
        **kwargs)

    criterion = nn.CrossEntropyLoss()

    # load model
    model = mobilenetv3(n_class=args['model']['class'], blocknum=args['model']['blocks'])

    # get the number of model parameters
    logger.info('Number of model parameters: {}'.format(
        sum([p.data.nelement() for p in model.parameters()])))

    if torch.cuda.is_available():
        torch.cuda.set_device(gpus[0])
        with torch.cuda.device(gpus[0]):
            model = model.cuda()
            criterion = criterion.cuda()
        model = torch.nn.DataParallel(model, device_ids=gpus, output_device=gpus[0])
    else:
        model = torch.nn.DataParallel(model)
        device = torch.device("cpu")
        model.to(device)
        criterion.to(device)


    logger.info("=> loading checkpoint '{}'".format(args['checkpoint']))

    if torch.cuda.is_available():
        checkpoint = torch.load(args['checkpoint'])
    else:
        checkpoint = torch.load(args['checkpoint'], map_location=torch.device('cpu'))
    args['start_epoch'] = checkpoint['epoch']
    best_prec1 = checkpoint['best_prec1']
    model.load_state_dict(checkpoint['state_dict'])
    logger.info("=> loaded checkpoint '{}' (epoch {})"
          .format(args['checkpoint'], checkpoint['epoch']))

    cudnn.benchmark = True

    # define loss function (option 2)
    #criterion = FocalLoss(
    #   gamma=args['loss']['gamma'], alpha=args['loss']['alpha']).cuda()

    # evaluate on validation set
    prec1 = validate(val_loader, model, criterion, normalize_factor, args ,q)

    # remember best prec@1 and save checkpoint
    best_prec1 = max(prec1, best_prec1)
    logger.info(f'Best accuracy: {best_prec1}')


def validate(val_loader, model, criterion, normalize_factor, args, q):
    """Perform validation on the validation set"""
    with torch.no_grad():
        batch_time = AverageMeter()
        losses = AverageMeter()
        top1 = AverageMeter()

        # switch to evaluate mode
        model.eval()

        end = time.time()
        for i, data in enumerate(val_loader):
            (input, target), (path, _) = data
            if torch.cuda.is_available():
                target = target.cuda()
                input = input.cuda()

            # compute output
            output = model(input)

            loss = criterion(output, target)
            
            # measure accuracy and record loss
            prec1 = accuracy(output.data, target, topk=(1,))[0]

            #save error case
            #save correct = 맞은거 까지 저장하는지 마는지.
            if args['predict']['save']:
                save_error_case(output.data, target, path, args, topk=(1,), input=input, save_correct=False)

            losses.update(loss.item(), input.size(0))
            top1.update(prec1.item(), input.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % 1 == 0:
                logger.info('Test: [{0}/{1}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
                          i, len(val_loader), batch_time=batch_time, loss=losses,
                          top1=top1))
            
        printlog(' * Prec@1 {top1.avg:.3f}'.format(top1=top1), logger, q)
        
    if args["predict"]["cam"]:
        logger.info("Creating CAM")

        #print grad cam
        if args['predict']['normalize']:
            make_grad_cam(f"eval_results/{args['task']}/error_case",
                    f"eval_results/{args['task']}/error_case/cam" , model, normalize_factor, cam_class=args['predict']['cam-class'], args=args)
        else:
            make_grad_cam(f"eval_results/{args['task']}/error_case",
                    f"eval_results/{args['task']}/error_case/cam" , model, normalize_factor=None, cam_class=args['predict']['cam-class'], args = args)

    return top1.avg
    
def save_error_case(output, target, path, args , topk=(1,), input=None, save_correct=False):
    global error_case_idx, correct_case_idx

    error_case_idx = 0
    correct_case_idx = 0

    _, class_arr, _ = get_savepath_classes_args(args['task'])

    p = F.softmax(output, dim=1)

    values = torch.topk(p,2).values.tolist()
    indices = torch.topk(p,2).indices.tolist()

    maxk = max(topk)
    batch_size = target.size(0)
    _, pred = output.topk(maxk, 1, True, True)

    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    pred = pred.view(batch_size)
    correct = correct.view(batch_size)

    if not os.path.exists(f'eval_results'):
        os.mkdir(f'eval_results')

    if not os.path.exists(f"eval_results/{args['task']}"):
        os.mkdir(f"eval_results/{args['task']}")

    if not os.path.exists(f"eval_results/{args['task']}/error_case"):
        os.mkdir(f"eval_results/{args['task']}/error_case")
    
    if not os.path.exists(f"eval_results/{args['task']}/correct_case") and save_correct:
        os.mkdir(f"eval_results/{args['task']}/correct_case")

    for idx, correct_element in enumerate(correct):
        # 틀린 경우
        if correct_element.item() == 0:
            #save_image(input[idx], f"eval_results/{args['task']}/error_case/idx_{error_case_idx}_label_{target[idx]}_pred_{pred[idx]}.bmp")
            img = cv2.imread(path[idx])
            cv2.imwrite(f"eval_results/{args['task']}/error_case/idx_{error_case_idx}_label_{class_arr[target[idx]]}_pred_{class_arr[indices[idx][0]]}={round(values[idx][0]*100,1)}_{class_arr[indices[idx][1]]}={round(values[idx][1]*100,1)}_real.bmp" ,img)
            error_case_idx = error_case_idx + 1

        # 맞는 경우에도 저장.
        if save_correct and correct_element.item() == 1:
            #save_image(input[idx], f"eval_results/{args['task']}/correct_case/idx_{correct_case_idx}_label_{target[idx]}.bmp")
            img = cv2.imread(path[idx])
            cv2.imwrite(f"eval_results/{args['task']}/correct_case/idx_{correct_case_idx}_label_{class_arr[target[idx]]}_real.bmp" ,img)
            correct_case_idx = correct_case_idx + 1


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", default="configs/Error_config.yml", help="train config file")       #config 파일을 디폴트로 받음.
    args = parser.parse_args()

    if args.config == 'Error':
        args = get_args_from_yaml("configs/Error_config.yml")
    elif args.config == 'Type':
        args = get_args_from_yaml('configs/ErrorType_config.yml')
    else:
        args = get_args_from_yaml('configs/All_config.yml')
    args['id'] = 'eval'

    main(args)